

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN-EP (9x9)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf52110cep66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Block Diagram

Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.

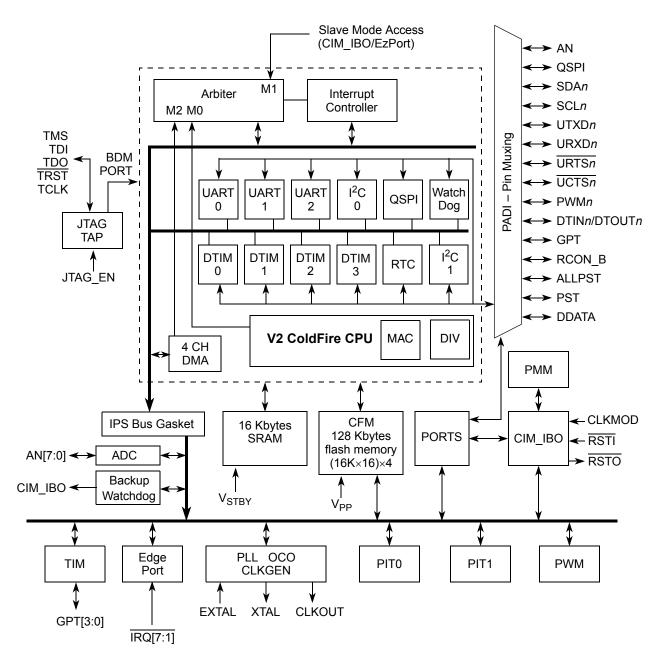


Figure 1. MCF52110 Block Diagram

1.2 Features

1.2.1 Feature Overview

The MCF52110 family includes the following features:

Family Configurations

- Bypass the device for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.2.5 On-Chip Memories

1.2.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 16-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 16-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.2.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with up to four banks of 16-Kbyte×16-bit flash memory arrays to generate up to 128 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.2.6 Power Management

The device incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage. The peripheral clocks may be controlled on an individual basis for power reduction.

1.2.7 UARTs

The device has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O functions. The UARTs are capable of generating DMA requests as well as interrupts.

1.2.8 I²C Bus

The processor includes two I²C modules. The I²C bus is an industry-standard, two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices.

1.2.21 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock / loss of clock
- Software
- Low-voltage detector (LVD)
- JTAG

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the $\overline{\text{RSTO}}$ pin.

1.2.22 GPIO

Nearly all pins on the device have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pin.

1.2.23 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Part Number	Flash / SRAM	Key Features	Package	Speed
MCF52100	64 Kbytes / 16 Kbytes	2 UARTs, 2 I ² C, QSPI, A/D, DMA, 16-/32-bit/PWM Timers	64 LQFP/QFN 81 MAPBGA	66, 80 MHz
MCF52110	128 Kbytes / 16 Kbytes	3 UARTs, 2 I ² C, QSPI, A/D, DMA, 16-/32-bit/PWM Timers	64 LQFP/QFN 81 MAPBGA 100 LQFP	66, 80 MHz

Table 2. Orderable Part Number Summary

Table 3 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.

Drive Slew Rate / Pull-up / Pin on 64 Pin Secondary Tertiary Quaternary Primary Pin on Pin on 81 Strength / Pull-down² Control¹ LQFP/QFN Group Function Function Function Function 100 LQFP MAPBGA Control¹ ADC AN7 GPIO H9 _ ____ Low FAST ____ 51 33 AN6 GPIO FAST 52 G9 34 ____ ____ Low ____ AN5 GPIO Low FAST 53 G8 35 ____ ____ ____ 54 F9 AN4 GPIO Low FAST 36 _ ___ ____ AN3 GPIO FAST G7 Low 46 28 _ _ _ AN2 FAST GPIO 45 G6 27 Low _ _ _ AN1 GPIO Low FAST 44 H6 26 _ ____ ____ AN0 GPIO FAST 43 J6 25 Low _ _ ____ SYNCA³ N/A N/A ____ _ _ _ _ _ ____ SYNCB³ N/A N/A _ _ _ ____ _ _ _ VDDA N/A N/A 50 H8 32 _ ___ ___ _ H7, J9 VSSA N/A N/A 47 29 ____ ____ _ ____ VRH N/A N/A 49 J8 31 _ ____ _ ____ VRL J7 N/A N/A 48 30 _ _ ____ ____ EXTAL N/A N/A Clock 73 B9 47 ____ ____ ____ ____ Generation XTAL N/A N/A 72 C9 46 ____ _ ____ ____ VDDPLL N/A 74 N/A B8 48 _ _ _ _ VSSPLL N/A N/A 71 C8 45 ____ _ ____ _ ALLPST High Debug Data FAST 86 A6 55 _ ____ _ ____ DDATA[3:0] High FAST 84,83,78,77 _ ____ GPIO ____ _ _ GPIO FAST 70,69,66,65 PST[3:0] High _ _ _ _ _ l²C SCL0 PSRR[0] pull-up⁴ E1 UTXD2 GPIO PDSR[0] 10 8 _ pull-up⁴ SDA0 URXD2 PDSR[0] PSRR[0] E2 9 GPIO 11 _

