

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	77
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 42x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpd100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For additional information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

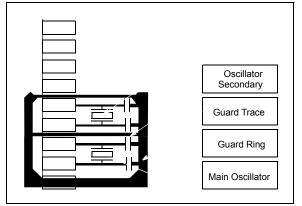
- *"Using MPLAB[®] ICD 3"* (poster) DS50001765
- "MPLAB[®] ICD 3 Design Advisory" DS50001764
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" DS50001616
- *"Using MPLAB[®] REAL ICE™ Emulator"* (poster) DS50001749

2.5 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.6 Trace


When present on select pin counts, the trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
 - 2: The microAptiv[™] CPU core resources are available at: www.imgtec.com.

The MIPS32[®] microAptiv[™] MCU Core is the heart of the PIC32MK GP/MC family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

Key features include:

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 5):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS[™] compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible

- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- · Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
 - Program Counter sampling
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations
- Floating Point Unit (FPU):
 - 1985 IEEE-754 compliant Floating Point Unit
 - Supports single and double precision datatypes
 - 2008 IEEE-754 compatibility control of NaN handling and Abs/Neg instructions
 - Runs at 1:1 core/FPU clock ratio

8.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MK GP/MC devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.

The CPU handles interrupt events as part of the exception handling mechanism, which is described in **8.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 216 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- · Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Two shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- · Software can generate any interrupt

Table 8-1 provides Interrupt Service routine (ISR) latency information.

8.2 Interrupts

The PIC32MK GP/MC family uses variable offsets for vector spacing. This allows the interrupt vector spacing to be configured according to application needs. A unique interrupt vector offset can be set for each vector using its associated OFFx register.

For details on the Variable Offset feature, refer to **8.5.2 "Variable Offset"** in **Section 8. "Interrupt Controller"** (DS60001108) of the *"PIC32 Family Reference Manual"*.

Table 8-3 provides the Interrupt IRQ, vector and bit location information.

TABLE 13-15: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

ss										B	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1480	U4CTSR	31:16	_	—	—	_	_	_	—	_	—	—	_	—	_	_	_	-	0000
1460	04015R	15:0	_	—	—	_	—	_	_	_	—	—	—	_		U4CTS	R<3:0>		0000
1484	U5RXR	31:16	_	—	—	_	_	_	_	_	—	—	-	_	-			—	0000
1404	USKAR	15:0		—	—	_	_	_	_	_	—	—	-	_		U5RXI	R<3:0>	•	0000
1488	U5CTSR	31:16	—	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
1400	USCISK	15:0	—	—	—	—	_	—	—	_	—	—	_	—		U5CTS	R<3:0>		0000
148C	U6RXR	31:16	_	—	—	_	_	_	_	_	—	—	-	_	-			—	0000
1400	UORAR	15:0	—	—	—	_	—	_	_	_	—	—	—	_		U6RXI	R<3:0>	•	0000
1490	U6CTSR	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
1490	UCISK	15:0	—	—	—	—	—	—	—	_	—	—	_	—		U6CTS	R<3:0>		0000
1498	SDI1R	31:16	_	—	—	_	—	_	—	_	—	—	—	—	—	_	_	—	0000
1490	SDIIK	15:0	_	—	_	_	_	_	_	_	_	_	_	_		SDI1F	R<3:0>		0000
149C	SS1R	31:16	—	—	—	—	—	—	—	_	—	—	_	—	_	—	—	—	0000
1490	55 IK	15:0	_	—	—	_	—	_	_	_	—	—	—	_		SS1R	<3:0>	•	0000
1444	SDI2R	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
14A4	SDIZR	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SDI2F	<3:0>		0000
14A8	SS2R	31:16	_	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
14A0	332R	15:0	_	—	—	_	—	_	—	—	—	—	—	—		SS2R	<3:0>		0000
14AC	SCK3R	31:16	—	—	—	—	—	—	—	_	—	—	_	—	_	—	—	—	0000
14AC	SCRJR	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SCK3	R<3:0>		0000
14B0	SDI3R	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
1460	SDISK	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SDI3F	<3:0>		0000
14B4	SS3R	31:16	_	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
1404	333K	15:0	_	—	—	_	—	_	_	_	—	—	—	_		SS3R	<3:0>		0000
14B8	SCK4R	31:16	_	—	—	—	_	—	—	_	—	—	_	—	_	—	—	—	0000
1400	30N4K	15:0		—	—	—		—	—		—	—		—		SCK4	R<3:0>		0000
14BC	SDI4R	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	0000
14BC	SDI4K	15:0		—	—	—		—	—		—	—		—		SDI4F	<3:0>		0000
1400	SS4R	31:16	-	—	—	—		—			—	—	-	—	_	—	—	—	0000
14C0	554K	15:0	-	—	—	—		—			—	—	-	—		SS4R	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

