

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52110cvm80j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Family Configurations

1 Family Configurations

Table 1. MCF52110 Family Configurations

Module	52100	52110	
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)	•	•	
System Clock	66, 80 MHz		
Performance (Dhrystone 2.1 MIPS)	up to	o 76	
Flash/Static RAM (SRAM)	64/16 Kbytes	128/16 Kbytes	
Interrupt Controller (INTC)	•	•	
Fast Analog-to-Digital Converter (ADC)	•	•	
Real-Time Clock (RTC)	•	•	
Four-channel Direct-Memory Access (DMA)	•	•	
Software Watchdog Timer (WDT)	•	•	
Backup Watchdog Timer	•	•	
Two-channel Periodic Interrupt Timer (PIT)	2	2	
Four-Channel General Purpose Timer (GPT)	•	•	
32-bit DMA Timers	4	4	
QSPI	•	•	
UART(s)	2	3	
I ² C	2	2	
Eight/Four-channel 8/16-bit PWM Timer	•	•	
General Purpose I/O Module (GPIO)	•	•	
Chip Configuration and Reset Controller Module	•	•	
Background Debug Mode (BDM)	•	•	
JTAG - IEEE 1149.1 Test Access Port ¹	•	•	
Package	64 LQFP/QFN 81 MAPBGA	64 LQFP/QFN 81 MAPBGA 100 LQFP	

¹ The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on smaller packages.

Family Configurations

1.2.14 Real-Time Clock (RTC)

The Real-Time Clock (RTC) module maintains the system (time-of-day) clock and provides stopwatch, alarm, and interrupt functions. It includes full clock features: seconds, minutes, hours, days and supports a host of time-of-day interrupt functions along with an alarm interrupt.

1.2.15 Pulse-Width Modulation (PWM) Timers

The device has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The timer supports PCM mode, which results in superior signal quality when compared to that of a conventional PWM. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.2.16 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. The reset only happens if the SWT is enabled, and it does not reset the whole chip. To prevent a reset, software must periodically restart the countdown.

1.2.17 Backup Watchdog Timer

The backup watchdog timer is an independent 16-bit timer that, like the software watchdog timer, facilitates recovery from runaway code. This timer is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown. The backup watchdog timer can be clocked by either the relaxation oscillator or the system clock.

1.2.18 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.2.19 Interrupt Controller (INTC)

The device has a single interrupt controller that supports up to 63 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.2.20 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCR*n*[START] bit or by the occurrence of certain UART or DMA timer events. The DMA also supports channel-linking capabilities.

Figure 2 shows the pinout configuration for the 100 LQFP.

