

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	48
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 26x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpd064t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

TABLE 3: PIN NAMES FOR 64-PIN GENERAL PURPOSE (GPD/GPE) DEVICE
--

6	4-PIN QFN ⁽⁴⁾ AND TQFP (TOP VIEW)		
	PIC32MK0512GPD064 PIC32MK0512GPE064 PIC32MK1024GPD064 PIC32MK1024GPE064		1 64 .
		FN ⁽⁴⁾	TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	TCK/RPA7/PMD5/RA7	33	OA5IN+/CDAC1/AN24/C5IN1+/C5IN3-/RPA4/T1CK/RA4
2	RPB14/VBUSON1/PMD6/RB14	34	VBUS
3	RPB15/PMD7/RB15	35	VUSB3V3
4	AN19/RPG6/PMA5/RG6	36	D1-
5	AN18/RPG7/PMA4/RG7 ⁽⁶⁾	37	D1+
6	AN17/RPG8/PMA3/RG8 ⁽⁷⁾	38	VDD
7	MCLR	39	OSC1/CLKI/AN49/RPC12/RC12
8	AN16/RPG9/PMA2/RG9	40	OSC2/CLKO/RPC15/RC15
9	Vss	41	Vss V _{BAT} ⁽⁸⁾
10 11	VDD AN10/RPA12/RA12	42	VBAT ⁽⁰⁾ PGED2/RPB5/USBID1/RB5 ⁽⁷⁾
	AN10/RPA12/RA12 AN9/RPA11/RA11	43	PGEC2/RPB6/OSBID1/RB3 ⁽⁾
12	OA2OUT/AN0/C2IN4-/C4IN3-/RPA0/RA0	44	CDAC2/AN48/RPC10/PMA14/RC10
14	OA2IN+/AN1/C2IN1+/RPA1/RA1	46	OA5OUT/AN25/C5IN4-/RPB7/SCK1/INT0/RB7
15	PGED3/VREF-/OA2IN-/AN2/C2IN1-/RPB0/CTED2/RB0	47	SOSCI/RPC13 ⁽⁵⁾ /RC13 ⁽⁵⁾
16	PGEC3/OA1OUT/VREF+/AN3/C1IN4-/C4IN2-/RPB1/CTED1/PMA6/RB1	48	SOSCO/RPB8 ⁽⁵⁾ /RB8 ⁽⁵⁾
17	PGEC1/OA1IN+/AN4/C1IN1+/C1IN3-/C2IN3-/RPB2/RB2	49	TMS/OA5IN-/AN27/C5IN1-/RPB9/RB9
18	PGED1/OA1IN-/AN5/CTCMP/C1IN1-/RTCC/RPB3/RB3	50	TRCLK/RPC6/RC6
19	AVDD	51	TRD0/RPC7/RC7
20	AVss	52	TRD1/RPC8/PMWR/RC8
21	OA3OUT/AN6/C3IN4-/C4IN1+/C4IN4-/RPC0/RC0	53	TRD2/RPD5/PMRD/RD5
22	OA3IN-/AN7/C3IN1-/C4IN1-/RPC1/PMA7/RC1	54	TRD3/RPD6/RD6
23	OA3IN+/AN8/C3IN1+/C3IN3-/RPC2/PMA13/RC2	55	RPC9/RC9
24	AN11/C1IN2-/PMA12/RC11	56	Vss
25	Vss	57	VDD
26		58	RPF0/RF0
27	AN12/C2IN2-/C5IN2-/PMA11/RE12 ⁽⁷⁾	59	RPF1/RF1
	AN13/C3IN2-/PMA10/RE13 ⁽⁶⁾	60	RPB10/PMD0/RB10
29 30	AN14/RPE14/PMA1/RE14 AN15/RPE15/PMA0/RE15	61 62	RPB11/PMD1/RB11 RPB12/PMD2/RB12
30 31	TDI/CDAC3/AN26/RPA8/PMA9/RA8 ⁽⁷⁾	62	RPB12/PMD2/RB12 RPB13/CTPLS/PMD3/RB13
01		03	

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 13.3 "Peripheral Pin Select (PPS) for restrictions.

Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See 13.0 "I/O Ports" for more information. 2:

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

5:

Functions are restricted to input functions only and inputs will be slower than the standard inputs. The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the 6: I²C master/slave clock, that is SCL

7: The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the I²C data I/O, that is, SDA.

