
STMicroelectronics - STM32L152VDT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 32MHz

Connectivity I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, Cap Sense, DMA, I²S, LCD, POR, PWM, WDT

Number of I/O 83

Program Memory Size 384KB (384K x 8)

Program Memory Type FLASH

EEPROM Size 12K x 8

RAM Size 48K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 25x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vdt6tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l152vdt6tr-4412913
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DocID15491 Rev 5 3/156

PM0056 Contents

2.4 Fault handling . 40
2.4.1 Fault types . 40

2.4.2 Fault escalation and hard faults . 41

2.4.3 Fault status registers and fault address registers 42

2.4.4 Lockup . 42

2.5 Power management . 42
2.5.1 Entering sleep mode . 43

2.5.2 Wakeup from sleep mode . 43

2.5.3 The external event input . 44

2.5.4 Power management programming hints . 44

3 The Cortex-M3 instruction set . 45
3.1 Instruction set summary . 45

3.2 Intrinsic functions . 50

3.3 About the instruction descriptions . 51
3.3.1 Operands . 51

3.3.2 Restrictions when using PC or SP . 52

3.3.3 Flexible second operand . 52

3.3.4 Shift operations . 53

3.3.5 Address alignment . 56

3.3.6 PC-relative expressions . 56

3.3.7 Conditional execution . 57

3.3.8 Instruction width selection . 59

3.4 Memory access instructions . 60
3.4.1 ADR . 60

3.4.2 LDR and STR, immediate offset . 61

3.4.3 LDR and STR, register offset . 63

3.4.4 LDR and STR, unprivileged . 64

3.4.5 LDR, PC-relative . 65

3.4.6 LDM and STM . 67

3.4.7 PUSH and POP . 68

3.4.8 LDREX and STREX . 70

3.4.9 CLREX . 71

3.5 General data processing instructions . 72
3.5.1 ADD, ADC, SUB, SBC, and RSB . 73

3.5.2 AND, ORR, EOR, BIC, and ORN . 75

The Cortex-M3 processor PM0056

18/156 DocID15491 Rev 5

Interrupt program status register

The IPSR contains the exception type number of the current Interrupt Service Routine
(ISR). See the register summary in Table 2 on page 14 for its attributes. The bit assignments
are:

Table 5. IPSR bit definitions
Bits Description

Bits 31:9 Reserved

Bits 8:0 ISR_NUMBER:
This is the number of the current exception:
0: Thread mode
1: Reserved
2: NMI
3: Hard fault
4: Memory management fault
5: Bus fault
6: Usage fault
7: Reserved
....
10: Reserved
11: SVCall
12: Reserved for Debug
13: Reserved
14: PendSV
15: SysTick
16: IRQ0(1)

....

....
83: IRQ67(1)

see Exception types on page 33 for more information.

1. See STM32 product reference manual/datasheet for more information on interrupt mapping

DocID15491 Rev 5 29/156

PM0056 The Cortex-M3 processor

A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the
SRAM or peripheral bit-band region.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)

bit_word_addr = bit_band_base + bit_word_offset

Where:
• Bit_word_offset is the position of the target bit in the bit-band memory region.
• Bit_word_addr is the address of the word in the alias memory region that maps to the

targeted bit.
• Bit_band_base is the starting address of the alias region.
• Byte_offset is the number of the byte in the bit-band region that contains the targeted

bit.
• Bit_number is the bit position, 0-7, of the targeted bit.

Figure 10 on page 29 shows examples of bit-band mapping between the SRAM bit-band
alias region and the SRAM bit-band region:
• The alias word at 0x23FFFFE0 maps to bit[0] of the bit-band byte at

0x200FFFFF: 0x23FFFFE0 = 0x22000000 + (0xFFFFF*32) + (0*4).
• The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at

0x200FFFFF: 0x23FFFFFC = 0x22000000 + (0xFFFFF*32) + (7*4).
• The alias word at 0x22000000 maps to bit[0] of the bit-band byte at

0x20000000: 0x22000000 = 0x22000000 + (0*32) + (0 *4).
• The alias word at 0x2200001C maps to bit[7] of the bit-band byte at

0x20000000: 0x2200001C = 0x22000000+ (0*32) + (7*4).