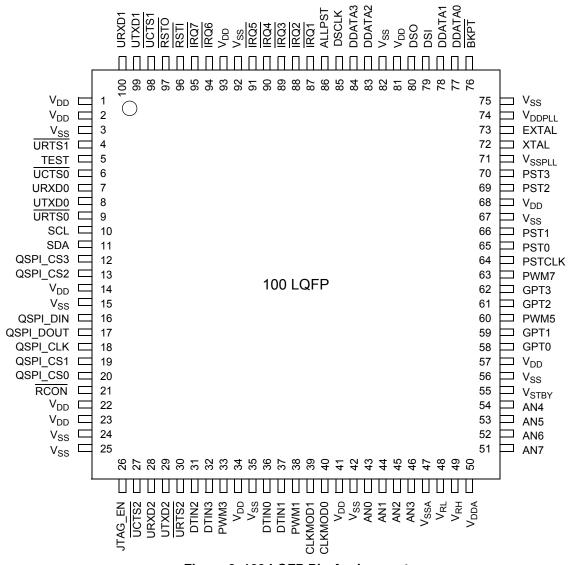


Figure 2. 100 LQFP Pin Assignments

17

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
Interrupts	IRQ7		_	GPIO	Low	FAST	—	95	C4	58
	IRQ6	—	—	GPIO	Low	FAST	—	94	B4	—
	IRQ5	—	—	GPIO	Low	FAST	—	91	A4	—
	IRQ4	—	—	GPIO	Low	FAST	—	90	C5	57
	IRQ3	—	—	GPIO	Low	FAST	—	89	A5	—
	IRQ2	—	—	GPIO	Low	FAST	—	88	B5	—
	IRQ1	SYNCA	PWM1	GPIO	High	FAST	pull-up ⁴	87	C6	56
JTAG/BDM	JTAG_EN	—	—	—	N/A	N/A	pull-down	26	J2	17
	TCLK/ PSTCLK	CLKOUT	_	—	High	FAST	pull-up ⁵	64	C7	44
	TDI/DSI	—	_	—	N/A	N/A	pull-up ⁵	79	B7	50
	TDO/DSO	—	_	—	High	FAST	—	80	A7	51
	TMS /BKPT	_	_	—	N/A	N/A	pull-up ⁵	76	A8	49
	TRST /DSCLK	_	_	—	N/A	N/A	pull-up ⁵	85	B6	54
Mode	CLKMOD0	—	_	—	N/A	N/A	pull-down ⁶	40	G5	24
Selection ⁶	CLKMOD1	—	_	—	N/A	N/A	pull-down ⁶	39	H5	—
	RCON/ EZPCS	_	_	—	N/A	N/A	pull-up	21	G3	16
PWM	PWM7			GPIO	PDSR[31]	PSRR[31]	_	63	D7	
	PWM5		_	GPIO	PDSR[30]	PSRR[30]	_	60	E8	
	PWM3			GPIO	PDSR[29]	PSRR[29]		33	J4	_
	PWM1		_	GPIO	PDSR[28]	PSRR[28]		38	J5	_

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Family Configurations

1.3 Reset Signals

Table 4 describes signals used to reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In		Primary reset input to the device. Asserting $\overline{\text{RSTI}}$ for at least 8 CPU clock cycles immediately resets the CPU and peripherals.	Ι
Reset Out	RSTO	Driven low for 1024 CPU clocks after the reset source has deasserted.	0

1.4 PLL and Clock Signals

Table 5 describes signals used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input except when the on-chip relaxation oscillator is used.	Ι
Crystal		Crystal oscillator output except when CLKMOD0=0, then sampled as part of the clock mode selection mechanism.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.5 Mode Selection

Table 6 describes signals used in mode selection; Table 7 describes the particular clocking modes.

 Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Clock Mode Selection	CLKMOD[1:0]	Selects the clock boot mode.	Ι
Reset Configuration		The Serial Flash Programming mode is entered by asserting the $\overline{\text{RCON}}$ pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the flash memory which can be programmed from an external device.	
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	Ι

Table 7. Clocking Modes

CLKMOD[1:0]	XTAL	Configure the clock mode.
00	0	PLL disabled, clock driven by external oscillator
00	1	PLL disabled, clock driven by on-chip oscillator
01	N/A	PLL disabled, clock driven by crystal
10	0	PLL in normal mode, clock driven by external oscillator ¹
10	1	Reserved ²
11	N/A	PLL in normal mode, clock driven by crystal

Family Configurations

1.9 UART Module Signals

Table 11 describes the UART module signals.

Table	11.	UART	Module	Signals
-------	-----	------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts the clock.	I
Clear-to-Send	UCTSn	Indication to the UART modules that they can begin data transmission.	I
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.10 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN	Event input to the DMA timer modules.	Ι
DMA Timer Output	DTOUT	Programmable output from the DMA timer modules.	0

1.11 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	I/O
Analog Inputs	AN[7:0]	Inputs to the analog-to-digital converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V _{DDA}	Isolate the ADC circuitry from power supply noise.	
	V _{SSA}		
ADC Sync Inputs	SYNCA / SYNCB	These signals can initiate an analog-to-digital conversion process.	I

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

1.15 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals.