Table 3. Pin Functions by Primary and Alternate Purpose

MCF52110 ColdFire Microcontroller, Rev. 1

Family Configurations

17

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
Interrupts	IRQ7		_	GPIO	Low	FAST	—	95	C4	58
	IRQ6	—	—	GPIO	Low	FAST	—	94	B4	—
	IRQ5	—	—	GPIO	Low	FAST	—	91	A4	—
	IRQ4	—	—	GPIO	Low	FAST	—	90	C5	57
	IRQ3	—	—	GPIO	Low	FAST	—	89	A5	—
	IRQ2	—	—	GPIO	Low	FAST	—	88	B5	—
	IRQ1	SYNCA	PWM1	GPIO	High	FAST	pull-up ⁴	87	C6	56
JTAG/BDM	JTAG_EN	—	—	—	N/A	N/A	pull-down	26	J2	17
	TCLK/ PSTCLK	CLKOUT	_	—	High	FAST	pull-up ⁵	64	C7	44
	TDI/DSI	—	_	—	N/A	N/A	pull-up ⁵	79	B7	50
	TDO/DSO	—	_	—	High	FAST	—	80	A7	51
	TMS /BKPT	_	_	—	N/A	N/A	pull-up ⁵	76	A8	49
	TRST /DSCLK	_	_	—	N/A	N/A	pull-up ⁵	85	B6	54
Mode	CLKMOD0	—	_	—	N/A	N/A	pull-down ⁶	40	G5	24
Selection ⁶	CLKMOD1	—	_	—	N/A	N/A	pull-down ⁶	39	H5	—
	RCON/ EZPCS	_	_	—	N/A	N/A	pull-up	21	G3	16
PWM	PWM7			GPIO	PDSR[31]	PSRR[31]	_	63	D7	
	PWM5		_	GPIO	PDSR[30]	PSRR[30]	_	60	E8	
	PWM3			GPIO	PDSR[29]	PSRR[29]		33	J4	_
	PWM1		_	GPIO	PDSR[28]	PSRR[28]		38	J5	_

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

- ¹ The PLL pre-divider (CCHR+1) reset value is 1 and the PLL input reference range is 2–10 MHz, so in order to boot with the PLL enabled, the external clock or crystal frequency needs to be less than 10 MHz. MCF5211x devices cannot boot with PLL enabled from an external clock or crystal oscillator with frequency greater than 10 MHz. This constraint does not apply to booting with PLL disabled.
- ² Cannot boot from the Internal 8 MHz Relaxation oscillator with the PLL enabled. Refer Note1. Thus this mode has been removed from the table.

1.6 External Interrupt Signals

Table 8 describes the external interrupt signals.

Table 8. External Interrupt Signals

Signal Name	Abbreviation	Function	I/O
External Interrupts	IRQ[7:1]	External interrupt sources.	I

1.7 Queued Serial Peripheral Interface (QSPI)

Table 9 describes the QSPI signals.

Table 9. Queued Serial Peripheral Interface (QSPI) Signals

Signal Name	Abbreviation	Function	I/O
QSPI Synchronous Serial Output	QSPI_DOUT	Provides the serial data from the QSPI and can be programmed to be driven on the rising or falling edge of QSPI_CLK.	0
QSPI Synchronous Serial Data Input	QSPI_DIN	Provides the serial data to the QSPI and can be programmed to be sampled on the rising or falling edge of QSPI_CLK.	Ι
QSPI Serial Clock	QSPI_CLK	Provides the serial clock from the QSPI. The polarity and phase of QSPI_CLK are programmable.	0
Synchronous Peripheral Chip Selects	QSPI_CS[3:0]	QSPI peripheral chip select; can be programmed to be active high or low.	0

1.8 I²C I/O Signals

Table 10 describes the I²C serial interface module signals.

