

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl33z32vlk4
Supplier Device Package	80-FQFP (12x12)
Package / Case	80-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	A/D 20x16b; D/A 1x12b
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
RAM Size	4K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	32KB (32K x 8)
Number of I/O	70
Peripherals	DMA, LCD, PWM, WDT
Connectivity	FlexIO, I ² C, IrDA, SPI, UART/USART
Speed	48MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M0+
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Туре	Description	Resource
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_0N01P ¹
Package drawing	Package dimensions are provided in package drawings.	 64-LQFP: 98ASS23234W¹ 64 MAPBGA: 98ASA00420D¹ 48 QFN: 98ASA00616D¹ 80 LQFP: 98ASS23174W¹

Related Resources (continued)

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

 Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	 Level 1 falling (LVWV = 00) 	2.62	2.70	2.78	V	
V _{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	V	
V _{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	—
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	• Level 1 falling (LVWV = 00)	1.74	1.80	1.86	V	
V _{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V _{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±40	—	mV	—
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

Table 6. V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$	V _{DD} – 0.5	_	V	
V _{OH}	Output high voltage — high drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -18 mA	V _{DD} – 0.5	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -6 mA	V _{DD} – 0.5	—	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — normal drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA		0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 1.5 \text{ mA}$	—	0.5	V	
V _{OL}	Output low voltage — high drive pad				1

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}, \text{ I}_{\text{OL}} = 18 \text{ mA}$	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 6 mA	_	0.5	V	
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	80	μA	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

Table 7. Voltage and current operating behaviors (continued)

1. PTB0, PTB1, PTC3, and PTD7 I/O have both high drive and normal drive capability selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6 V$

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Table 8.	Power mode transition operating behaviors
----------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	—	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	152	166	μs	
	• VLLS1 \rightarrow RUN	_	152	166	μs	
	• VLLS3 \rightarrow RUN	_	93	104	μs	
	• LLS → RUN	_	7.5	8	μs	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	clock disable, 2 MHz core / 0.5 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	119	178.5	μΑ	
I _{DD_VLPR}	Very-low-power run mode current— 2 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C	_	41	89.39	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	277	360.1	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in flash all peripheral clock enable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	343	425.32	μA	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM in all peripheral clock disable, 4 MHz core / 1 MHz flash, V _{DD} = 3.0 V • at 25 °C	_	375	450	μΑ	
I _{DD_VLPR}	Very-low-power run mode current— 8 MHz LIRC mode, While(1) loop in SRAM all peripheral clock enable, 4 MHz core / 1 MHz flash, $V_{DD} = 3.0 V$ • at 25 °C	_	441	529.2	μA	
I _{DD_VLPR}	Very-low-power run mode current—2 MHz LIRC mode, While(1) loop in SRAM all peripheral clock disable, 125 kHz core / 31.25 kHz flash, V _{DD} = 3.0 V • at 25 °C		45	103.5	μA	
I _{DD_WAIT}	Wait mode current—core disabled, 48 MHz system/24 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C		2.14	2.50	mA	
I _{DD_WAIT}	Wait mode current—core disabled, 24 MHz system/12 MHz bus, flash disabled (flash doze enabled), all peripheral clocks disabled, MCG_Lite under HIRC mode, V _{DD} = 3.0 V • at 25 °C		1.41	1.62	mA	
I _{DD_VLPW}	Very-low-power wait mode current, core disabled, 4 MHz system/ 1 MHz bus and flash, all peripheral clocks disabled, V _{DD} = 3.0 V • at 25 °C	_	193	239.023	μΑ	

Table 9. Power consumption operating behaviors (continued)

Table continues on the next page...