Table 17.	. EzPort	Signal	Descriptions
-----------	----------	--------	--------------

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	ļ
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	I
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

2.3 Thermal Characteristics

Table 22 lists thermal resistance values.

Table 22. Thermal Characteristics

	Characteristic	;	Symbol	Value	Unit
100 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ _{JA}	53 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	39 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	42 ^{1,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	33 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	25 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
81 MAPBGA	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	61 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	35 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Single layer board (1s)	θ _{JMA}	50 ^{2,3}	°C/W
	Junction to ambient, (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	31 ^{2,3}	°C/W
	Junction to board	—	θ_{JB}	20 ⁴	°C/W
	Junction to case	—	θ _{JC}	12 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 LQFP	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	62 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	43 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	50 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ _{JMA}	36 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	26 ⁴	°C/W
	Junction to case	—	θ _{JC}	9 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	2 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C
64 QFN	Junction to ambient, natural convection	Single layer board (1s)	θ_{JA}	68 ^{1,2}	°C/W
	Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	24 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Single layer board (1s)	θ_{JMA}	55 ^{1,3}	°C/W
	Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	19 ^{1,3}	°C/W
	Junction to board	—	θ_{JB}	8 ⁴	°C/W
	Junction to case (bottom)	—	θ _{JC}	0.6 ⁵	°C/W
	Junction to top of package	Natural convection	Ψ _{jt}	3 ⁶	°C/W
	Maximum operating junction temperature	—	Тj	105	°C

Num	Characteristic	Min	Мах	Units
11	Start condition hold time	$2 \times t_{CYC}$	—	ns
12	Clock low period	$8 imes t_{CYC}$	—	ns
13	SCL/SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	SCL/SDA fall time ($V_{IH} = 2.4 \text{ V}$ to $V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	—	ns
17	Data setup time	0	_	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	_	ns
19	Stop condition setup time	$2 \times t_{CYC}$	—	ns

Table 31. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Table 32 lists specifications for the I²C output timing parameters shown in Figure 7.

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	$6 \times t_{CYC}$	—	ns
12 ¹	Clock low period	$10 \times t_{CYC}$	—	ns
13 ²	$\label{eq:l2C_SCL/I2C_SDA rise time} \begin{array}{l} 2C_SCL/I2C_SDA rise time \\ (V_{IL} = 0.5 \ V \ to \ V_{IH} = 2.4 \ V) \end{array}$	_	_	μs
14 ¹	Data hold time	$7 \times t_{CYC}$	—	ns
15 ³	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)		3	ns
16 ¹	Clock high time	$10 imes t_{CYC}$	—	ns
17 ¹	Data setup time	$2 \times t_{CYC}$	—	ns
18 ¹	Start condition setup time (for repeated start condition only)	$20 \times t_{CYC}$	—	ns
19 ¹	Stop condition setup time	$10 \times t_{CYC}$	—	ns

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 32. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 32 are minimum values.

² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

NP

Figure 7 shows timing for the values in Table 31 and Table 32.

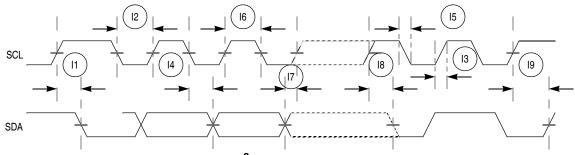


Figure 7. I²C Input/Output Timings

2.12 Analog-to-Digital Converter (ADC) Parameters

Table 33 lists specifications for the analog-to-digital converter.

