
STMicroelectronics - STM32L151VDT7X Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 32MHz

Connectivity I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDT

Number of I/O 83

Program Memory Size 384KB (384K x 8)

Program Memory Type FLASH

EEPROM Size 12K x 8

RAM Size 48K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 25x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vdt7x

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l151vdt7x-4413309
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DocID15491 Rev 5 19/156

PM0056 The Cortex-M3 processor

Execution program status register

The EPSR contains the Thumb state bit, and the execution state bits for either the:
• If-Then (IT) instruction
• Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store

multiple instruction.

See the register summary in Table 2 on page 14 for the EPSR attributes. The bit
assignments are:

Attempts to read the EPSR directly through application software using the MSR instruction
always return zero. Attempts to write the EPSR using the MSR instruction in application
software are ignored. Fault handlers can examine EPSR value in the stacked PSR to
indicate the operation that is at fault. See Section 2.3.7: Exception entry and return on
page 38

Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM or STM instruction, the processor:
• Stops the load multiple or store multiple instruction operation temporarily
• Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:
• Returns to the register pointed to by bits[15:12]
• Resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then block

The If-Then block contains up to four instructions following a 16-bit IT instruction. Each
instruction in the block is conditional. The conditions for the instructions are either all the
same, or some can be the inverse of others. See IT on page 94 for more information.

Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

Table 6. EPSR bit definitions
Bits Description

Bits 31:27 Reserved.

Bits 26:25, 15:10 ICI: Interruptible-continuable instruction bits
See Interruptible-continuable instructions on page 19.

Bits 26:25, 15:10 IT: Indicates the execution state bits of the IT instruction, see IT on page 94.

Bit 24 Always set to 1.

Bits 23:16 Reserved.

Bits 9:0] Reserved.

The Cortex-M3 processor PM0056

36/156 DocID15491 Rev 5

2.3.4 Vector table
The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 12 on page 36 shows the order
of the exception vectors in the vector table. The least-significant bit of each vector must be
1, indicating that the exception handler is Thumb code.

Figure 12. Vector table

On system reset, the vector table is fixed at address 0x00000000. Privileged software can
write to the VTOR to relocate the vector table start address to a different memory location, in
the range 0x00000080 to 0x3FFFFF80, see Vector table offset register (SCB_VTOR) on
page 133.

2.3.5 Exception priorities
As Table 16 on page 34 shows, all exceptions have an associated priority, with:
• A lower priority value indicating a higher priority
• Configurable priorities for all exceptions except Reset, Hard fault, and NMI.

Initial SP value

Reset

Hard fault

NMI

Memory management fault

Usage fault

Bus fault

0x0000

0x0004

0x0008

0x000C

0x0010

0x0014

0x0018

Reserved

SVCall

PendSV

Reserved for Debug

Systick

IRQ0

Reserved

0x002C

0x0038

0x003C

0x0040

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

IRQ1

IRQ2

0x0044

IRQ67

17
0x0048

0x004C

83

.

.

.

.

.

.

0x014C

IRQ number

-14

-13

-12

-11

-10

-5

-2

-1

0

2

1

67

ai15995

DocID15491 Rev 5 41/156

PM0056 The Cortex-M3 processor

2.4.2 Fault escalation and hard faults
All faults exceptions except for hard fault have configurable exception priority, see System
handler priority registers (SHPRx) on page 138. Software can disable execution of the
handlers for these faults, see System handler control and state register (SCB_SHCSR) on
page 140.

Usually, the exception priority, together with the values of the exception mask registers,
determines whether the processor enters the fault handler, and whether a fault handler can
preempt another fault handler. as described in Section 2.3: Exception model on page 33.

In some situations, a fault with configurable priority is treated as a hard fault. This is called
priority escalation, and the fault is described as escalated to hard fault. Escalation to hard
fault occurs when:
• A fault handler causes the same kind of fault as the one it is servicing. This escalation

to hard fault occurs because a fault handler cannot preempt itself because it must have
the same priority as the current priority level.

• A fault handler causes a fault with the same or lower priority as the fault it is servicing.
This is because the handler for the new fault cannot preempt the currently executing
fault handler.

• An exception handler causes a fault for which the priority is the same as or lower than
the currently executing exception.