Figure 10. Bit-band mapping

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1MB SRAM bit-band region

The Cortex-M3 processor PM0056

32/156 DocID15491 Rev 5

Software can use the synchronization primitives to implement a semaphores as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check

whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive to write the claim value to the

semaphore address.
3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded then

the software has claimed the semaphore. However, if the Store-Exclusive failed,
another process might have claimed the semaphore after the software performed step
1.

The Cortex-M3 includes an exclusive access monitor, that tags the fact that the processor
has executed a Load-Exclusive instruction.

The processor removes its exclusive access tag if:
• It executes a CLREX instruction
• It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
• An exception occurs. This means the processor can resolve semaphore conflicts

between different threads.

For more information about the synchronization primitive instructions, see LDREX and
STREX on page 70 and CLREX on page 71.

2.2.8 Programming hints for the synchronization primitives
ANSI C cannot directly generate the exclusive access instructions. Some C compilers
provide intrinsic functions for generation of these instructions:

The actual exclusive access instruction generated depends on the data type of the pointer
passed to the intrinsic function. For example, the following C code generates the require
LDREXB operation:

__ldrex((volatile char *) 0xFF);

Table 15. C compiler intrinsic functions for exclusive access instructions
Instruction Intrinsic function

LDREX, LDREXH, or LDREXB unsigned int __ldrex(volatile void *ptr)

STREX, STREXH, or STREXB int __strex(unsigned int val, volatile void *ptr)

CLREX void __clrex(void)

DocID15491 Rev 5 33/156

PM0056 The Cortex-M3 processor

2.3 Exception model
This section describes the exception model.

2.3.1 Exception states
Each exception is in one of the following states:

2.3.2 Exception types
The exception types are:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor. An
interrupt request from a peripheral or from software can change
the state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not
completed.
Note: An exception handler can interrupt the execution of another

exception handler. In this case both exceptions are in the active
state.

 Active and pending The exception is being serviced by the processor and there is a
pending exception from the same source.

Reset Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted,
the operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other
than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:
• Masked or prevented from activation by any other exception
• Preempted by any exception other than Reset.

Hard fault A hard fault is an exception that occurs because of an error during
exception processing, or because an exception cannot be managed
by any other exception mechanism. Hard faults have a fixed priority
of -1, meaning they have higher priority than any exception with
configurable priority.

Memory management
fault

A memory management fault is an exception that occurs because of
a memory protection related fault. The fixed memory protection
constraints determines this fault, for both instruction and data
memory transactions. This fault is used to abort instruction accesses
to Execute Never (XN) memory regions.

The Cortex-M3 processor PM0056

38/156 DocID15491 Rev 5

2.3.7 Exception entry and return
Descriptions of exception handling use the following terms:

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:
• The processor is in Thread mode
• The new exception is of higher priority than the exception being handled, in which case

the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask
registers, see Exception mask registers on page 19. An exception with less priority than this
is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation

Preemption When the processor is executing an exception handler, an exception
can preempt the exception handler if its priority is higher than the
priority of the exception being handled. See Section 2.3.6: Interrupt
priority grouping for more information about preemption by an
interrupt.

When one exception preempts another, the exceptions are called
nested exceptions. See Exception entry on page 38 more
information.

Return This occurs when the exception handler is completed, and:
• There is no pending exception with sufficient priority to be

serviced
• The completed exception handler was not handling a late-

arriving exception.

The processor pops the stack and restores the processor state to the
state it had before the interrupt occurred. See Exception return on
page 39 for more information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and
control transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor
switches to handle the higher priority exception and initiates the
vector fetch for that exception. State saving is not affected by late
arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor
can accept a late arriving exception until the first instruction of the
exception handler of the original exception enters the execute stage
of the processor. On return from the exception handler of the late-
arriving exception, the normal tail-chaining rules apply.

DocID15491 Rev 5 63/156

PM0056 The Cortex-M3 instruction set

Condition flags

These instructions do not change the flags.

Examples
LDRR8, [R10]; loads R8 from the address in R10.
LDRNER2, [R5, #960]!; loads (conditionally) R2 from a word

; 960 bytes above the address in R5, and
; increments R5 by 960.

