

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52100cvm80j

Family Configurations

1 Family Configurations

Table 1. MCF52110 Family Configurations

Module	52100	52110		
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)	•	•		
System Clock	66, 80 MHz			
Performance (Dhrystone 2.1 MIPS)	up to 76			
Flash/Static RAM (SRAM)	64/16 Kbytes	128/16 Kbytes		
Interrupt Controller (INTC)	•	•		
Fast Analog-to-Digital Converter (ADC)	•	•		
Real-Time Clock (RTC)	•	•		
Four-channel Direct-Memory Access (DMA)	•	•		
Software Watchdog Timer (WDT)	•	•		
Backup Watchdog Timer	•	•		
Two-channel Periodic Interrupt Timer (PIT)	2	2		
Four-Channel General Purpose Timer (GPT)	•	•		
32-bit DMA Timers	4	4		
QSPI	•	•		
UART(s)	2	3		
I ² C	2	2		
Eight/Four-channel 8/16-bit PWM Timer	•	•		
General Purpose I/O Module (GPIO)	•	•		
Chip Configuration and Reset Controller Module	•	•		
Background Debug Mode (BDM)	•	•		
JTAG - IEEE 1149.1 Test Access Port ¹	•	•		
Package	64 LQFP/QFN 81 MAPBGA	64 LQFP/QFN 81 MAPBGA 100 LQFP		

The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on smaller packages.

1.1 Block Diagram

Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.

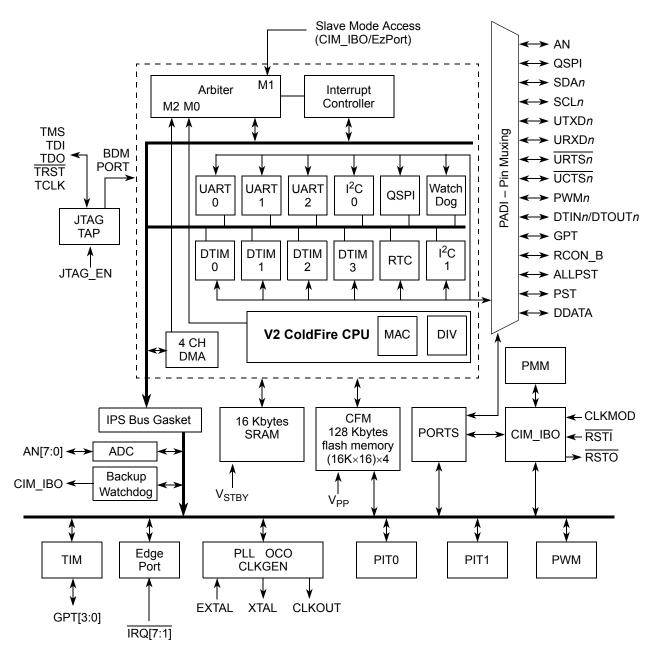


Figure 1. MCF52110 Block Diagram

1.2 Features

1.2.1 Feature Overview

The MCF52110 family includes the following features:

MCF52110 ColdFire Microcontroller, Rev. 1

Family Configurations

- Clock generation features
 - Crystal, on-chip trimmed relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator
 - Pre-divider capable of dividing the clock source frequency into the PLL reference frequency range
 - System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator
 - Low power modes supported
 - 2^n ($0 \le n \le 15$) low-power divider for extremely low frequency operation
- Interrupt controller
 - Uniquely programmable vectors for all interrupt sources
 - Fully programmable level and priority for all peripheral interrupt sources
 - Seven external interrupt signals with fixed level and priority
 - Unique vector number for each interrupt source
 - Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
 - Support for hardware and software interrupt acknowledge (IACK) cycles
 - Combinatorial path to provide wake-up from low-power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4×32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle-steal support
 - Software-programmable DMA requests for the UARTs (3) and 32-bit timers (4)
 - Channel linking support
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock / loss of lock
 - Low-voltage detection (LVD)
 - JTAG
 - Status flag indication of source of last reset
- Chip configuration module (CCM)
 - System configuration during reset
 - Selects one of six clock modes
 - Configures output pad drive strength
 - Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths

- Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16x16 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.2.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. This device implements revision B+ of the ColdFire Debug Architecture.

The processor's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The device includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).

The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

1.2.4 JTAG

The processor supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The device implementation can:

- Perform boundary-scan operations to test circuit board electrical continuity
- Sample system pins during operation and transparently shift out the result in the boundary scan register

MCF52110 ColdFire Microcontroller, Rev. 1

1.2.9 **QSPI**

The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.

1.2.10 Fast ADC

The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.2.11 DMA Timers (DTIM0-DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTINn signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCRn). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.2.12 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.2.13 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

Figure 3 shows the pinout configuration for the 81 MAPBGA.