• A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault
does not escalate to a hard fault. This means that if a corrupted stack causes a fault, the
fault handler executes even though the stack push for the handler failed. The fault handler
operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any
exception other than Reset, NMI, or another hard fault.

Bus error:

Bus fault

- -

During exception stacking STKERR

Configurable fault status register
(SCB_CFSR) on page 142

During exception unstacking UNSTKERR

During instruction prefetch IBUSERR

Precise data bus error PRECISERR

Imprecise data bus error IMPRECISERR

Attempt to access a coprocessor

Usage fault

NOCP

Configurable fault status register
(SCB_CFSR) on page 142

Undefined instruction UNDEFINSTR

Attempt to enter an invalid
instruction set state(1) INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Divide By 0 DIVBYZERO

1. Attempting to use an instruction set other than the Thumb instruction set.

Table 18. Faults (continued)
Fault Handler Bit name Fault status register

DocID15491 Rev 5 43/156

PM0056 The Cortex-M3 processor

2.5.1 Entering sleep mode
This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes
up the processor. Therefore software must be able to put the processor back into sleep
mode after such an event. A program might have an idle loop to put the processor back to
sleep mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See WFI on page 104 for more information.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of
an one-bit event register. When the processor executes a WFE instruction, it checks this
register:
• If the register is 0 the processor stops executing instructions and enters sleep mode
• If the register is 1 the processor clears the register to 0 and continues executing

instructions without entering sleep mode.

See WFE on page 103 for more information.

If the event register is 1, this indicate that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is
asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 102. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution
of an exception handler it returns to Thread mode and immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an exception
occurs.

2.5.2 Wakeup from sleep mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit
to 1 and the FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a higher
priority than current exception priority, the processor wakes up but does not execute the
interrupt handler until the processor sets PRIMASK to zero. For more information about
PRIMASK and FAULTMASK see Exception mask registers on page 19.

The Cortex-M3 processor PM0056

44/156 DocID15491 Rev 5

Wakeup from WFE

The processor wakes up if:
• it detects an exception with sufficient priority to cause exception entry
• it detects an external event signal, see The external event input on page 44

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient
priority to cause exception entry. For more information about the SCR see System control
register (SCB_SCR) on page 136.

2.5.3 The external event input
The processor provides an external event input signal. This signal can be generated by the
up to 16 external input lines, by the PVD, RTC alarm or by the USB wakeup event,
configured through the external interrupt/event controller (EXTI).

This signal can wakeup the processor from WFE, or set the internal WFE event register to
one to indicate that the processor must not enter sleep mode on a later WFE instruction, see
Wait for event on page 43. Fore more details please refer to the STM32 reference manual,
section 4.3 Low power modes.

2.5.4 Power management programming hints
ANSI C cannot directly generate the WFI and WFE instructions. The CMSIS provides the
following intrinsic functions for these instructions:

void __WFE(void) // Wait for Event

void __WFE(void) // Wait for Interrupt

DocID15491 Rev 5 51/156

PM0056 The Cortex-M3 instruction set

The CMSIS also provides a number of functions for accessing the special registers using
MRS and MSR instructions (see Table 22).

3.3 About the instruction descriptions
The following sections give more information about using the instructions:
• Operands on page 51
• Restrictions when using PC or SP on page 52
• Flexible second operand on page 52
• Shift operations on page 53
• Address alignment on page 56
• PC-relative expressions on page 56
• Conditional execution on page 57
• Instruction width selection on page 59.

3.3.1 Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination
register. When there is a destination register in the instruction, it is usually specified before
the operands.

Operands in some instructions are flexible in that they can either be a register or a constant
(see Flexible second operand).

Table 22. CMSIS intrinsic functions to access the special registers
Special register Access CMSIS function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

The Cortex-M3 instruction set PM0056

58/156 DocID15491 Rev 5

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An
instruction with a condition code is only executed if the condition code flags in the APSR
meet the specified condition. Table 23 shows the condition codes to use.

You can use conditional execution with the IT instruction to reduce the number of branch
instructions in code.

Table 23 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Specific example 1: Absolute value shows the use of a conditional instruction to find the
absolute value of a number. R0 = ABS(R1).