Table 10. I²C I/O Signals

Signal Name	Abbreviation	Function	I/O
Serial Clock		Open-drain clock signal for the for the I^2C interface. When the bus is In master mode, this clock is driven by the I^2C module; when the bus is in slave mode, this clock becomes the clock input.	I/O
Serial Data	SDAn	Open-drain signal that serves as the data input/output for the I ² C interface.	I/O

Family Configurations

1.9 UART Module Signals

Table 11 describes the UART module signals.

Table	11.	UART	Module	Signals
-------	-----	------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts the clock.	I
Clear-to-Send	UCTSn	Indication to the UART modules that they can begin data transmission.	I
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.10 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN	Event input to the DMA timer modules.	Ι
DMA Timer Output	DTOUT	Programmable output from the DMA timer modules.	0

1.11 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	I/O
Analog Inputs	AN[7:0]	Inputs to the analog-to-digital converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V _{DDA}	Isolate the ADC circuitry from power supply noise.	
	V _{SSA}		
ADC Sync Inputs	SYNCA / SYNCB	These signals can initiate an analog-to-digital conversion process.	I

1.12 General Purpose Timer Signals

Table 14 describes the general purpose timer signals.

Table 14. GPT Signals

Signal Name	Abbreviation	Function	I/O
General Purpose Timer Input/Output	GPT[3:0]	Inputs to or outputs from the general purpose timer module.	I/O

1.13 Pulse Width Modulator Signals

Table 15 describes the PWM signals.

Table 15. PWM Signals

Signal Name	Abbreviation	Function	I/O
PWM Output Channels	PWM[7:0]	Pulse width modulated output for PWM channels.	0

1.14 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic.

Signal Name	Abbreviation	Function	I/O
JTAG Enable	JTAG_EN	Select between debug module and JTAG signals at reset.	Ι
Test Reset	TRST	This active-low signal is used to initialize the JTAG logic asynchronously.	I
Test Clock	TCLK	Used to synchronize the JTAG logic.	Ι
Test Mode Select	TMS	Used to sequence the JTAG state machine. TMS is sampled on the rising edge of TCLK.	I
Test Data Input	TDI	Serial input for test instructions and data. TDI is sampled on the rising edge of TCLK.	I
Test Data Output	TDO	Serial output for test instructions and data. TDO is tri-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCLK.	0
Development Serial Clock	DSCLK	Development Serial Clock - Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two consecutive rising bus clock edges.) Clocks the serial communication port to the debug module during packet transfers. Maximum frequency is PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.	I
Breakpoint	ВКРТ	Breakpoint - Input used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state after the current instruction completes. Halt status is reflected on processor status/debug data signals (PST[3:0] and PSTDDATA[7:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the processor.	I

Table 16. Debug Support Signals

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

1.15 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals.

Table 17.	. EzPort	Signal	Descriptions
-----------	----------	--------	--------------

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	ļ
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	I
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

Family Configurations

1.16 Power and Ground Pins

The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.

Table 18. Power and Gro	und Pins
-------------------------	----------

Signal Name	Abbreviation	Function
PLL Analog Supply		Dedicated power supply signals to isolate the sensitive PLL analog circuitry from the normal levels of noise present on the digital power supply.
Positive Supply	VDD	These pins supply positive power to the core logic.
Ground	VSS	This pin is the negative supply (ground) to the chip.

This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	+1.8 to 3.5	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	Т _А (Т _L - Т _Н)	–40 to 85 ⁶	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Table 19. Absolute Maximum Ratings^{1, 2}

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).
- ³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- 4 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).
- ⁶ Depending on the packaging; see the orderable part number summary.

- ¹ θ_{JA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ² Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.
- ³ Per JEDEC JESD51-6 with the board JESD51-7) horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
(1)

Where:

- T_A = ambient temperature, °C
- Θ_{JA} = package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 P_{INT} = chip internal power, $I_{DD} \times V_{DD}$, watts

P_{I/O} = power dissipation on input and output pins — user determined, watts

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = K \div (T_{\rm J} + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \ ^\circ C) + \Theta_{JMA} \times P_D^2 \ (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

2.4 Flash Memory Characteristics

The flash memory characteristics are shown in Table 23 and Table 24.

Table 23. SGFM Flash Program and Erase Characteristics

(V_{DD} = 3.0 to 3.6 V)

Parameter	Symbol	Min	Тур	Max	Unit
System clock (read only)	f _{sys(R)}	0	—	50–80 ¹	MHz
System clock (program/erase) ²	f _{sys(P/E)}	0.15	_	102.4	MHz

¹ Depending on packaging; see the orderable part number summary.