STRR2, [R9,#const-struc]; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRHR3, [R4], #4; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20]; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRDR0, R1, [R8], #-16; Store R0 to address in R8, and store R1 to
; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.

3.4.3 LDR and STR, register offset
Load and store with register offset.

Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:
• ‘op’ is either LDR (load register) or STR (store register)
• ‘type’ is one of the following:

B: Unsigned byte, zero extends to 32 bits on loads
SB: Signed byte, sign extends to 32 bits (LDR only)
H: Unsigned halfword, zero extends to 32 bits on loads
SH: Signed halfword, sign extends to 32 bits (LDR only)
—: Omit, for word

• ‘cond’ is an optional condition code (see Conditional execution on page 57)
• ‘Rt’ is the register to load or store
• ‘Rn’ is the register on which the memory address is based
• ‘Rm’ is a register containing a value to be used as the offset
• ‘LSL #n’ is an optional shift, with n in the range 0 to 3

Operation

LDR instructions load a register with a value from memory. STR instructions store a register
value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is
specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned (see Address alignment on page 56).

The Cortex-M3 instruction set PM0056

72/156 DocID15491 Rev 5

3.5 General data processing instructions
Table 27 shows the data processing instructions.

Table 27. Data processing instructions
Mnemonic Brief description See

ADC Add with carry ADD, ADC, SUB, SBC, and RSB on page 73

ADD Add ADD, ADC, SUB, SBC, and RSB on page 73

ADDW Add ADD, ADC, SUB, SBC, and RSB on page 73

AND Logical AND AND, ORR, EOR, BIC, and ORN on page 75

ASR Arithmetic shift right ASR, LSL, LSR, ROR, and RRX on page 76

BIC Bit clear AND, ORR, EOR, BIC, and ORN on page 75

CLZ Count leading zeros CLZ on page 77

CMN Compare negative CMP and CMN on page 78

CMP Compare CMP and CMN on page 78

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN on page 75

LSL Logical shift left ASR, LSL, LSR, ROR, and RRX on page 76

LSR Logical shift right ASR, LSL, LSR, ROR, and RRX on page 76

MOV Move MOV and MVN on page 79

MOVT Move top MOVT on page 80

MOVW Move 16-bit constant MOV and MVN on page 79

MVN Move NOT MOV and MVN on page 79

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN on page 75

ORR Logical OR AND, ORR, EOR, BIC, and ORN on page 75

RBIT Reverse bits REV, REV16, REVSH, and RBIT on page 81

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT on page 81

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT on page 81

REVSH Reverse byte order in bottom halfword
and sign extend REV, REV16, REVSH, and RBIT on page 81

ROR Rotate right ASR, LSL, LSR, ROR, and RRX on page 76

RRX Rotate right with extend ASR, LSL, LSR, ROR, and RRX on page 76

RSB Reverse subtract ADD, ADC, SUB, SBC, and RSB on page 73

SBC Subtract with carry ADD, ADC, SUB, SBC, and RSB on page 73

SUB Subtract ADD, ADC, SUB, SBC, and RSB on page 73

SUBW Subtract ADD, ADC, SUB, SBC, and RSB on page 73

TEQ Test equivalence TST and TEQ on page 82

TST Test TST and TEQ on page 82

The Cortex-M3 instruction set PM0056

78/156 DocID15491 Rev 5

Examples
CLZR4,R9
CLZNER2,R3

3.5.5 CMP and CMN
Compare and compare negative.

Syntax
CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:
• ‘cond’ is an optional condition code (see Conditional execution on page 57)
• ‘Rn’ is the register holding the first operand
• ‘Operand2’ is a flexible second operand (see Flexible second operand on page 52) for

details of the options.