VBAT functionality is compromised, see errata for additional information. This pin should be connected to VDD. 8:

	Pin N	umber						
Pin Name	100-pin TQFP TQFP		Pin Buffer Type Type		Description			
					PORTD			
RD1	6	—	I/O	ST	PORTD is a bidirectional I/O port			
RD2	7		I/O	ST				
RD3	8		I/O	ST				
RD4	9		I/O	ST				
RD5	82	53	I/O	ST				
RD6	83	54	I/O	ST				
RD8 ⁽³⁾	68	42	I/O	ST				
RD12	79	_	I/O	ST				
RD13	80	_	I/O	ST				
RD14	47	_	I/O	ST				
RD15	48	_	I/O	ST				
					PORTE			
RE0	52	_	I/O	ST	PORTE is a bidirectional I/O port			
RE1	53	_	I/O	ST				
RE8	18	_	I/O	ST				
RE9	19		I/O	ST				
RE12	41	27	I/O	ST				
RE13	42	28	I/O	ST				
RE14	43	29	I/O	ST				
RE15	44	30	I/O	ST				
					PORTF			
RF0	87	58	I/O	ST	PORTF is a bidirectional I/O port			
RF1	88	59	I/O	ST	1			
RF5	61	_	I/O	ST	1			
RF6	91	—	I/O	ST				
RF7	92	—	I/O	ST	1			
RF9	28	—	I/O	ST	1			
RF10	29	—	I/O	ST	1			
RF12	40	—	I/O	ST	1			
RF13	39	—	I/O	ST	1			
	CMOS = CI					P = Power		
	ST = Schm					I = Input		
	TTL = Trans	sistor-trans	stor Logi	c input buffe	er PPS = Peripheral Pin Select			

TABLE 1-6: PORTA THROUGH PORTG PINOUT I/O DESCRIPTIONS (CONTINUED)

a 1: I his function does not exist on 100-pin general purpose devices.b 2: This function does not exist on 64-pin general purpose devices.

3: This function does not exist on any general purpose devices.

	Pin N	umber					
Pin Name	100-pin TQFP TQFP		Pin Type	Buffer Type	Description		
					JTAG		
TCK	3	1	I	ST	JTAG Test Clock Input Pin		
TDI	49	31	I	ST	JTAG Test Data Input Pin		
TDO	100	64	0	_	JTAG Test Data Output Pin		
TMS	76	49	I	ST	JTAG Test Mode Select Pin		
					Trace		
TRCLK	91	50	0	CMOS	Trace Clock		
TRD0	97	54	0	CMOS	Trace Data bits 0-3		
TRD1	96	53	0	CMOS	Trace support is available through the MPLAB [®] REAL ICE™ In-circuit		
TRD2	95	52	0	CMOS	Emulator.		
TRD3	92	51	0	CMOS			
				Pro	gramming/Debugging		
PGED1	27	18	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1		
PGEC1	26	17	I	ST	Clock input pin for Programming/Debugging Communication Channel 1		
PGED2	69	43	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2		
PGEC2	70	44	I	ST	Clock input pin for Programming/Debugging Communication Channel 2		
PGED3	24	15	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 3		
PGEC3	25	16	I	ST	Clock input pin for Programming/Debugging Communication Channel 3		
MCLR	13	7	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.		
Legend:	CMOS = CM	NOS-comp	atible inpu	ut or output	Analog = Analog input P = Power		

TABLE 1-21: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

© 2016-2018 Microchip Technology Inc.

3.1.4 FLOATING POINT UNIT (FPU)

The Floating Point Unit (FPU), Coprocessor (CP1), implements the MIPS Instruction Set Architecture for floating point computation. The implementation supports the ANSI/IEEE Standard 754 (IEEE for Binary Floating Point Arithmetic) for single- and double-precision data formats. The FPU can be programmed to have thirty-two 32-bit or 64-bit floating point registers used for floating point operations.

The performance is optimized for single precision formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is "precise" at all times.

Table 3-4 contains the floating point instruction latencies and repeat rates for the processor core. In this table, 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The "Repeat Rate" refers to the maximum rate at which an instruction can be executed per FPU cycle.