3: This register is only available on PIC32MKXXXGPEXXX devices.

DS60001402E-page 266

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	-	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	_	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	_	-	_
7:0	R-0, HC	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R-0
7:0	BAD1	BAD2	DMTEVENT					WINOPN

REGISTER 16-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Legend:	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8	Unimplemented: Read as '0'
bit 7	BAD1: Bad STEP1<7:0> Value Detect bit
	1 = Incorrect STEP1<7:0> value was detected
	0 = Incorrect STEP1<7:0> value was not detected
bit 6	BAD2: Bad STEP2<7:0> Value Detect bit
	1 = Incorrect STEP2<7:0> value was detected
	0 = Incorrect STEP2<7:0> value was not detected
bit 5	DMTEVENT: Deadman Timer Event bit
	1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
	0 = Deadman timer even was not detected
	Note: This bit is cleared only on a Reset.
bit 4-1	Unimplemented: Read as '0'
bit 0	WINOPN: Deadman Timer Clear Window bit
	1 = Deadman timer clear window is open
	0 = Deadman timer clear window is not open

TABLE 19-3: OUTPUT COMPARE 10 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)

ess		6								В	its								s
Virtual Address BF84_#	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	OC15CON	31:16	—	—	_	—		_	—	_	_	—	_		—		—		0000
5000		15:0	ON	—	SIDL	—	_	—	—	_	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5C10	OC15R	31:16								00155	<31:0>								xxxx
0010	OCIDIC	15:0								00101	1.05								xxxx
5C20	OC15RS	31:16								0C15P	S<31:0>								xxxx
3020	0013K3	15:0								00156	3~31.02								xxxx
5500	OC16CON	31:16	—	—	—	-		—	—	—	—	—	—	—	-	-	—		0000
3200		15:0	ON	—	SIDL	—	_	_	—	_	—	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5E10	OC16R	31:16								00165	<31:0>								xxxx
5210	CONK	15:0								00106									xxxx
5E20	OC16RS	31:16 15:0		OC16RS<31:0> xxxx															

PIC32MK GP/MC Family

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0					
31.24	—	—	—	—	—			—					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	CS2a	CS1a		ADDR<21:16>									
	WADDR23	WADDR22											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	CS2	CS1				-12:05							
	ADDR15	ADDR14			ADDR	<13:8>							
7:0	R/W-0	R/W-0	W-0 R/W-0 R/W-0 R/W-0 R/W-0										
ADDR<7:0>													