Operation

These instructions compare the value in a register with operand2. They update the condition
flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of operand2 from the value in Rn. This is the same
as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

Restrictions

In these instructions:
• Do not use PC
• Operand2 must not be SP

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMPR2, R9
CMNR0, #6400
CMPGTSP, R7, LSL #2

DocID15491 Rev 5 89/156

PM0056 The Cortex-M3 instruction set

3.8.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

where:
• ‘cond’ is an optional condition code, see Conditional execution on page 57.
• ‘Rd’ is the destination register.
• ‘Rn’ is the source register.
• ‘lsb’ is the position of the least significant bit of the bitfield. lsb must be in the range 0 to

31.
• ‘width’ is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb.
Other bits in Rd are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd
starting at the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd
are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2

3.8.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

DocID15491 Rev 5 91/156

PM0056 The Cortex-M3 instruction set

Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

– SXTB extracts bits[7:0] and sign extends to 32 bits.
– UXTB extracts bits[7:0] and zero extends to 32 bits.
– SXTH extracts bits[15:0] and sign extends to 32 bits.
– UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower

; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3

3.8.4 Branch and control instructions
Table 30 shows the branch and control instructions:

Table 30. Branch and control instructions
Mnemonic Brief description See

B Branch B, BL, BX, and BLX on page 92

BL Branch with Link B, BL, BX, and BLX on page 92

BLX Branch indirect with Link B, BL, BX, and BLX on page 92

BX Branch indirect B, BL, BX, and BLX on page 92

CBNZ Compare and Branch if Non
Zero CBZ and CBNZ on page 93

CBZ Compare and Branch if Non
Zero CBZ and CBNZ on page 93

IT If-Then IT on page 94

TBB Table Branch Byte TBB and TBH on page 96

TBH Table Branch Halfword TBB and TBH on page 96

The Cortex-M3 instruction set PM0056

92/156 DocID15491 Rev 5

3.8.5 B, BL, BX, and BLX
Branch instructions.

Syntax
B{cond} label

BL{cond} label

BX{cond} Rm

BLX{cond} Rm

where:
• ‘B’ is branch (immediate).
• ‘BL’ is branch with link (immediate).
• ‘BX’ is branch indirect (register).
• ‘BLX’ is branch indirect with link (register).
• ‘cond’ is an optional condition code, see Conditional execution on page 57.
• ‘label’ is a PC-relative expression. See PC-relative expressions on page 56.
• ‘Rm’ is a register that indicates an address to branch to. Bit[0] of the value in Rm must

be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
• The BL and BLX instructions write the address of the next instruction to LR (the link

register, R14).
• The BX and BLX instructions cause a UsageFault exception if bit[0] of Rm is 0.

B cond label is the only conditional instruction that can be either inside or outside an IT
block. All other branch instructions must be conditional inside an IT block, and must be
unconditional outside the IT block, see IT on page 94.

Table 31 shows the ranges for the various branch instructions.

You might have to use the .W suffix to get the maximum branch range. See Instruction width
selection on page 59.

Table 31. Branch ranges
Instruction Branch range

B label −16 MB to +16 MB

Bcond label (outside IT block) −1 MB to +1 MB

Bcond label (inside IT block) −16 MB to +16 MB

BL{cond} label −16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

The Cortex-M3 instruction set PM0056

94/156 DocID15491 Rev 5

CMP Rn, #0
BNE label

Restrictions

The restrictions are:
• Rn must be in the range of R0 to R7
• The branch destination must be within 4 to 130 bytes after the instruction
• These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Examples
CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

3.8.7 IT
If-Then condition instruction.

Syntax
IT{x{y{z}}} cond

where:
• ‘x’ specifies the condition switch for the second instruction in the IT block.
• ‘y’ specifies the condition switch for the third instruction in the IT block.
• ‘z’ specifies the condition switch for the fourth instruction in the IT block.
• ‘cond’ specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T: Then. Applies the condition cond to the instruction.
E: Else. Applies the inverse condition of cond to the instruction.

a) It is possible to use AL (the always condition) for cond in an IT instruction. If this is

done, all of the instructions in the IT block must be unconditional, and each of x, y,
and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be
all the same, or some of them can be the logical inverse of the others. The conditional
instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the
{cond} part of their syntax.

The Cortex-M3 instruction set PM0056

98/156 DocID15491 Rev 5

3.9.1 BKPT
Breakpoint.

Syntax
BKPT #imm

where:
• ‘imm’ is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional
information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally,
unaffected by the condition specified by the IT instruction.

Condition flags

This instruction does not change the flags.