TABLE 3-4: FPU INSTRUCTION LATENCIES AND REPEAT RATES

Op code	Latency (FPU Cycles)	Repeat Rate (FPU Cycles)
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1	1	1

Legend: S = Single D = DoubleW = Word L = Long word

REGISTER 4-9: SBTxRDy: SYSTEM BUS TARGET 'x' REGION 'y' READ PERMISSIONS REGISTER ('x' = 0-3; 'y' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	-		-	_	-	—	-	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	_	_	_	_	—	_	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	_		_	—		—		_	
7:0	U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1	
7:0				_	GROUP3	GROUP2	GROUP1	GROUP0	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 GROUP3: Group 3 Read Permissions bits 1 = Privilege Group 3 has read permission 0 = Privilege Group 3 does not have read permission bit 2 GROUP2: Group 2 Read Permissions bits 1 = Privilege Group 2 has read permission 0 = Privilege Group 2 does not have read permission GROUP1: Group 1 Read Permissions bits bit 1 1 = Privilege Group 1 has read permission 0 = Privilege Group 1 does not have read permission bit 0 GROUP0: Group 0 Read Permissions bits 1 = Privilege Group 0 has read permission 0 = Privilege Group 0 does not have read permission

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.
2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		NVMDATA<31:24>						
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				NVMDA	TA<23:16>			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	NVMDATA<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				NVMD/	ATA<7:0>			

REGISTER 5-4: NVMDATAX: FLASH DATA REGISTER (x = 0-3)

Legend:				
R = Readable bit	U = Unimplemented bit, re	ented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMDATA<31:0>: Flash Data bits

Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

Note: The bits in this register are only reset by a POR and are not affected by other reset sources.

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		NVMSRCADDR<31:24>						
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				NVMSRCA	DDR<23:16>	>		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	NVMSRCADDR<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				NVMSRC	ADDR<7:0>			

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a POR and are not affected by other reset sources.

TABLE 8-3: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Interrupt Source ⁽¹⁾	XC32 Vector Name	IRQ	Vector #		Interro	upt Bit Location	1	Persistent
Interrupt Source	AC32 Vector Name	#	vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Timer8	_TIMER_8_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	86	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	87	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
Timer9	_TIMER_9_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	89	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	90	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	91	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Global Interrupt	_ADC_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
Reserved	_	93	—	_	_	—		_
ADC Digital Comparator 1	_ADC_DC1_VECTOR	94	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Digital Comparator 2	_ADC_DC2_VECTOR	95	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Digital Filter 1	_ADC_DF1_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Digital Filter 2	_ADC_DF2_VECTOR	97	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Digital Filter 3	_ADC_DF3_VECTOR	98	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Digital Filter 4	_ADC_DF4_VECTOR	99	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Fault	_ADC_FAULT_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC End of Scan	_ADC_EOS_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Ready	_ADC_ARDY_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
ADC Update Ready After Suspend	_ADC_URDY_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	Yes
ADC First Class Channels DMA	_ADC_DMA_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
ADC Early Group Interrupt	_ADC_EARLY_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes
ADC Data 0	_ADC_DATA0_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
ADC Data 1	_ADC_DATA1_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
ADC Data 2	_ADC_DATA2_VECTOR	108	OFF108<17:1>	IFS3<12>	IEC3<12>	IPC26<4:2>	IPC27<1:0>	Yes
ADC Data 3	_ADC_DATA3_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes
ADC Data 4	_ADC_DATA4_VECTOR	110	OFF110<17:1>	IFS3<14>	IEC3<14>	IPC27<20:18>	IPC27<17:16>	Yes
ADC Data 5	ADC_DATA5_VECTOR	111	OFF111<17:1>	IFS3<15>	IEC3<15>	IPC27<28:26>	IPC27<25:24>	Yes
ADC Data 6	_ADC_DATA6_VECTOR	112	OFF112<17:1>	IFS3<16>	IEC3<16>	IPC28<4:2>	IPC28<1:0>	Yes
ADC Data 7	_ADC_DATA7_VECTOR	113	OFF113<17:1>	IFS3<17>	IEC3<17>	IPC28<12:10>	IPC28<9:8>	Yes
ADC Data 8		114	OFF114<17:1>	IFS3<18>	IEC3<18>	IPC28<20:18>	IPC28<17:16>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MK General Purpose (GP) Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	NMIKEY<7:0>											
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—	—	—				
15:8	U-0	U-0	U-0	R/W-0	U-0	R/W-0 R/W-0		R/W-0				
15:8	_	—	—	MVEC	—							
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0			_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP				