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

Note:	If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the
bit 13-0	ADDR<13:0>: Address bits
	This bit is only valid when the CSF<1:0> bits = 01 or 00 or EXADR bit = 1.
bit 14	ADDR<14>: Target Address bit 14
	0 = Chip Select 1 is disabled
	1 = Chip Select 1 is enabled
S.C. 1 1	This bit is only valid when the CSF<1:0> bits = 10 or 01 or EXADR bit = 0 .
bit 14	CS1: Chip Select 1 bit
SIL IO	This bit is only valid when the CSF<1:0> bits = 10 or 01 and the EXADDR bit = 0 .
bit 15	ADDR<15>: Target Address bit 15
	 1 = Chip Select 2 is enabled 0 = Chip Select 2 is disabled
	This bit is only valid when the CSF<1:0> bits = 10 or 01 and the EXADR bit = 0 .
bit 15	CS2: Chip Select 2 bit
	These bits are only valid when the EXADR bit = 1 and the DUALBUF bit = 0 .
bit 21-16	ADDR<21:16>: Address bits
	This bit is only valid when the CSF<1:0> bits = 00 and the EXADR bit = 1 and the DUALBUF bit = 0.
bit 22	WADDR22: Address bits
	0 = Chip Select 1a is disabled
	1 = Chip Select 1a is enabled
	This bit is only valid when the CSF<1:0> bits = 10 .
bit 22	CS1a: Chip Select 1a bit
511 20	This bit is only valid when the CSF<1:0> bits = 0.0 and the EXADR bit = 1 and the DUALBUF bit = 0.0
bit 23	WADDR23: Address bits
	1 = Chip Select 2a is enabled 0 = Chip Select 2a is disabled
	This bit is only valid when the CSF<1:0> bits = $10 \text{ or } 01$.
bit 23	CS2a: Chip Select 2a bit
1.1.00	

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	-		_	_	_	_	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	—	_	_	_	_	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				RDATAIN<	15:8>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	RDATAIN<7:0>									

REGISTER 23-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 **RDATAIN<15:8>:** Port Data <15:8> Input bits Only valid when MODE16 = 1. Used for read operations in Dual Buffer Master mode only. bit 7-0 **RDATAIN<7:0>:** Port Data <7:0> Input bits

Used for read operations in Dual Buffer Master mode only.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 23-5) is used for reads instead of PMRDIN.

REGISTER 25-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 12 AICPMPEN: Analog Input Charge Pump Enable bit
 - 1 = Analog input charge pump is enabled
 - 0 = Analog input charge pump is disabled (default)
 - **Note 1:** For proper analog operation at VDD less than 2.5V, the AICPMPEN bit must be = 1, and the IOANCPEN bit in the CFGCON register must be set to '1'. This bit must not be set if VDD is greater than 2.5V.
 - 2: ADC throughput rate performance is reduced, as defined in the following table, if AICPMPEN = 1 or IOANCPEN (CFGCON<7) = 1.

ADC0	ADC1	ADC2	ADC3	ADC4	ADC5	ADC7	Maximum Sum of Total ADC Throughputs
ON	OFF	OFF	OFF	OFF	OFF	OFF	2 Msps
ON	ON	OFF	OFF	OFF	OFF	OFF	4 Msps
ON	ON	ON	OFF	OFF	OFF	OFF	5 Msps
OFF	OFF	OFF	ON	OFF	OFF	OFF	2 Msps
OFF	OFF	OFF	ON	ON	OFF	OFF	4 Msps
OFF	OFF	OFF	ON	ON	ON	OFF	5 Msps
OFF	OFF	OFF	ON	ON	ON	ON	5 Msps
ON	ON	ON	ON	OFF	OFF	OFF	7 Msps
ON	ON	ON	ON	ON	OFF	OFF	9 Msps
ON	ON	ON	ON	ON	ON	OFF	10 Msps
ON	OFF	OFF	ON	ON	ON	ON	7 Msps
ON	ON	OFF	ON	ON	ON	ON	9 Msps
ON	10 Msps						

bit 11 CVDEN: Capacitive Voltage Division Enable bit

1 = CVD operation is enabled

0 = CVD operation is disabled

bit 10 **FSSCLKEN:** Fast Synchronous System Clock to ADC Control Clock bit

- 1 = Fast synchronous system clock to ADC control clock is enabled
- 0 = Fast synchronous system clock to ADC control clock is disabled

bit 9 FSPBCLKEN: Fast Synchronous Peripheral Clock to ADC Control Clock bit

- 1 = Fast synchronous peripheral clock to ADC control clock is enabled
- 0 = Fast synchronous peripheral clock to ADC control clock is disabled

bit 8-7 Unimplemented: Read as '0'

bit 6-4 IRQVS<2:0>: Interrupt Vector Shift bits

To determine interrupt vector address, this bit specifies the amount of left shift done to the AIRDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + $x \ll$ IRQVS<2:0>, where 'x' is the smallest active input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