Examples
BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can

; extract the immediate value by locating it using the PC)

3.9.2 CPS
Change Processor State.

Syntax
CPSeffect iflags

NOP No Operation NOP on page 102

SEV Send Event SEV on page 102

SVC Supervisor Call SVC on page 103

WFE Wait For Event WFE on page 103

WFI Wait For Interrupt WFI on page 104

Table 32. Miscellaneous instructions (continued)
Mnemonic Brief description See

DocID15491 Rev 5 131/156

PM0056 Core peripherals

4.4.3 Interrupt control and state register (SCB_ICSR)
Address offset: 0x04

Reset value: 0x0000 0000

Required privilege: Privileged

The ICSR:
• Provides:

– A set-pending bit for the Non-Maskable Interrupt (NMI) exception
– Set-pending and clear-pending bits for the PendSV and SysTick exceptions

• Indicates:
– The exception number of the exception being processed
– Whether there are preempted active exceptions
– The exception number of the highest priority pending exception
– Whether any interrupts are pending.

Caution: When you write to the ICSR, the effect is unpredictable if you:
• Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
• Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NMIPE
NDSET Reserved

PEND
SVSET

PEND
SVCLR

PEND
STSET

PENDS
TCLR Reserved

ISRPE
NDING VECTPENDING[9:4]

rw rw w rw w r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VECTPENDING[3:0] RETOB
ASE Reserved

VECTACTIVE[8:0]

r r r r r rw rw rw rw rw rw rw rw rw

Core peripherals PM0056

138/156 DocID15491 Rev 5

4.4.8 System handler priority registers (SHPRx)
The SHPR1-SHPR3 registers set the priority level, 0 to 15 of the exception handlers that
have configurable priority.

SHPR1-SHPR3 are byte accessible.

The system fault handlers and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:4] of each field,
and bits[3:0] read as zero and ignore writes.

Bit 3 UNALIGN_ TRP
Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses
1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.
Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether
UNALIGN_TRP is set to 1.

Bit 2 Reserved, must be kept cleared

Bit 1 USERSETMPEND
Enables unprivileged software access to the STIR, see Software trigger interrupt register
(NVIC_STIR) on page 126:

0: Disable
1: Enable.

Bit 0 NONBASETHRDENA
Configures how the processor enters Thread mode.

0: Processor can enter Thread mode only when no exception is active.
1: Processor can enter Thread mode from any level under the control of an EXC_RETURN
value, see Exception return on page 39.

Table 46. System fault handler priority fields
Handler Field Register description

Memory management fault PRI_4

System handler priority register 1 (SCB_SHPR1)Bus fault PRI_5

Usage fault PRI_6

SVCall PRI_11 System handler priority register 2 (SCB_SHPR2) on
page 139

PendSV PRI_14 System handler priority register 3 (SCB_SHPR3) on
page 140SysTick PRI_15

DocID15491 Rev 5 139/156

PM0056 Core peripherals

System handler priority register 1 (SCB_SHPR1)

Address offset: 0x18

Reset value: 0x0000 0000

Required privilege: Privileged

System handler priority register 2 (SCB_SHPR2)

Address offset: 0x1C

Reset value: 0x0000 0000

Required privilege: Privileged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PRI_6[7:4] PRI_6[3:0]

rw rw rw rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRI_5[7:4] PRI_5[3:0] PRI_4[7:4] PRI_4[7:4]

rw rw rw rw r r r r rw rw rw rw r r r r

Bits 31:24 Reserved, must be kept cleared

Bits 23:16 PRI_6[7:0]: Priority of system handler 6, usage fault

Bits 15:8 PRI_5[7:0]: Priority of system handler 5, bus fault

Bits 7:0 PRI_4[7:0]: Priority of system handler 4, memory management fault

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRI_11[7:4] PRI_11[3:0]
Reserved

rw rw rw rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bits 31:24 PRI_11[7:0]: Priority of system handler 11, SVCall

Bits 23:0 Reserved, must be kept cleared

DocID15491 Rev 5 149/156

PM0056 Core peripherals

Table 48. SCB register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SCB_CPUID Implementer Variant Constant PartNo Revision
Reset Value 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1

0x04
SCB_ICSR

N
M

IP
E

N
D

S
E

T

R
es

er
ve

d

P
E

N
D

S
V

S
E

T
PE

N
D

SV
C

LR
P

E
N

D
S

TS
E

T
PE

N
D

ST
C

LR

R
es

er
ve

d

IS
R

P
E

N
D

IN
G

VECTPENDING[9:0]