Name	Characteristic	Min	Typical	Мах	Unit
V _{REFL}	Low reference voltage	V _{SSA}	—	V _{SSA}	V
V _{REFH}	High reference voltage	V _{DDA}	—	V _{DDA}	V
V _{DDA}	ADC analog supply voltage	3.0	3.3	3.6	V
V _{ADIN}	Input voltages	V _{REFL}	—	V _{REFH}	V
RES	Resolution	12	—	12	Bits
INL	Integral non-linearity (full input signal range) ²		±2.5	±3	LSB ³
INL	Integral non-linearity (10% to 90% input signal range) ⁴	—	±2.5	±3	LSB
DNL	Differential non-linearity	—	-1 < DNL < +1	<+1	LSB
	Monotonicity	GUARANTEED			
f _{ADIC}	ADC internal clock	0.1	—	5.0	MHz
R _{AD}	Conversion range	V _{REFL}	—	V _{REFH}	V
t _{ADPU}	ADC power-up time ⁵		6	13	t _{AIC} cycles ⁶
t _{REC}	Recovery from auto standby	_	0	1	t _{AIC} cycles
t _{ADC}	Conversion time	—	6	_	t _{AIC} cycles
t _{ADS}	Sample time	—	1	_	t _{AIC} cycles
C _{ADI}	Input capacitance	_	See Figure 8	_	pF
X _{IN}	Input impedance	—	See Figure 8	_	W
I _{ADI}	Input injection current ⁷ , per pin		—	3	mA
I _{VREFH}	V _{REFH} current	_	0	_	mA
V _{OFFSET}	Offset voltage internal reference	—	±8	±15	mV
E _{GAIN}	Gain error (transfer path)	.99	1	1.01	_
V _{OFFSET}	Offset voltage external reference	_	±3	9	mV
SNR	Signal-to-noise ratio	_	62 to 66	_	dB

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	_	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	_	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	_	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	—	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	—	ns

Table 36. JTAG and Boundary Scan Timing

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

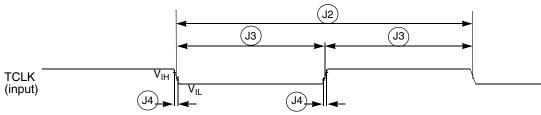


Figure 10. Test Clock Input Timing

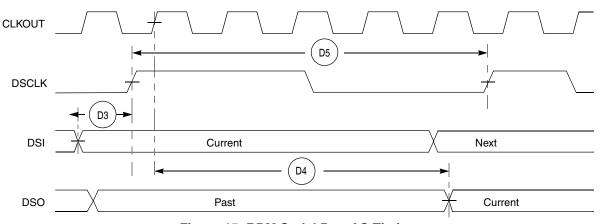
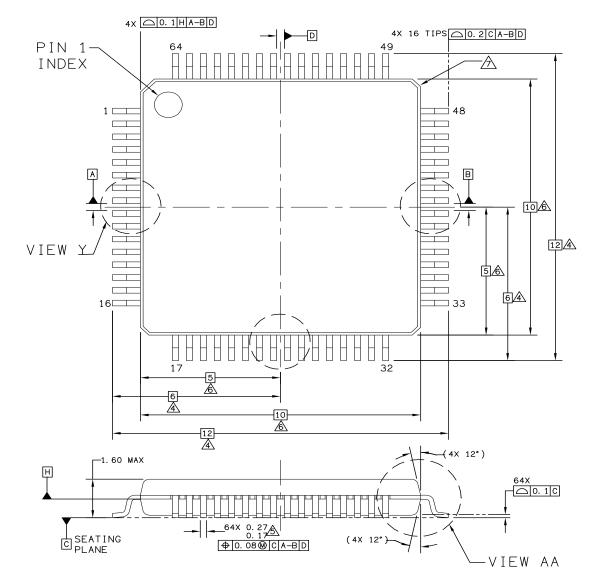
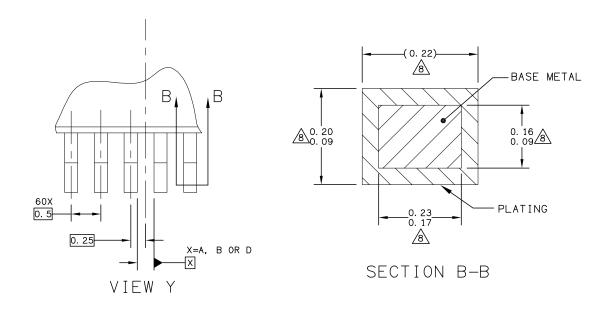
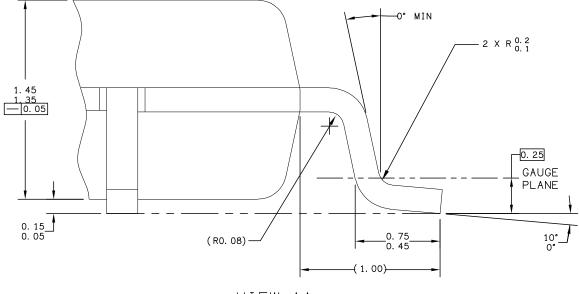