1 2 3 4

	1	2	3	4	5	6	7	8	9
Α	V_{SS}	UTXD1	RSTI	ĪRQ5	ĪRQ3	ALLPST	TDO	TMS	V_{SS}
В	URTS1	URXD1	RSTO	ĪRQ6	ĪRQ2	TRST	TDI	V _{DD} PLL	EXTAL
С	UCTS0	TEST	UCTS1	ĪRQ7	ĪRQ4	ĪRQ1	TCLK	V _{SS} PLL	XTAL
D	URXD0	UTXD0	URTS0	V _{SS}	V _{DD}	V _{SS}	PWM7	GPT3	GPT2
E	SCL	SDA	V_{DD}	V_{DD}	V _{DD}	V _{DD}	V _{DD}	PWM5	GPT1
F	QSPI_CS3	QSPI_CS2	QSPI_DIN	V_{SS}	V _{DD}	V_{SS}	GPT0	V_{STBY}	AN4
G	QSPI_DOUT	QSPI_CLK	RCON	DTIN1	CLKMOD0	AN2	AN3	AN5	AN6
Н	QSPI_CS0	QSPI_CS1	DTIN3	DTIN0	CLKMOD1	AN1	V _{SSA}	V_{DDA}	AN7
J	V _{SS}	JTAG_EN	DTIN2	PWM3	PWM1	AN0	V _{RL}	V _{RH}	V _{SSA}

Figure 3. 81 MAPBGA Pin Assignments

Family Configurations

1.3 Reset Signals

Table 4 describes signals used to reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In		Primary reset input to the device. Asserting RSTI for at least 8 CPU clock cycles immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 1024 CPU clocks after the reset source has deasserted.	0

1.4 PLL and Clock Signals

Table 5 describes signals used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input except when the on-chip relaxation oscillator is used.	I
Crystal	XTAL	Crystal oscillator output except when CLKMOD0=0, then sampled as part of the clock mode selection mechanism.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.5 Mode Selection

Table 6 describes signals used in mode selection; Table 7 describes the particular clocking modes.

Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Clock Mode Selection	CLKMOD[1:0]	Selects the clock boot mode.	I
Reset Configuration	RCON	The Serial Flash Programming mode is entered by asserting the RCON pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the flash memory which can be programmed from an external device.	
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

Table 7. Clocking Modes

CLKMOD[1:0]	XTAL	Configure the clock mode.		
00	0	PLL disabled, clock driven by external oscillator		
00	1	PLL disabled, clock driven by on-chip oscillator		
01	N/A	PLL disabled, clock driven by crystal		
10	0	PLL in normal mode, clock driven by external oscillator ¹		
10	1	Reserved ²		
11	N/A	PLL in normal mode, clock driven by crystal		

MCF52110 ColdFire Microcontroller, Rev. 1

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Table 19. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	+1.8 to 3.5	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	–40 to 85 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- ⁴ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).
- ⁶ Depending on the packaging; see the orderable part number summary.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).

Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ² Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ³ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_{.I}) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 (1)

Where:

T_A = ambient temperature, °C

 Θ_{JA} = package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 P_{INT} = chip internal power, $I_{DD} \times V_{DD}$, watts

P_{I/O} = power dissipation on input and output pins — user determined, watts

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_1 + 273 \degree C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \, ^{\circ}C) + \Theta_{JMA} \times P_D^2$$
 (3)

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

2.4 Flash Memory Characteristics

The flash memory characteristics are shown in Table 23 and Table 24.

Table 23. SGFM Flash Program and Erase Characteristics

$$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V})$$

Parameter	Symbol	Min	Тур	Max	Unit
System clock (read only)	f _{sys(R)}	0	_	50–80 ¹	MHz
System clock (program/erase) ²	f _{sys(P/E)}	0.15	_	102.4	MHz

Depending on packaging; see the orderable part number summary.

² Refer to the flash memory section for more information

Table 27	DC F	lectrical	Specifications	(continued)	1
Iabic 21.		i c cii icai	Specifications	(COIILIIIG C U)	,

Characteristic	Symbol	Min	Max	Unit
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}		0.5	٧
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	1	٧
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}		0.5	٧
Weak internal pull Up device current, tested at V _{IL} Max. ³	I _{APU}	-10	-130	μΑ
Input Capacitance ⁴ • All input-only pins • All input/output (three-state) pins	C _{in}	_ _	7 7	pF

¹ Refer to Table 28 for additional PLL specifications.