Symbol	Description			Tempera	ature (°0	C)		Unit
		-40	25	50	70	85	105	1
	Includes selected clock source power consumption. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock)	105 34	110 34	110 34	111 34	112 34	114 34	μA
I _{TPM}	 TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock) 	130 40	130 40	130 40	130 40	130 40	130 40	μΑ
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V _{DD} and V _{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	320	320	320	320	320	320	μΑ
I _{LCD}	LCD peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the OSC0_CR[EREFSTEN, EREFSTEN] bits. VIREG disabled, resistor bias network enabled, 1/8 duty cycle, 8 x 36 configuration for driving 288 Segments, 32 Hz frame rate, no LCD glass connected. Includes ERCLK32K (32 kHz external crystal) power consumption.	4.9	4.9	4.9	4.9	4.9	4.9	μΑ

Table 10.	Low power mode peripheral adders	s — typical value (continued)
-----------	----------------------------------	-------------------------------

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

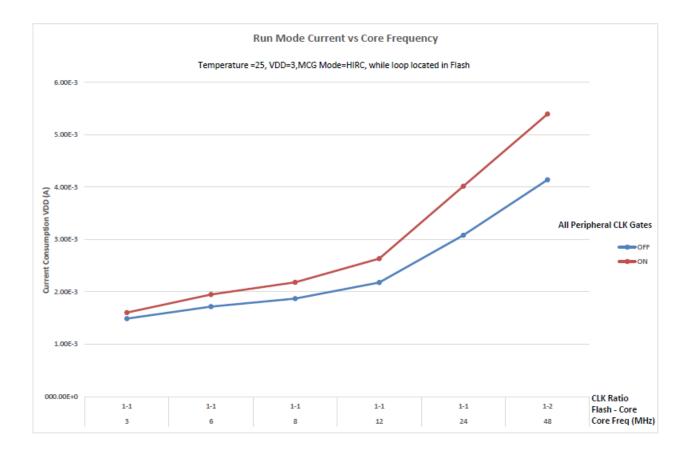


Figure 2. Run mode supply current vs. core frequency

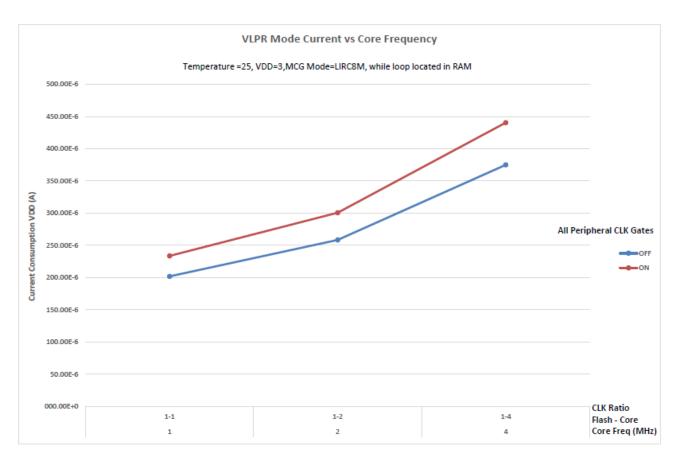


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components, and MCU software operation play a significant role in the EMC performance. The system designer can consult the following Freescale applications notes, available on freescale.com for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5		Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time		36	ns	3

Table 13. General switching specifications

1. The synchronous and asynchronous timing must be met.

- 2. This is the shortest pulse that is guaranteed to be recognized.
- 3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 14. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} \times chip$ power dissipation.

2.4.2 Thermal attributes

NOTE

The 48 QFN and 64 MAPBGA packages for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 19. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications

Table 20.	Oscillator fi	requency	specific	ations	
			_		

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	48	MHz	
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	1, 2
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	—	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)		1		ms	

1. Proper PC board layout procedures must be followed to achieve specifications.

2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
	Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	_		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	_		
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2		

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

Peripheral operating requirements and behaviors

3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	—
ΔV_{DDA}	Supply voltage	Delta to V_{DD} ($V_{DD} - V_{DDA}$)	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 * VREFH	V	
		All other modes	VREFL — VREFH				
C _{ADIN}	Input	16-bit mode	—	8	10	pF	_
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000	_	818.330	Ksps	
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037		461.467	Ksps	5