Specific example 1: Absolute value
MOVSR0, R1; R0 = R1, setting flags
IT MI; IT instruction for the negative condition
RSBMIR0, R1, #0; If negative, R0 = -R1

Table 23. Condition code suffixes
Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned ≥

CC or LO C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned ≤

GE N = V Greater than or equal, signed ≥

LT N != V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N != V Less than or equal, signed ≤

AL Can have any value Always. This is the default when no suffix is specified.

DocID15491 Rev 5 61/156

PM0056 The Cortex-M3 instruction set

Note: You might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned (see Instruction width selection on page 59).

Restrictions

Rd must be neither SP nor PC.

Condition flags

This instruction does not change the flags.

Examples
ADR R1, TextMessage; write address value of a location labelled as

; TextMessage to R1

3.4.2 LDR and STR, immediate offset
Load and store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}]; immediate offset

op{type}{cond} Rt, [Rn, #offset]!; pre-indexed

op{type}{cond} Rt, [Rn], #offset; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}]; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]!; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset; post-indexed, two words

where:
• ‘op’ is either LDR (load register) or STR (store register)
• ‘type’ is one of the following:

B: Unsigned byte, zero extends to 32 bits on loads
SB: Signed byte, sign extends to 32 bits (LDR only)
H: Unsigned halfword, zero extends to 32 bits on loads
SH: Signed halfword, sign extends to 32 bits (LDR only)
—: Omit, for word

• ‘cond’ is an optional condition code (see Conditional execution on page 57)
• ‘Rt’ is the register to load or store
• ‘Rn’ is the register on which the memory address is based
• ‘offset’ is an offset from Rn. If offset is omitted, the address is the contents of Rn
• ‘Rt2’ is the additional register to load or store for two-word operations

The Cortex-M3 instruction set PM0056

80/156 DocID15491 Rev 5

Restrictions

You can use SP and PC only in the MOV instruction, with the following restrictions:
• The second operand must be a register without shift
• You must not specify the S suffix

When Rd is PC in a MOV instruction:
• bit[0] of the value written to the PC is ignored
• A branch occurs to the address created by forcing bit[0] of that value to 0.

Note: Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use
of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:
• Update the N and Z flags according to the result
• Can update the C flag during the calculation of operand2 (see Flexible second operand

on page 52).
• Do not affect the V flag

Example
MOVSR11, #0x000B; write value of 0x000B to R11, flags get updated
MOVR1, #0xFA05; write value of 0xFA05 to R1, flags are not updated
MOVSR10, R12; write value in R12 to R10, flags get updated
MOVR3, #23; write value of 23 to R3
MOVR8, SP; write value of stack pointer to R8
MVNSR2, #0xF; write value of 0xFFFFFFF0 (bitwise inverse of 0xF)

; to the R2 and update flags

3.5.7 MOVT
Move top.

Syntax
MOVT{cond} Rd, #imm16

where:
• ‘cond’ is an optional condition code (see Conditional execution on page 57)
• ‘Rd’ is the destination register
• ‘imm16’ is a 16-bit immediate constant

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its
destination register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

The Cortex-M3 instruction set PM0056

82/156 DocID15491 Rev 5

REVSH R0, R5 ; reverse Signed Halfword
REVHS R3, R7 ; reverse with Higher or Same condition
RBIT R7, R8 ; reverse bit order of value in R8 and write the result to R7

3.5.9 TST and TEQ
Test bits and test equivalence.

Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:
• ‘cond’ is an optional condition code (see Conditional execution on page 57)
• ‘Rn’ is the register holding the first operand
• ‘Operand2’ is a flexible second operand (see Flexible second operand on page 52) for

details of the options.

Operation

These instructions test the value in a register against operand2. They update the condition
flags based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an operand2 constant that
has that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise exclusive OR operation on the value in Rn and the
value of operand2. This is the same as the EORS instruction, except that it discards the
result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the
logical exclusive OR of the sign bits of the two operands.

Restrictions

Do not use either SP or PC.