² Refer to the flash memory section for more information

MCF52110 ColdFire Microcontroller, Rev. 1

2.6 ESD Protection

Characteristics	Symbol	Value	Units
ESD target for Human Body Model	HBM	2000	V
ESD target for Machine Model	MM	200	V
HBM circuit description	R _{series}	1500	Ω
	С	100	pF
MM circuit description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) • Positive pulses • Negative pulses	_	1 1	_
Number of pulses per pin (MM) Positive pulses Negative pulses 		3 3	_
Interval of pulses	—	1	sec

Table 26. ESD Protection Characteristics^{1, 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.7 DC Electrical Specifications

Table 27. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Мах	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Standby voltage	V _{STBY}	1.8	3.5	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	$0.35 \times V_{DD}$	V
Input hysteresis ²	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current V _{in} = V _{DD} or V _{SS} , digital pins	l _{in}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 \text{mA}$	V _{OL}	_	0.5	V

Characteristic	Symbol	Min	Мах	Unit
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}	_	0.5	V
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	—	V
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}	_	0.5	V
Weak internal pull Up device current, tested at V _{IL} Max. ³		-10	-130	μA
Input Capacitance ⁴ All input-only pins All input/output (three-state) pins 	C _{in}	_	7 7	pF

Table 27. DC Electrical Specifications (continued)¹

¹ Refer to Table 28 for additional PLL specifications.

² Only for pins: IRQ1, IRQ2. IRQ3, IRQ4, IRQ5, IRQ6. IRQ7, RSTIN_B, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL, TCLK, TRST_B, TEST

³ Refer to Table 3 for pins having internal pull-up devices.

⁴ This parameter is characterized before qualification rather than 100% tested.

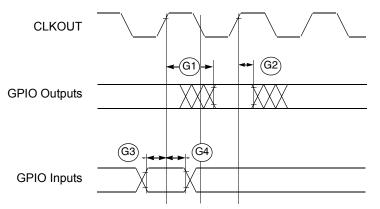

2.8 Clock Source Electrical Specifications

Table 28. Oscillator and PLL Electrical Specifications

(V _{DD} and V _{DDP}	_{LL} = 2.7 to 3.6 V, V ₅	$V_{SS} = V_{SSPLL} = 0 V$
		50 'SOFLL - '/

Characteristic	Symbol	Min	Мах	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	1 0	25.0 ² 66.67 or 80	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ³ External clock mode On-chip PLL frequency 	f _{sys}	0 f _{ref} / 32	66.67 or 80 ⁴ 66.67 or 80 ⁴	MHz
Loss of reference frequency ^{5, 7}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ⁶	f _{SCM}	1	5	MHz
Crystal start-up time ^{7, 8}	t _{cst}	—	0.1	ms
EXTAL input high voltage External reference 	V _{IHEXT}	2.0	3.0 ²	V
EXTAL input low voltage External reference 	V _{ILEXT}	V _{SS}	0.8	V
PLL lock time ^{4,9}	t _{ipli}	_	500	μS
Duty cycle of reference 4	t _{dc}	40	60	% f _{ref}

Figure 5. GPIO Timing

2.10 Reset Timing

Table 30. Reset and Configuration Override Timing

$(V_{DD} = 3.0 \text{ to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_A = T_L \text{ to } T_H)^2$	$(V_{DD} = 3.0 \text{ to } 3.6)$	$V, V_{SS} = 0$) V, T _Δ = T	Γ _L to T _H) ¹
---	----------------------------------	-----------------	-------------------------	---

NUM	Characteristic		Min	Мах	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	—	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	—	ns
R3	RSTI input valid time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	—	10	ns

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

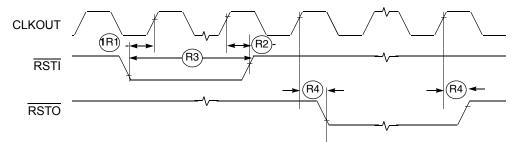


Figure 6. RSTI and Configuration Override Timing

2.11 I²C Input/Output Timing Specifications

Table 31 lists specifications for the I^2C input timing parameters shown in Figure 7.

Num	Characteristic	Min	Max	Units
11	Start condition hold time	$2 \times t_{CYC}$	—	ns
12	Clock low period	$8 \times t_{CYC}$	—	ns
13	I3 SCL/SDA rise time ($V_{IL} = 0.5$ V to $V_{IH} = 2.4$ V)		1	ms
14	Data hold time	0	_	ns
15	SCL/SDA fall time ($V_{IH} = 2.4 \text{ V}$ to $V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	_	ns
17	I7 Data setup time		_	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	—	ns
19	Stop condition setup time	$2 \times t_{CYC}$	—	ns

Table 31. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Table 32 lists specifications for the I²C output timing parameters shown in Figure 7.