R
E

TO
B

A
S

E

R
es

er
ve

d

VECTACTIVE[8:0]

Reset Value 0

0x08

SCB_VTOR

R
es

er
ve

d TABLEOFF[29:9]

Reserved
Reset Value 0

0x0C
SCB_AIRCR VECTKEY[15:0]

E
N

D
IA

N
E

S
S

Reserved

PRIG
ROUP
[2:0] Reserved

S
Y

S
R

E
S

ET
R

E
Q

VE
C

TC
LR

AC
TI

VE
V

E
C

TR
E

S
E

T

Reset Value 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0x10
SCB_SCR

Reserved

S
E

V
O

N
P

E
N

D
R

es
er

ve
d

S
LE

E
P

D
E

E
P

S
LE

E
P

O
N

E
X

IT
R

es
er

ve
d

Reset Value 0 0 0

0x14

SCB_CCR

Reserved

S
TK

A
LI

G
N

B
FH

FN
IG

N

Res.

D
IV

_0
_T

R
P

U
N

A
LI

G
N

_T
R

P
R

es
er

ve
d

U
S

E
R

S
E

TM
P

E
N

D
N

O
N

B
A

S
E

TH
R

D
EN

A

Reset Value
(STM32F1

series)
1 0

0 0 0 0Reset Value
(STM32F2

and STM32L
series)

0 0

0x18
SCB_SHPR1

Reserved
PRI6 PRI5 PRI4

Reset Value 0

0x1C
SCB_SHPR2 PRI11

Reserved
Reset Value 0 0 0 0 0 0 0 0

0x20
SCB_SHPR3 PRI15 PRI14

Reserved
Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core peripherals PM0056

152/156 DocID15491 Rev 5

4.5.2 SysTick reload value register (STK_LOAD)
Address offset: 0x04

Reset value: 0x0000 0000

Required privilege: Privileged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
RELOAD[23:16]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELOAD[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bits 23:0 RELOAD[23:0]: RELOAD value
The LOAD register specifies the start value to load into the VAL register when the counter is
enabled and when it reaches 0.
Calculating the RELOAD value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of
0 is possible, but has no effect because the SysTick exception request and COUNTFLAG are
activated when counting from 1 to 0.
The RELOAD value is calculated according to its use:
l To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD

value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set
RELOAD to 99.

l To deliver a single SysTick interrupt after a delay of N processor clock cycles, use a
RELOAD of value N. For example, if a SysTick interrupt is required after 400 clock
pulses, set RELOAD to 400.

Core peripherals PM0056

154/156 DocID15491 Rev 5

4.5.5 SysTick design hints and tips
The SysTick counter runs on the processor clock. If this clock signal is stopped for low
power mode, the SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

4.5.6 SysTick register map
The table provides shows the SysTick register map and reset values. The base address of
the SysTick register block is 0xE000 E010.

Bit 30 SKEW: SKEW flag
Reads as one. Calibration value for the 1 ms inexact timing is not known because TENMS is
not known. This can affect the suitability of SysTick as a software real time clock.

Bits 29:24 Reserved, must be kept cleared.

Bits 23:0 TENMS[23:0]: Calibration value
Indicates the calibration value when the SysTick counter runs on HCLK max/8 as external
clock. The value is product dependent, please refer to the Product Reference Manual, SysTick
Calibration Value section. When HCLK is programmed at the maximum frequency, the SysTick
period is 1ms.
If calibration information is not known, calculate the calibration value required from the
frequency of the processor clock or external clock.

Table 49. SysTick register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
STK_CTRL

Reserved

C
O

U
N

TF
LA

G

Reserved

C
LK

S
O

U
R

C
E

T
IC

K
 IN

T

E
N

 A
B

LE

Reset Value 0 1 0 0

0x04
STK_LOAD

Reserved
RELOAD[23:0]

Reset Value 0

0x08
STK_VAL

Reserved
CURRENT[23:0]

Reset Value 0

0x0C
STK_CALIB

Reserved
TENMS[23:0]

Reset Value 0