Condition flags

These instructions:
• Update the N and Z flags according to the result
• Can update the C flag during the calculation of operand2 (see Flexible second operand

on page 52).
• Do not affect the V flag

Examples
TSTR0, #0x3F8; perform bitwise AND of R0 value to 0x3F8,

; APSR is updated but result is discarded
TEQEQR10, R9; conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded

DocID15491 Rev 5 91/156

PM0056 The Cortex-M3 instruction set

Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

– SXTB extracts bits[7:0] and sign extends to 32 bits.
– UXTB extracts bits[7:0] and zero extends to 32 bits.
– SXTH extracts bits[15:0] and sign extends to 32 bits.
– UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower

; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3

3.8.4 Branch and control instructions
Table 30 shows the branch and control instructions:

Table 30. Branch and control instructions
Mnemonic Brief description See

B Branch B, BL, BX, and BLX on page 92

BL Branch with Link B, BL, BX, and BLX on page 92

BLX Branch indirect with Link B, BL, BX, and BLX on page 92

BX Branch indirect B, BL, BX, and BLX on page 92

CBNZ Compare and Branch if Non
Zero CBZ and CBNZ on page 93

CBZ Compare and Branch if Non
Zero CBZ and CBNZ on page 93

IT If-Then IT on page 94

TBB Table Branch Byte TBB and TBH on page 96

TBH Table Branch Halfword TBB and TBH on page 96

The Cortex-M3 instruction set PM0056

94/156 DocID15491 Rev 5

CMP Rn, #0
BNE label

Restrictions

The restrictions are:
• Rn must be in the range of R0 to R7
• The branch destination must be within 4 to 130 bytes after the instruction
• These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Examples
CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

3.8.7 IT
If-Then condition instruction.

Syntax
IT{x{y{z}}} cond

where:
• ‘x’ specifies the condition switch for the second instruction in the IT block.
• ‘y’ specifies the condition switch for the third instruction in the IT block.
• ‘z’ specifies the condition switch for the fourth instruction in the IT block.
• ‘cond’ specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T: Then. Applies the condition cond to the instruction.
E: Else. Applies the inverse condition of cond to the instruction.

a) It is possible to use AL (the always condition) for cond in an IT instruction. If this is

done, all of the instructions in the IT block must be unconditional, and each of x, y,
and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be
all the same, or some of them can be the logical inverse of the others. The conditional
instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the
{cond} part of their syntax.

DocID15491 Rev 5 101/156

PM0056 The Cortex-M3 instruction set

where:
• ‘cond’ is an optional condition code, see Conditional execution on page 57.
• ‘Rd’ is the destination register.
• ‘spec_reg’ can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP,

PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a
PSR, for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out
must be saved, including relevant PSR contents. Similarly, the state of the process being
swapped in must also be restored. These operations use MRS in the state-saving
instruction sequence and MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See MSR on page 101.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples
MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

3.9.7 MSR
Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{cond} spec_reg, Rn

where:
• ‘cond’ is an optional condition code, see Conditional execution on page 57.
• ‘Rn’ is the source register.
• ‘spec_reg’ can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP,

PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software
can only access the APSR, see Table 4: APSR bit definitions on page 17. Privileged
software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Core peripherals PM0056

116/156 DocID15491 Rev 5

4.2.9 MPU region attribute and size register (MPU_RASR)
Address offset: 0x10

Reset value: 0x0000 0000

Required privilege: Privileged

The MPU_RASR register defines the region size and memory attributes of the MPU region
specified by the MPU_RNR, and enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
• The most significant halfword holds the region attributes
• The least significant halfword holds the region size and the region and subregion

enable bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved XN Res. AP[2:0] Reserved TEX[2:0] S C B

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRD[7:0] Reserved SIZE EN
ABLE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 Reserved, forced by hardware to 0.

Bit 28 XN: Instruction access disable bit:
0: Instruction fetches enabled
1: Instruction fetches disabled.

Bit 27 Reserved, forced by hardware to 0.

Bits 26:24 AP[2:0]: Access permission
For information about access permission, see Section 4: Core peripherals

For the description of the encoding of the AP bits refer to Table 37 on page 108.

Bits 23:22 Reserved, forced by hardware to 0.

Bits 21:19 TEX[2:0]: memory attribute
For the description of the encoding of the TEX bits refer to Table 35 on page 107

Bit 18 S: Shareable memory attribute
For the description of the encoding of the S bits refer to Table 35 on page 107

Bit 17 C: memory attribute

Bit 16 B: memory attribute

Bits 15:8 SRD: Subregion disable bits.
For each bit in this field:

0: corresponding sub-region is enabled
1: corresponding sub-region is disabled

See Subregions on page 110 for more information.
Region sizes of 128 bytes and less do not support subregions. When writing the attributes for
such a region, write the SRD field as 0x00.