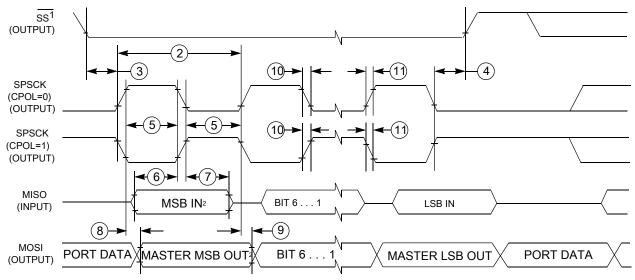
- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Peripheral operating requirements and behaviors

3.6.4.2 12-bit DAC operating behaviors Table 33. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	—	900	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	—	μV/C	6
T_{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	—	—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	_		
	• Low power (SP _{LP})	40	_	_		

1. Settling within ± 1 LSB


2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2.5	—	ns	—
7	t _{HI}	Data hold time (inputs)	3.5	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	31	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input]			
13	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output				

Table 36. SPI slave mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Design considerations

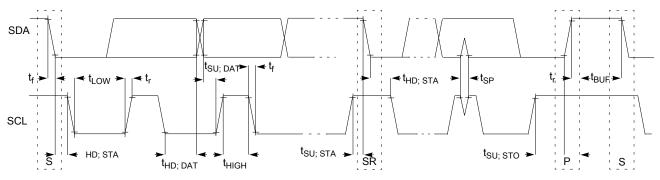


Figure 17. Timing definition for devices on the I²C bus

5.3 UART

See General switching specifications.

6 Design considerations

6.1 Hardware design considerations

This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

6.1.1 Printed circuit board recommendations

- Place connectors or cables on one edge of the board and do not place digital circuits between connectors.
- Drivers and filters for I/O functions should be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground.
- Physically isolate analog circuits from digital circuits if possible.
- Place input filter capacitors as close to the MCU as possible.
- For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages.

80 LQFP	64 LQFP	48 QFN	64 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
53	41	-	D6	PTB18	LCD_P14	LCD_P14	PTB18		TPM2_CH0				LCD_P14
54	42	_	C7	PTB19	LCD_P15	LCD_P15	PTB19		TPM2_CH1				LCD_P15
55	43	31	D8	PTC0	LCD_P20/ ADC0_SE14	LCD_P20/ ADC0_SE14	PTC0		EXTRG_IN		CMP0_OUT		LCD_P20
56	44	32	C6	PTC1/ LLWU_P6/ RTC_CLKIN	LCD_P21/ ADC0_SE15	LCD_P21/ ADC0_SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			LCD_P21
57	45	33	B7	PTC2	LCD_P22/ ADC0_SE11	LCD_P22/ ADC0_SE11	PTC2	I2C1_SDA		TPM0_CH1			LCD_P22
58	46	34	C8	PTC3/ LLWU_P7	LCD_P23	LCD_P23	PTC3/ LLWU_P7	SPI1_SCK	LPUART1_ RX	TPM0_CH2	CLKOUT		LCD_P23
59	47	35	E3	VSS	VSS	VSS							
60	48	36	C5	VLL3	VLL3	VLL3							
61	49	37	A6	VLL2	VLL2	VLL2/ LCD_P4	PTC20						LCD_P4
62	50	38	B5	VLL1	VLL1	VLL1/ LCD_P5	PTC21						LCD_P5
63	51	39	B4	VCAP2	VCAP2	VCAP2/ LCD_P6	PTC22						LCD_P6
64	52	40	A5	VCAP1	VCAP1	VCAP1/ LCD_P39	PTC23						LCD_P39
65	53	41	B8	PTC4/ LLWU_P8	LCD_P24	LCD_P24	PTC4/ LLWU_P8	SPI0_PCS0	LPUART1_ TX	TPM0_CH3	SPI1_PCS0		LCD_P24
66	54	42	A8	PTC5/ LLWU_P9	LCD_P25	LCD_P25	PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	LCD_P25
67	55	43	A7	PTC6/ LLWU_P10	LCD_P26/ CMP0_IN0	LCD_P26/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		LCD_P26
68	56	44	B6	PTC7	LCD_P27/ CMP0_IN1	LCD_P27/ CMP0_IN1	PTC7	SPI0_MISO			SPI0_MOSI		LCD_P27
69	-	Ι	-	PTC8	LCD_P28/ CMP0_IN2	LCD_P28/ CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				LCD_P28
70	-	_	-	PTC9	LCD_P29/ CMP0_IN3	LCD_P29/ CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				LCD_P29
71	_	-	_	PTC10	LCD_P30	LCD_P30	PTC10	I2C1_SCL					LCD_P30
72	_	_	_	PTC11	LCD_P31	LCD_P31	PTC11	I2C1_SDA					LCD_P31
73	57	-	C3	PTD0	LCD_P40	LCD_P40	PTD0	SPI0_PCS0		TPM0_CH0		FXIO0_D0	LCD_P40
74	58	-	A4	PTD1	LCD_P41/ ADC0_SE5b	LCD_P41/ ADC0_SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	LCD_P41
75	59	-	C2	PTD2	LCD_P42	LCD_P42	PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	LCD_P42
76	60	-	B3	PTD3	LCD_P43	LCD_P43	PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	LCD_P43
77	61	45	A3	PTD4/ LLWU_P14	LCD_P44	LCD_P44	PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXIO0_D4	LCD_P44
78	62	46	C1	PTD5	LCD_P45/ ADC0_SE6b	LCD_P45/ ADC0_SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	LCD_P45