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-24 **NMIKEY<7:0>:** Software Generated NMI Key Register bits Software NMI event when the correct key (4Eh) is written. Software NMI event not generated when any other value (not the key) is written.

bit 23-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for multi vectored mode
 - 0 = Interrupt controller configured for single vectored mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge

```
0 = Falling edge
```

- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	_	_	_	—	_	_	_					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	_	_	-	—	-	-	_					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0					
15:8	—	_	_	_	—	-	-	UPLLRDY					
7.0	R-0	U-0	R-0	R-0	U-0	R-0	U-0	R-0					
7:0	SPLLRDY	_	LPRCRDY	SOSCRDY	—	POSCRDY		FRCRDY					

REGISTER 9-9: CLKSTAT: OSCILLATOR CLOCK STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-9	Unimplemented: Read as '	'0'
----------	--------------------------	-----

bit 8	UPLLRDY: USB PLL (UPLL) Ready Status bit 1 = UPLL is ready 0 = UPLL is not ready
bit 7	SPLLRDY: System PLL (SPLL) Ready Status bit
	1 = SPLL is ready
	0 = SPLL is not ready
bit 5	LPRCRDY: Low-Power RC (LPRC) Oscillator Ready Status bit
	1 = LPRC is stable and ready
	0 = LPRC is disabled or not operating
bit 4	SOSCRDY: Secondary Oscillator (Sosc) Ready Status bit
	1 = Sosc is stable and ready
	0 = Sosc is disabled or not operating
bit 3	Unimplemented: Read as '0'
bit 2	POSCRDY: Primary Oscillator (Posc) Ready Status bit
	1 = Posc is stable and ready
	0 = Posc is disabled or not operating
bit 1	Unimplemented: Read as '0'
bit 0	FRCRDY: Fast RC (FRC) Oscillator Ready Status bit
	1 = FRC is stable and ready
	0 = FRC is disabled for not operating

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24			—	_			_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_	_				_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0			—	_			_	_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 12-4: UxOTGCON: USB OTG CONTROL REGISTER ('x' = 1 AND 2)

Legend:

bit '

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

7	DPPULUP: D+ Pull-Up Enable bit
	A DALLAR PLANT IN A STATE OF A STATE

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
- 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

- 1 = D+ data line pull-down resistor is enabled
- 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN, and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN, and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

NOTES:

19.1 Output Compare Control Registers

TABLE 19-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP

SSS										Bi	ts								
Virtual Address BF82_#		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	OC1CON	31:16 15:0	— ON	—	— SIDL	-	-		—	—	-		— OC32	— OCFLT	— OCTSEL		— OCM<2:0>	_	0000
4010	OC1R	31:16 15:0	OC1R<31:0>													xxxx xxxx			
4020	OC1RS	31:16 15:0		OC1RS<31:0>													xxxx xxxx		
4200	OC2CON	31:16 15:0	— ON		— SIDL		_				-		— OC32	— OCFLT	- OCTSEL	—	— OCM<2:0>	_	0000
4210	OC2R	31:16 15:0		OC2R<31:0>												xxxx xxxx			
4220	OC2RS	31:16 15:0		OC2RS<31:0>													xxxx xxxx		
4400	OC3CON	31:16 15:0	— ON	_	— SIDL	-	-	_	_	-	-		— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	—	0000
4410	OC3R	31:16 15:0			L				L	OC3R•	<31:0>		L	L					xxxx xxxx
4420	OC3RS	31:16 15:0								OC3RS	<31:0>								xxxx xxxx
4600	OC4CON	31:16 15:0	— ON		— SIDL	_	-	_	_ _		-		— OC32	— OCFLT	— OCTSEL	—	— OCM<2:0>	—	0000
4610	OC4R	31:16 15:0			1					OC4R•	<31:0>		1						xxxx xxxx
4620	OC4RS	31:16 15:0								OC4RS	<31:0>								xxxx xxxx
4800	OC5CON	31:16 15:0	— ON	_	— SIDL		-		_	_	-		— OC32	— OCFLT	— OCTSEL	—	 OCM<2:0>	—	0000
4810	OC5R	31:16 15:0			1					OC5R•	<31:0>		1	1					xxxx xxxx
4820	OC5RS	31:16 15:0								OC5RS	<31:0>								xxxx xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