DocID15491 Rev 5 117/156

PM0056 Core peripherals

SIZE field values

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR
register as follows:

 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 4-45
gives example SIZE values, with the corresponding region size and value of N in the RBAR.

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:1 SIZE: Size of the MPU protection region.
The minimum permitted value is 3 (b00010), see SIZE field values for more information.

Bit 0 ENABLE: Region enable bit.

Table 39. Example SIZE field values
SIZE value Region size Value of N(1)

1. In the MPU_RBAR register see Section 4.2.8 on page 114

Note

b00100 (4) 32B 5 Minimum permitted size

b01001 (9) 1KB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Table 40. MPU register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
MPU_TYPER Reserved IREGION[7:0] DREGION[7:0] Reserved

S
E

PA
R

AT
E

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0x04
MPU_CR Reserved

P
R

IV
D

E
FE

N
A

H
FN

M
IE

N
A

E
N

A
B

LE

Reset Value 0

0x08
MPU_RNR Reserved REGION[7:0]
Reset Value 0

0x0C
MPU_RBAR ADDR[31:N]...

VA
LI

D REGION
[3:0]

Reset Value 0

Core peripherals PM0056

126/156 DocID15491 Rev 5

4.3.8 Software trigger interrupt register (NVIC_STIR)
Address offset: 0xE00

Reset value: 0x0000 0000

Required privilege: When the USERSETMPEND bit in the SCR is set to 1, unprivileged
software can access the STIR, see Section 4.4.6: System control register (SCB_SCR). Only
privileged software can enable unprivileged access to the STIR.

4.3.9 Level-sensitive and pulse interrupts
STM32 interrupts are both level-sensitive and pulse-sensitive. Pulse interrupts are also
described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the
rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral
must assert the interrupt signal for at least one clock cycle, during which the NVIC detects
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see Hardware and software control of interrupts. For a level-sensitive interrupt, if
the signal is not deasserted before the processor returns from the ISR, the interrupt
becomes pending again, and the processor must execute its ISR again. This means that the
peripheral can hold the interrupt signal asserted until it no longer needs servicing.

Hardware and software control of interrupts

The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the
following reasons:
• The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
• The NVIC detects a rising edge on the interrupt signal
• Software writes to the corresponding interrupt set-pending register bit, see

Section 4.3.4: Interrupt set-pending registers (NVIC_ISPRx), or to the STIR to make an
SGI pending, see Section 4.3.8: Software trigger interrupt register (NVIC_STIR).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
INTID[8:0]

w w w w w w w w w

Bits 31:9 Reserved, must be kept cleared.

Bits 8:0

NTID[8:0] Software generated interrupt ID
Write to the STIR to generate a Software Generated Interrupt (SGI). The value to be written is
the Interrupt ID of the required SGI, in the range 0-239. For example, a value of 0b000000011
specifies interrupt IRQ3.

Core peripherals PM0056

138/156 DocID15491 Rev 5

4.4.8 System handler priority registers (SHPRx)
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that
have configurable priority.

SHPR1-SHPR3 are byte accessible.

The system fault handlers and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field,
and bits[3:0] read as zero and ignore writes.

Bit 3 UNALIGN_ TRP
Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses
1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.
Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether
UNALIGN_TRP is set to 1.

Bit 2 Reserved, must be kept cleared

Bit 1 USERSETMPEND
Enables unprivileged software access to the STIR, see Software trigger interrupt register
(NVIC_STIR) on page 126:

0: Disable
1: Enable.

Bit 0 NONBASETHRDENA
Configures how the processor enters Thread mode.

0: Processor can enter Thread mode only when no exception is active.
1: Processor can enter Thread mode from any level under the control of an EXC_RETURN
value, see Exception return on page 39.

Table 46. System fault handler priority fields
Handler Field Register description

Memory management fault PRI_4

System handler priority register 1 (SCB_SHPR1)Bus fault PRI_5

Usage fault PRI_6

SVCall PRI_11 System handler priority register 2 (SCB_SHPR2) on
page 139

PendSV PRI_14 System handler priority register 3 (SCB_SHPR3) on
page 140SysTick PRI_15

DocID15491 Rev 5 143/156

PM0056 Core peripherals

Bit 19 NOCP: No coprocessor usage fault. The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor
1: the processor has attempted to access a coprocessor.