- 111 = Shift x left 7 bit position
- 110 = Shift x left 6 bit position
- 101 = Shift x left 5 bit position
- 100 = Shift x left 4 bit position
- 011 =Shift x left 3 bit position
- 010 =Shift x left 2 bit position
- 001 =Shift x left 1 bit position
- 000 = Shift x left 0 bit position

REGISTER 25-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit
 - 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
 - 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.

bit 2-0 **DMABL<2:0>:** DMA to System RAM Buffer Length Size bits

These bits define the number of locations in system memory allocated per analog input for DMA interface use.

Because each output data is 16-bit wide, one location consists of 2 bytes. Therefore the actual size reserved in the System RAM follows the formula: RAM Buffer Length in bytes = 2(DMABL+1).

The DMABL field can also be thought of as a "Left Shift Amount +1" needed for the channel ID to create the DMA byte address offset to be added to the contents of ADDMAB in order to obtain the byte address of the beginning of the System RAM buffer area allocated for the given channel.

111 = Allocates 128 locations in system memory to each analog input, actually 256 bytes

110 = Allocates 64 locations in system memory to each analog input, actually 128 bytes

- 101 = Allocates 32 locations in system memory to each analog input, actually 64 bytes
- 100 = Allocates 16 locations in system memory to each analog input, actually 32 bytes

011 = Allocates 8 locations in system memory to each analog input, actually 16 bytes

010 = Allocates 4 locations in system memory to each analog input, actually 8 bytes

001 = Allocates 2 locations in system memory to each analog input, actually 4 bytes

000 = Allocates 1 location in system memory to each analog input, actually 2 bytes

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0 U-0		U-0	U-0	U-0				
31.24	_	_	_	_	-	-	—	—				
23:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
23.10	—	WAKFIL	_	_	_	SEG	,4)					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	ę	SEG1PH<2:0	>	PRSEG<2:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	SJW<1:	0>(3)		BRP<5:0>								

REGISTER 26-2: CxCFG: CAN BAUD RATE CONFIGURATION REGISTER ('x' = 1-4)

Legend:	HC = Hardware Clear	S = Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 Unimplemented: Read as '0'

- bit 22 WAKFIL: CAN Bus Line Filter Enable bit 1 = Use CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable
	0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM : Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point
	0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
Note 1:	SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2:	3 Time bit sampling is not allowed for BRP < 2.
3:	$SJW \leq SEG2PH.$
4:	The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CxCON<23:21>) = 100).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	FLTEN3	MSEL:	3<1:0>	FSEL3<4:0>						
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN2	MSEL	2<1:0>	FSEL2<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN1	MSEL	1<1:0>	FSEL1<4:0>						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN0	MSEL	0<1:0>	FSEL0<4:0>						

REGISTER 26-10: CxFLTCON0: CAN FILTER CONTROL REGISTER 0 ('x' = 1-4)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected 00 = Acceptance Mask 0 is selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	:
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected 00 = Acceptance Mask 0 is selected
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	:
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 26-11: CxFLTCON1: CAN FILTER CONTROL REGISTER 1 ('x' = 1-4) (CONTINUED)

L:1 4 F	
bit 15	FLTEN5: Filter 17 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL5<1:0>: Filter 5 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected
	00 = Acceptance Mask 0 is selected
bit 12-8	FSEL5<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN4: Filter 4 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL4<1:0>: Filter 4 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected
	00 = Acceptance Mask 0 is selected
bit 4-0	FSEL4<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