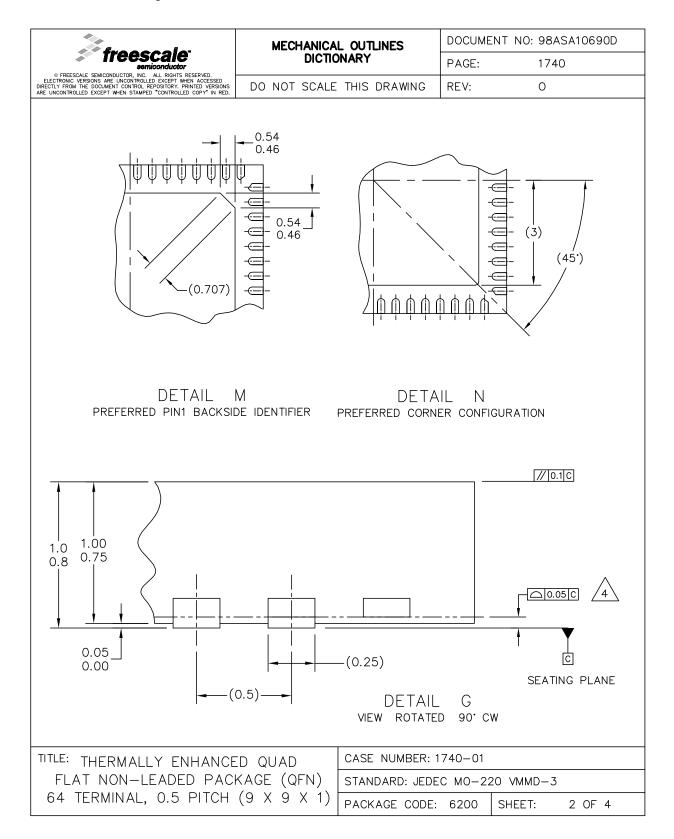
Figure 15. BDM Serial Port AC Timing

This section describes the physical properties of the device and its derivatives.




3.1 64-pin LQFP Package

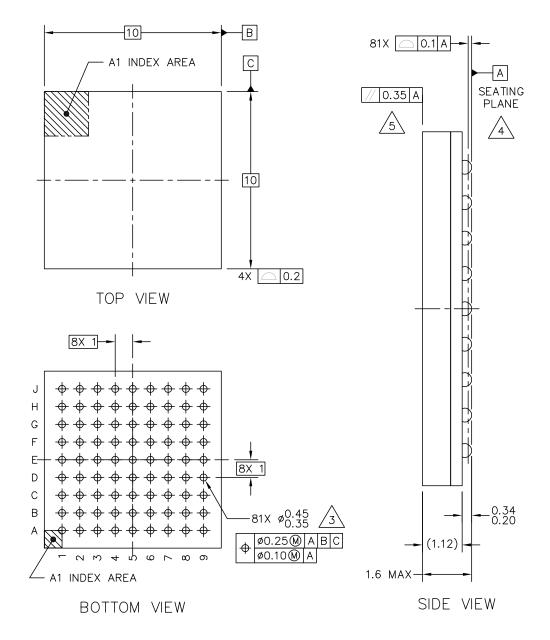
© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.			PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,	DOCUMENT NO	:98ASS23234₩	REV: D	
10 X 10 X 1.4 P	CASE NUMBER	2:840F-02	06 APR 2005	
0.5 PITCH, CASE OUTLINE		STANDARD: JE	DEC MS-026 BCD	