Bit 18 INVPC: Invalid PC load usage fault, caused by an invalid PC load by EXC_RETURN:
When this bit is set to 1, the PC value stacked for the exception return points to the instruction
that tried to perform the illegal load of the PC.

0: No invalid PC load usage fault
1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an
invalid context, or an invalid EXC_RETURN value.

Bit 17 INVSTATE: Invalid state usage fault:
When this bit is set to 1, the PC value stacked for the exception return points to the instruction
that attempted the illegal use of the EPSR.
This bit is not set to 1 if an undefined instruction uses the EPSR.

0: No invalid state usage fault
1: The processor has attempted to execute an instruction that makes illegal use of the
EPSR.

Bit 16 UNDEFINSTR: Undefined instruction usage fault:
When this bit is set to 1, the PC value stacked for the exception return points to the undefined
instruction.
An undefined instruction is an instruction that the processor cannot decode.

0: No undefined instruction usage fault
1: The processor has attempted to execute an undefined instruction.

Bit 15 BFARVALID: Bus Fault Address Register (BFAR) valid flag:
The processor sets this bit to 1 after a bus fault where the address is known. Other faults can
set this bit to 0, such as a memory management fault occurring later.
If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler
must set this bit to 0. This prevents problems if returning to a stacked active bus fault handler
whose BFAR value has been overwritten.

0: Value in BFAR is not a valid fault address
1: BFAR holds a valid fault address.

Bits 14:13 Reserved, must be kept cleared

Bit 12 STKERR: Bus fault on stacking for exception entry
When the processor sets this bit to 1, the SP is still adjusted but the values in the context area
on the stack might be incorrect. The processor does not write a fault address to the BFAR.

0: No stacking fault
1: Stacking for an exception entry has caused one or more bus faults.

Bit 11 UNSTKERR: Bus fault on unstacking for a return from exception
This fault is chained to the handler. This means that when the processor sets this bit to 1, the
original return stack is still present. The processor does not adjust the SP from the failing
return, does not performed a new save, and does not write a fault address to the BFAR.

0: No unstacking fault
1: Unstack for an exception return has caused one or more bus faults.

DocID15491 Rev 5 147/156

PM0056 Core peripherals

4.4.12 Memory management fault address register (SCB_MMFAR)
Address offset: 0x34

Reset value: undefined

Required privilege: Privileged

4.4.13 Bus fault address register (SCB_BFAR)
Address offset: 0x38

Reset value: undefined

Required privilege: Privileged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MMFAR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MMFAR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 MMFAR[31:0]: Memory management fault address
When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the
location that generated the memory management fault.
When an unaligned access faults, the address is the actual address that faulted. Because a
single read or write instruction can be split into multiple aligned accesses, the fault address
can be any address in the range of the requested access size.
Flags in the MMFSR register indicate the cause of the fault, and whether the value in the
MMFAR is valid. See Configurable fault status register (SCB_CFSR) on page 142.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BFAR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BFAR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 BFAR[31:0]: Bus fault address
When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location
that generated the bus fault.
When an unaligned access faults the address in the BFAR is the one requested by the
instruction, even if it is not the address of the fault.
Flags in the BFSR register indicate the cause of the fault, and whether the value in the BFAR
is valid. See Configurable fault status register (SCB_CFSR) on page 142.

DocID15491 Rev 5 153/156

PM0056 Core peripherals

4.5.3 SysTick current value register (STK_VAL)
Address offset: 0x08

Reset value: 0x0000 0000

Required privilege: Privileged

4.5.4 SysTick calibration value register (STK_CALIB)
Address offset: 0x0C
Reset value: 0x0002328

Required privilege: Privileged

The CALIB register indicates the SysTick calibration properties.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CURRENT[23:16]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CURRENT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bits 23:0 CURRENT[23:0]: Current counter value
The VAL register contains the current value of the SysTick counter.
Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the COUNTFLAG bit in the
STK_CTRL register to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NO
REF SKEW

Reserved
TENMS[23:16]

r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TENMS[15:0]

r r r r r r r r r r r r r r r r

Bit 31 NOREF: NOREF flag
Reads as zero. Indicates that a separate reference clock is provided. The frequency of this
clock is HCLK/8.