NOTES:

s										Bits									
Virtual Address (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
B650	VEL3CNT	31:16				•			V	ELCNT<31:1	6>				•				0000
B030	VELOCINI	15:0													0000				
B660	VEL3HLD	31:16													0000				
DUUU	VELONED	15:0								/ELHLD<15:									0000
B670	INT3TMR	31:16								NTTMR<31:1									0000
20.0		15:0								NTTMR<15:									0000
B680	INT3HLD	31:16								NTHLD<31:1									0000
		15:0								NTHLD<15:0									0000
B690	INDX3CNT	31:16								DXCNT<31:									0000
		15:0								NDXCNT<15									0000
B6A0	INDX3HLD	31:16													0000				
		15:0													0000				
B6B0	QEI3ICC	31:16												0000					
		15:0												0000					
B6C0	QEI3CMPL	31:16																	0000
		15:0							Q	EICMPL<15							1		0000
B800	QEI4CON	31:16	-	—	-	—	—	—	—		_	—	-		—	-	-	—	0000
		15:0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV<	:1:0>	_		INTDIV<2:		CNTPOL	GATEN		<1:0> HCAPEN	0000
B810	QEI4IOC	31:16					—		-	-	-				-				_
			QCAPEN	FLIREN		QFDIV<2:0>		OUTER	IC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	0000
B820	QEI4STAT	31:16 15:0	_																0000
		31:16	—		PUTEQIRQ	PUTEQIEN	PULEQIRQ	POLEQIEN		OSCNT<31:		PUIEN	VELOVIRQ	VELOVIEN	HUMIRQ	HOMIEN	IDXIRQ	IDAIEN	0000
B830	POS4CNT	15:0								OSCNT<51.									0000
		31:16								OSHLD<31:1									-
B840	POS4HLD	15:0								OSHLD<01:									0000
		31:16								ELCNT<31:1									0000
B850	VEL4CNT	15:0								ELCNT<15:									0000
		31:16								ELHLD<31:1									0000
B860	VEL4HLD	15:0											0000						
		31:16								NTTMR<31:1									0000
B870	INT4TMR	15:0																	0000
	du	15:0 INTTMR<15:0> 000									0000								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 13.2 "CLR, SET, and INV Registers" for more information.

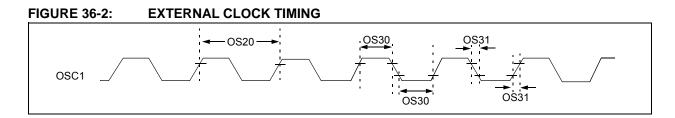
TABLE 31-1: MCPWM REGISTER MAP (CONTINUED)

ess										Bits									
Virtual Address (BF82_#) a	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	STRIG5	31:16	_	_		_	_	_	_	_	—	_	_	_	_	_	_	_	000
		15:0							ç	STRGCMP	<15:0>								000
A570	CAP5	31:16	—	—	_	_	_	—	—	_	—	—	_	—	—	—	—	—	000
		15:0				•				CAP<15	5:0>						•		000
A580	LEBCON5	31:16	—	—	_	—	_	—	—	_	_	—	—	_	—	_	—	_	000
		15:0	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN			—	—	—		—	_	—	_	000
A590	LEBDLY5	31:16	_	—	_	_	_	_	—	_	_	_	_	_	—	_	—	_	000
		15:0	_	_		—						LEB	<11:0>				•		000
A5A0	AUXCON5	31:16	_	_		—	—	—	—	_	_	—	—	_	—	_	—	_	000
		15:0	_	—	_	_	_	_	—	_	_	_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	V 000
A5B0	PTMR5	31:16	_	—		—	_	—	_	-		—	_	_	—	_	—	_	000
		15:0				•				TMR<1	5:0>						•		000
A5C0 PWMCON6	PWMCON6	31:16	FLTIF	CLIF	TRGIF	PWMLIF	PWMHIF	_	—	_	FLTIEN	CLIEN	TRGIEN	PWMLIEN	PWMHIEN	_	—	_	000
		15:0	FLTSTAT	CLTSTAT	-	—	ECAN	1<1:0>	ITB	-	DTC	<1:0>	DTCP	PTDIR	MTBS	_	XPRES	_	000
A5D0	IOCON6	31:16	—	—		CLSR	C<3:0>		CLPOL	CLMOD	—		FLTS	RC<3:0>	•	FLTPOL	FLTMC	D<1:0>	007
		15:0	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	AT<1:0>	FLTDA	AT<1:0>	CLDAT	<1:0>	SWAP	OSYNC	000
A5E0	PDC6	31:16		—	_	—		—	—	_		—	—	—	—		—	_	000
		15:0								PDC<15	5:0>								000
A5F0	SDC6	31:16	_	_	—	_	_	_	—	_		—	-	_	—	_	—	_	000
		15:0								SDC<15	5:0>								000
A600	PHASE6	31:16	—	—	—	—	_	—	—	—	_	—	—	—	—	—	—	—	000
		15:0								PHASE<	15:0>								000
A610	DTR6	31:16		—	_	—	_	—	—	—	—	—	—	—	—	—	—	—	000
		15:0								DTR<15	5:0>								000
A620	ALTDTR6	31:16	_	—	_	-	_	—	—	—	_	—	—	—	—	_	—	_	000
		15:0								ALTDTR<	15:0>								000
A630	DTCOMP6	31:16		—	_	—	_	—	—	—	—	—	—	—	—	—	—	—	000
		15:0	_	_							COMP	<13:0>							000
A640	TRIG6	31:16		—	_	—		—	—	_		—	—	—	—		—	—	000
		15:0								TRGCMP	<15:0>								000
A650	TRGCON6	31:16	_		—	—		_		—	_	_	_	_	—	_	_	_	000
		15:0		TRGDIV	/<3:0>		TRGSE	L<1:0>	STRGS	EL<1:0>	DTM	STRGIS			—	_		—	000
A660	STRIG6	31:16		—	_	—	—	—	—	_	—	—	—	_	—	—	—	—	000
		15:0							5	STRGCMP	<15:0>								000