2.8 Clock Source Electrical Specifications

Table 28. Oscillator and PLL Electrical Specifications

 $(V_{DD} \text{ and } V_{DDPLL} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V})$

Characteristic	Symbol	Min	Max	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	1 0	25.0 ² 66.67 or 80	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ³ • External clock mode • On-chip PLL frequency	f _{sys}	0 f _{ref} / 32	66.67 or 80 ⁴ 66.67 or 80 ⁴	MHz
Loss of reference frequency ^{5, 7}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ⁶	f _{SCM}	1	5	MHz
Crystal start-up time ^{7, 8}	t _{cst}	_	0.1	ms
EXTAL input high voltage • External reference	V _{IHEXT}	2.0	3.0 ²	V
EXTAL input low voltage • External reference	V _{ILEXT}	V _{SS}	0.8	V
PLL lock time ^{4,9}	t _{lpII}	_	500	μS
Duty cycle of reference ⁴	t _{dc}	40	60	% f _{ref}

Only for pins: IRQ1, IRQ2. IRQ3, IRQ4, IRQ5, IRQ6. IRQ7, RSTIN_B, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL, TCLK, TRST_B, TEST

³ Refer to Table 3 for pins having internal pull-up devices.

⁴ This parameter is characterized before qualification rather than 100% tested.

Table 28. Oscillator and PLL Electrical Specifications (continued)

 $(V_{DD} \text{ and } V_{DDPLL} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V})$

Characteristic	Symbol	Min	Max	Unit
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{ref}
Frequency LOCK range	f _{LCK}	-0.75	0.75	% f _{ref}
CLKOUT period jitter ^{4, 5, 10, 11} , measured at f _{SYS} Max • Peak-to-peak (clock edge to clock edge) • Long term (averaged over 2 ms interval)	C _{jitter}		10 .01	% f _{sys}
On-chip oscillator frequency	f _{oco}	7.84	8.16	MHz

¹ In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.

2.9 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, and Interrupt interfaces. When in GPIO mode, the timing specification for these pins is given in Table 29 and Figure 5.

The GPIO timing is met under the following load test conditions:

- 50 pF / 50 Ω for high drive
- 25 pF / 25 Ω for low drive

Table 29. GPIO Timing

NUM	Characteristic	Symbol	Min	Max	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	_	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	_	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	_	ns

² This value has been updated.

³ All internal registers retain data at 0 Hz.

⁴ Depending on packaging; see the orderable part number summary.

⁵ Loss of Reference Frequency is the reference frequency detected internally, which transitions the PLL into self clocked mode.

Self clocked mode frequency is the frequency at which the PLL operates when the reference frequency falls below f_{LOR} with default MFD/RFD settings.

⁷ This parameter is characterized before qualification rather than 100% tested.

Proper PC board layout procedures must be followed to achieve specifications.

This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{jitter} percentage for a given interval.

¹¹ Based on slow system clock of 40 MHz measured at f_{svs} max.

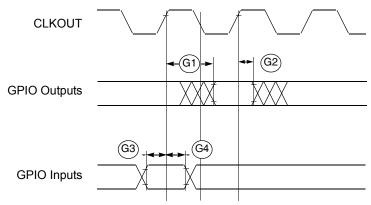


Figure 5. GPIO Timing

2.10 Reset Timing

Table 30. Reset and Configuration Override Timing

$$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_A = T_L \text{ to } T_H)^1$$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	_	ns
R3	RSTI input valid time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	_	10	ns

 $^{^{1}}$ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

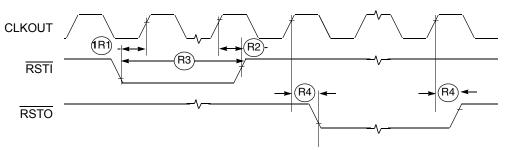


Figure 6. RSTI and Configuration Override Timing

2.11 I²C Input/Output Timing Specifications

Table 31 lists specifications for the I²C input timing parameters shown in Figure 7.

Table 31. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
11	Start condition hold time	$2 \times t_{CYC}$	_	ns
12	Clock low period	8 × t _{CYC}	_	ns
13	SCL/SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	SCL/SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	_	ns
17	Data setup time	0	_	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	_	ns
19	Stop condition setup time	$2 \times t_{CYC}$	_	ns

Table 32 lists specifications for the I²C output timing parameters shown in Figure 7.

Table 32. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6 × t _{CYC}	_	ns
12 ¹	Clock low period	10 × t _{CYC}	_	ns
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	_	μs
14 ¹	Data hold time	$7 \times t_{CYC}$	_	ns
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns
16 ¹	Clock high time	10 × t _{CYC}	_	ns
17 ¹	Data setup time	2 × t _{CYC}	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	20 × t _{CYC}	_	ns
19 ¹	Stop condition setup time	10 × t _{CYC}	_	ns

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 32. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 32 are minimum values.

Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

2.14 DMA Timers Timing Specifications

Table 34 lists timer module AC timings.

Table 34. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Max	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	3 × t _{CYC}	_	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$	_	ns

¹ All timing references to CLKOUT are given to its rising edge.