es										DI	15								ĺ
Virtual Addres (BF84_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	SPI3CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:)>	MCLKSEL			_	—	_	SPIFE	ENHBUF	Ī
7400	SPISCON	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	(
7440	SPI3STAT	31:16	_	_	_		RXE	BUFELM<4:	0>		_	_	_		TXI	BUFELM<4	:0>		(
7410	3F 133 TAI	15:0		—	—	FRMERR	SPIBUSY	—	-	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	-	SPITBF	SPIRBF	(
7420	SPI3BUF	31:16 15:0								DATA<	.<31:0>							(
		31:16	_	—	—	_	—	_	—	_	_	_	_	_	_	_	_	—	(
7430	SPI3BRG	15:0		_	_							RG<12:0>							(
		31:16	_	—	—	_	—	—	—		_	_	_		—		_	—	(
7440	SPI3CON2	15:0	SPI SGNEXT	—	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	—	AUD MONO	_	AUDMC)D<1:0>	(
7600	SPI4CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:)>	MCLKSEL	_	_	_	_	_	SPIFE	ENHBUF	(
7600	3F 1400N	15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	(
7610	SPI4STAT	31:16	_	—	—		RXBUFELM<4:0>				—	—	—		TXI	BUFELM<4	:0>		(
7010		15:0	_	—	—	FRMERR	SPIBUSY	—		SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF	(
7620	SPI4BUF	31:16 15:0								DATA<	:31:0>								(
7630	SPI4BRG	31:16		—	—		—	—	-	_	_	_	_	—	_	-		—	(
7030		15:0	_	—	—				-		В	RG<12:0>						-	(
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	(
7640	SPI4CON2	15:0	SPI SGNEXT	—	-	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMC)D<1:0>	(
7800	SPI5CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:)>	MCLKSEL	—	—	_	—	_	SPIFE	ENHBUF	(
7800		15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	(
7910	SPI5STAT	31:16	_	—	—			BUFELM<4:	0>		—	—	—			BUFELM<4			C
7010		15:0	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0
7820	SPI5BUF	31:16 15:0								DATA<	:31:0>								(
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	(
7830	SPI5BRG	15:0									В	3RG<12:0>							(
		31:16	_	_	_	_	—	—	—			_	_		—	_	_	—	0
7840	SPI5CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_	_	AUD MONO	_	AUDMC)D<1:0>	(

Bits

TABLE 20-2: SPI3 THROUGH SPI6 REGISTER MAP

ress

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table except SPIxBUF have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Note 1: Registers" for more information.

PIC32MK GP/MC Family

All Resets

0000

0000 0000

0000 0000

0C00

0000

0000 0000

0028 0000

0000 0000

0000 0000

0000

0000

0000 0000

0028 0000 0000

0000

0000 0000

0000

REGISTER 22-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - 1 = $\overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits⁽²⁾
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
 - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up is enabled
 - 0 = Wake-up is disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- bit 5 ABAUD: Auto-Baud Enable bit
 - 1 = Enable baud rate measurement on the next reception of Sync character (0x55); cleared by hardware upon completion
 - 0 = Baud rate measurement disabled or completed
- bit 4 RXINV: Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 **BRGH:** High Baud Rate Enable bit
 - 1 = High-Speed mode 4x baud clock enabled
 - 0 = Standard Speed mode 16x baud clock enabled
- bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Selection bit
 - 1 = 2 Stop bits
 - 0 = 1 Stop bit
- Note 1: These bits can be changed only when the ON bit (UxMODE<15>) is set to '0'.
 - 2: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see 13.3 "Peripheral Pin Select (PPS)" for more information).

Step 6: The user waits for the interrupt/polls the warm-up ready bits WKRDYx = 1, which signals that the respective ADC SAR Cores are ready to operate.

Step 7: The user sets the DIGENx bit to '1', which enables the digital circuitry to immediately begin processing incoming triggers to perform data conversions.