VIEW AA

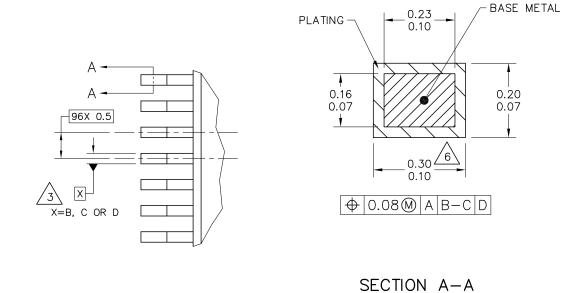
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,	DOCUMENT NO): 98ASS23234₩	REV: D	
10 X 10 X 1.4 P	CASE NUMBER: 840F-02 06 APR 20			
0.5 PITCH, CASE OUTLINE		STANDARD: JE	DEC MS-026 BCD	

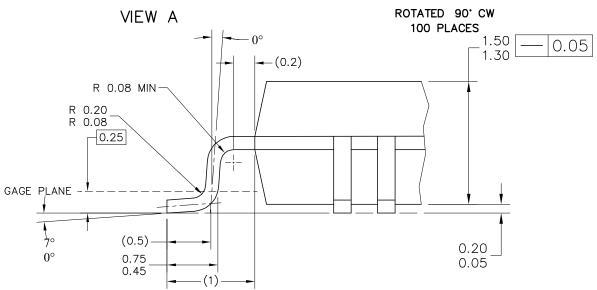
Mechanical Outline Drawings


freescale semiconductor	MECHANICAL OUTLINE DICTIONARY	L OUTLINES	NES DOCUMENT NO: 98ASA10690D		
			PAGE:	174	40
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED ECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0	
NOTES:					
1. ALL DIMENSIONS ARE IN MI	LIMETERS				
2. INTERPRET DIMENSIONS AND		ED ASME V14 5M	_100/		
3. THE COMPLETE JEDEC DESI					
٨					
		LEADS AND DIE A	ATTACH P.	AD.	
5. MIN METAL GAP SHOULD BI	- 0.2MM.				
		CASE NUMBER:	1740-01		
TLE: THERMALLY ENHANCE FLAT NON-LEADED PACI 64 TERMINAL, 0.5 PITCH	KAGE (QFN)	CASE NUMBER: STANDARD: JEDE			5

NP

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED 'CONTROLLED COPY' IN RED.		REVISION HISTORY		DOCUMENT NO: 98ASA10690D			
				PAGE: 1740			
				REV:	0		
LTR	ORIGINATOR		REVIS	SIONS		DRAFTER	DATE
0	ERIC TRIPLETT	RELEASED FO	R PRODUCTION			TAYLOR LIU	27JUL2005
ITLE:	THERMALLY	FNHANCE	D QUAD	CASE NUMBER:	1740-01		
	AT NON-LEA			STANDARD: JED		20 VMMD-3	
64	TERMINAL, O	.5 PITCH	(9 X 9 X 1)			SHEET:	
			,	PACKAGE CODE	. 6200	SHEE 1:	4 OF 4




3.3 81 MAPBGA Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NOT TO SCALE		
		DOCUMENT NO: 98ASA10670D		REV: O	
		CASE NUMBER: 1662-01		04 FEB 2005	
		STANDARD: NO	N-JEDEC		

VIEV	VВ
------	----

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO: 98ASS23308W		REV: G	
100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4 THICK		CASE NUMBER	2: 983–03	07 APR 2005	
	THOR	STANDARD: NO	N-JEDEC		

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF52110 Rev. 1 3/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011. All rights reserved.