Та	able 32. I ² C Output Timing Specifications b	etween I2C_S	SCL and I2	2C_SDA

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	$6 \times t_{CYC}$	_	ns
12 ¹	Clock low period	$10 \times t_{CYC}$	_	ns
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 V$ to $V_{IH} = 2.4 V$)	—	_	μs
14 ¹	Data hold time	$7 \times t_{CYC}$	_	ns
15 ³	I2C_SCL/I2C_SDA fall time $(V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V})$	-	3	ns
16 ¹	Clock high time	$10 \times t_{CYC}$	_	ns
17 ¹	Data setup time	$2 \times t_{CYC}$	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	$20 \times t_{CYC}$	—	ns
19 ¹	Stop condition setup time	$10 \times t_{CYC}$	_	ns

¹ Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 32. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 32 are minimum values.

² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

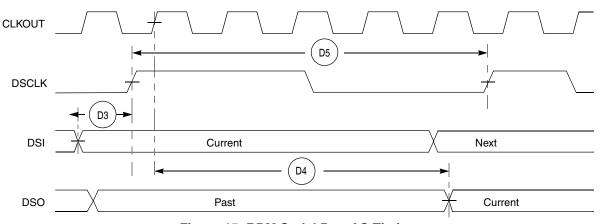


Figure 15. BDM Serial Port AC Timing

3 Mechanical Outline Drawings

This section describes the physical properties of the device and its derivatives.

Mechanical Outline Drawings

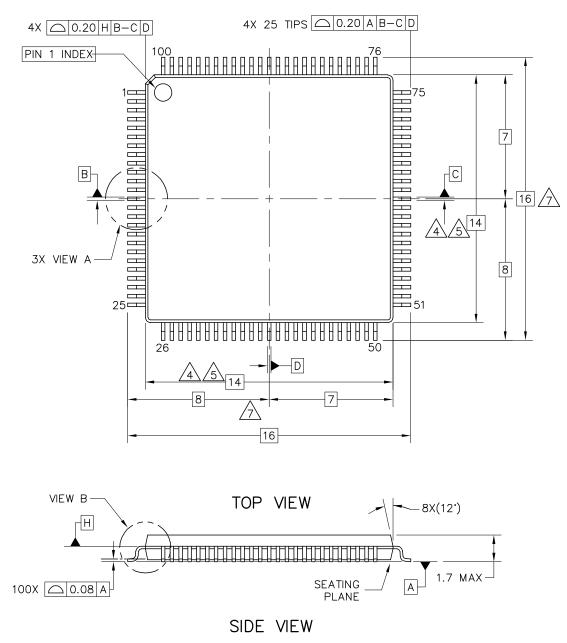
NP

TIPESCA BUTICON EMICONDUCTOR, INC. ALL I SARE UNCONTROLLE PAR CONTROLLE PAR CONTROLLE PAR CONTROLLE PAR CONTROLLE PAR RIGINATOR RIGINATOR	RIGHTS RESERVED. CEPT WHEN ACCESSED TORY. PRINTED VERSIONS NTROLLED COPY" IN RED.	REVISION	HISTORY	PAGE: REV:	1740 O)
RIGINATOR		REVIS		REV:	0	
		REVIS				
RIC TRIPLETT		REVISIONS			DRAFTER	DATE
	O ERIC TRIPLETT RELEASED FOR PRODUCTION				TAYLOR LIU	27JUL2005
IERMALLY	ENHANCE	D QUAD	CASE NUMBER:	1740-01		
	ENHANCE DED PACI	D QUAD (AGE (QFN)	CASE NUMBER: STANDARD: JED			

Mechanical Outline Drawings

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $\sqrt{3}$, maximum solder ball diameter measured parallel to datum a.



5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PROFIL	E, DOCUMENT NO	D: 98ASA10670D	REV: O
81 I/O, 10 X 10 PK		R: 1662–01	04 FEB 2005
1 MM PITCH (MAP) STANDARD: N	ON-JEDEC	

3.4 100-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMENT NO): 98ASS23308W	REV: G
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4	CASE NUMBER	8: 983–03	07 APR 2005	
	THION .	STANDARD: NO	DN-JEDEC	

MCF52110 ColdFire Microcontroller, Rev. 1