Note: For the best optimized CPU and ISR performance, refer to TABLE 8-1: "ISR Latency Information". To complete the optimization, the user application should define ISRs that use the 'at vector' attribute (see Table 8-1). The CPU interrupt latency is ~43 SYSCLK cycles if no other interrupts are pending. If not using ADC DMA, and the ADC combined sum throughput rate of all the ADC modules in use is greater than (SYSCLK/ 43) = 2.8 Msps, it is recommended to use the ADC CPU early interrupt generation, defined in the ADCxTIME and ADCEIENx registers (see Register 25-33, Register 25-34, and Register 25-35). This will reduce the probability of the ADC results being overwritten by the next conversion before the CPU can read the previous ADC result(s). Do not use the early interrupts if using the ADC in the DMA module.

Dedicated Class 1 ADCx Throughput rate =

1/((Sample time + Conversion time)(TAD))

= 1 / ((SAMC+# bit resolution+1)(TAD))

Example:

SAMC = 3 TAD, 12-bit mode, TAD = 16.667 ns = 60 MHz:

Throughput rate = 1 / ((3+12+1)(16.667 ns))

= 1/(16 * 16.667 ns)

= 3.75 Msps

TABLE 25-1:PIC32MKXXX BASED ON A 60MHz TaD CLOCK (16.667 ns)

Number of Class 1 Interleaved ADC Modules (12-bit mode)	TAD Trigger Spacing and Sampling time (SAMC)	Max. effective sampling rate
2	8	7.50 Msps
3	6	10.00 Msps
4	4	15.00 Msps
5	4	15.00 Msps
6	3	20.00 Msps

Note 1: Interleaved ADCs in this context means connecting the same analog source signal to multiple dedicated Class_1 ADCs (i.e., ADC0-ADC5), and using independent staggered trigger sources accordingly for each interleaved ADC.

REGISTER 25-15: ADCCMPENx: ADC DIGITAL COMPARATOR 'x' ENABLE REGISTER ('x' = 1 THROUGH 4)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	_	_	—	—	CMPE27	CMPE26	CMPE25	CMPE24
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19	CMPE18	CMPE17	CMPE16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

bit 27-0 CMPE27:CMPE0: ADC Digital Comparator 'x' Enable bits

These bits enable conversion results corresponding to the Analog Input to be processed by the Digital Comparator. CMPE0 enables AN0, CMPE1 enables AN1, and so on.

Note 1: This bit is not available on 64-pin devices.

CMPEx = ANx, where 'x' = 0-31 (Digital Comparator inputs are limited to AN0 through AN31).
 Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE		—	—
22:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF		—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF

REGISTER 26-3: CxINT: CAN INTERRUPT REGISTER ('x' = 1-4)

IVRIE: Invalid Message Received Interrupt Enable bit

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CxCON<15>).

32.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MK GP/MC devices include two features to prevent alterations to enabled or disabled peripherals:

- Control Register Lock Sequence
- Configuration Bit Select Lock

32.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting the PMDLOCK bit prevents writes to the control registers and clearing the PMDLOCK bit allows writes.

To set or clear the PMDLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators** with Enhanced PLL" (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

32.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If the PMDLOCK bit remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R	R	R	R	R	R	R	R	
31:24		VER<3	_{:0>} (1)	DEVID<27:24> ⁽¹⁾					
00.40	R	R	R	R	R	R	R	R	
23:16				DEVID<2	23:16> ⁽¹⁾				
45.0	R	R	R	R	R	R	R	R	
15:8	15:8 DEVID<15:8> ⁽¹⁾								
7.0	R	R	R	R	R	R	R	R	
7:0				DEVID<	7:0> (1)				

REGISTER 33-10: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R	R	R	R	R	R	R	R	
31:24				ADCAL	<31:24>				
22:16	R	R	R	R	R	R	R	R	
23:16				ADCAL	<23:16>				
15.0	R	R	R	R	R	R	R	R	
15.0	15:8 ADCAL<15:8>								
7.0	R	R	R	R	R	R	R	R	
7:0				ADCA	L<7:0>				

REGISTER 33-11: DEVADCx: DEVICE ADC CALIBRATION REGISTER 'x' ('x' = 0-5, 7)

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 ADCAL<31:0>: Calibration Data for the ADC Module bits

Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory programmed DEVADCx Flash locations starting at 0xBFC45000 into the ADCxCFG registers starting at 0xBF887D00, respectively. Refer to **25.0** "**12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)**" for more information.

35.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

35.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]