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	_	—	_				_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—			—	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	PHASE<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				PHAS	E<7:0>					

REGISTER 31-15: PHASEX: PWM PRIMARY PHASE SHIFT REGISTER 'x' ('x' = 1 THROUGH 12)

Legend:


Legenu.							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

bit 15-0 PHASE<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator bits⁽⁶⁾

Phase shifting is used to offset the start of a PWM Generator's time base period, relative to a master time base, as well as the generated duty cycle. Also, the effects on the operation of the PWM signals through any external control signals, such as current-limit, Fault, and dead time compensation, are also shifted in time.

Note	ə 1:	: If the ITB bit (PWMCONx<9>) = 0, the following applies based on the mode of operation:							
		Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01, or 10) PHASE<15:0> = Phase shift value for PWMxH and PWMxL outputs							
	2:	If the ITB bit = 1, the following applies based on the mode of operation:							
		Complementary, Redundant, and Push-Pull Output modes (PMOD<1:0> = 00, 01, or 10) PHASE<15:0> = local time base period value for TMRx							
	3:	: A Phase offset that exceeds the PWM period will lead to unpredictable results.							
	4:	The minimum period value is 0x0008.							
	5:	The SDCx register is used in Independent PWM mode only (PMOD<1:0> = 11). When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.							
	6:	PHASEx = (FSYSCLK / (FPWM * PCLKDIV<2:0> bits (PTCON<6:4>)) FPWM = User-desired PWM Frequency.							

TABLE 36-15: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	Standard Operating Co (unless otherwise state Operating temperature		onditions: 2.2V to 3.6V red) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param. No.	Symbol	Characteristics	Minimum	Typical ⁽¹⁾	Maximum	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		64	MHz	EC (Note 2,3)
OS13		Oscillator Crystal Frequency	4	—	24	MHz	HS (Note 2,3)
OS15			32	32.768	100	kHz	Sosc (Note 2)
OS20	Tosc	Tosc = 1/Fosc	—	_	—	—	See parameter OS10 for Fosc value
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	_	0.675 x Tosc	ns	EC (Note 2)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	7.5	ns	EC (Note 2)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	—	1024	_	Tosc	(Note 2)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 2)
OS42	Gм	External Oscillator Transconductance	_	16	_	mA/V	VDD = 3.3V, TA = +25°C, HS (Note 2)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested.

2: This parameter is characterized, but not tested in manufacturing.

3: See parameter OS50 for PLL input frequency limitations.