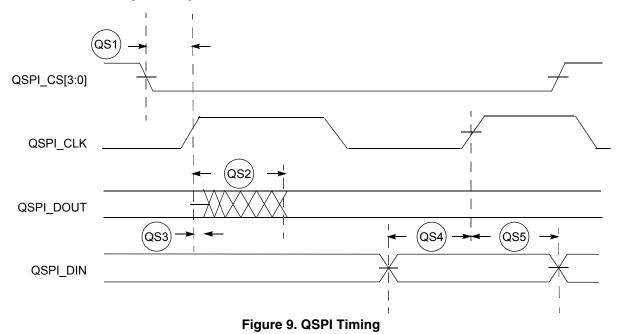

2.15 QSPI Electrical Specifications

Table 35 lists QSPI timings.

Table 35. QSPI Modules AC Timing Specifications

Name	Characteristic		Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

The values in Table 35 correspond to Figure 9.

2.16 JTAG and Boundary Scan Timing

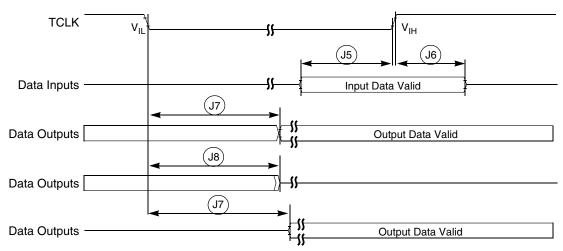
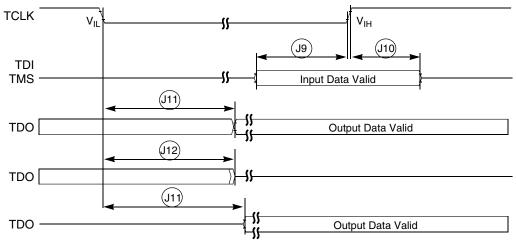
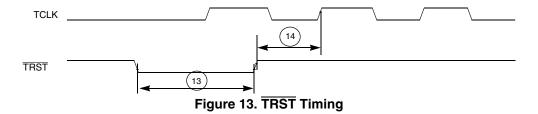




Figure 11. Boundary Scan (JTAG) Timing

Figure 12. Test Access Port Timing

Mechanical Outline Drawings

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.		francolo:		DOCUMEN	NT NO: 98A	SA10690D
		ductor	REVISION HISTORY	PAGE:	174	0
		CEPT WHEN ACCESSED FORY. PRINTED VERSIONS		REV:	0	
		REVISIONS		DRAFTER	DATE	
0	ERIC TRIPLETT	RELEASED FO	R PRODUCTION		TAYLOR LIU	27JUL2005

TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN) 64 TERMINAL, 0.5 PITCH (9 X 9 X 1)

CASE NUMBER: 1740-01

STANDARD: JEDEC MO-220 VMMD-3

PACKAGE CODE: 6200 SHEET: 4 OF 4

Mechanical Outline Drawings

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

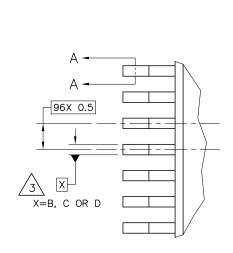
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

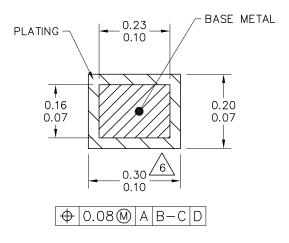
<u>/3.</u>

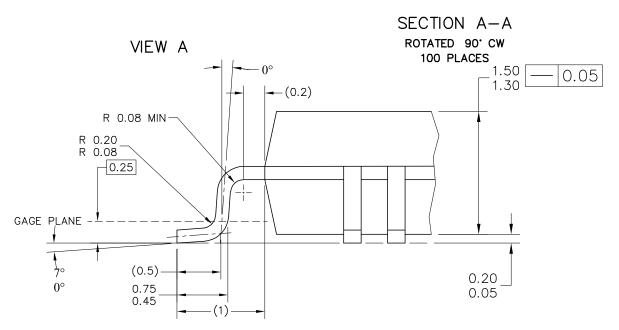
MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.


5.


PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	CHANICAL OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PROFILE,	DOCUMENT NO): 98ASA10670D	REV: O
81 I/O, 10 X 10 PKG,	CASE NUMBER	2: 1662–01	04 FEB 2005
1 MM PITCH (MAP)	STANDARD: NO	N-JEDEC	

Mechanical Outline Drawings

VIEW B

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTL			PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASS23308W	REV: G	
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4 TH	HCK [CASE NUMBER	: 983–03	07 APR 2005
	STANDARD: NO	N-JEDEC		

Revision History

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011. All rights reserved.

Document Number: MCF52110

Rev. 1 3/2011