Kinetis KL33 Microcontroller, Rev.2, 03/2015.

12.8 Definition: Typical value

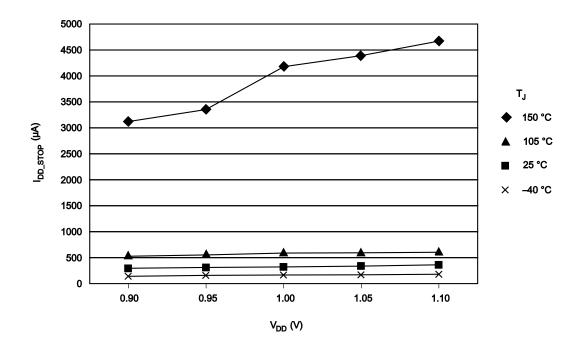
A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

12.8.1 Example 1

This is an example of an operating behavior that includes a typical value:


Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

12.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

Revision History

12.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

 Table 43.
 Typical value conditions

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V _{DD}	3.3 V supply voltage	3.3	V

13 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
1	01 February 2015	 Added new topic "Electrical Design Considerations" as Section 6. Added a note in Table 14 - Thermal operating requirements. Footnote 1 in Table 9 was moved in the beginning of the table as text. 	

Table continues on the next page...

Rev. No.	Date	Substantial Changes
2	18 March 2015	 Updated the features and completed the ordering information. Removed thickness dimension from package diagrams. Updated Table 7. Voltage and current operating behaviors. Specified correct max. value for I_{IN} parameter. Updated Table 8. Power mode transition operating behaviors with Typ. and Max. values. Updated Table 9. Power consumption operating behaviors with Typ. and Max. values. Updated Table 10. Low power mode peripheral adders — typical value. Updated EMC Performance information in section 2.2.6. Updated Table 17. IRC48M specification and Table 18. IRC8M/2M specification. Updated Table 28. VREF full-range operating behaviors. Removed A_c(Aging coefficient) row. Added T_{chop_osc_stup} parameter. Updated typical value of the V_{out} parameter. Added tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I2C.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

©2014-2015 Freescale Semiconductor, Inc.

Document Number KL33P80M48SF3 Revision 2, 03/2015

