

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Obsolete
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	77
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 42x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpd100t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number		Pin Number		Pin Number		Pin Number		Pin Number		Pin Number		Pin Number		Pin Number		Pin Number		Buffer	Description
	100-pin TQFP	64-pin QFN/ TQFP	Туре	Туре																	
PMD0	93	60	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or Address/Data																
PMD1	94	61	I/O	TTL/ST	(Multiplexed Master modes)																
PMD2	98	62	I/O	TTL/ST																	
PMD3	99	63	I/O	TTL/ST																	
PMD4	100	64	I/O	TTL/ST																	
PMD5	3	1	I/O	TTL/ST																	
PMD6	4	2	I/O	TTL/ST																	
PMD7	5	3	I/O	TTL/ST																	
PMD8	90	_	I/O	TTL/ST																	
PMD9	89		I/O	TTL/ST																	
PMD10	88		I/O	TTL/ST																	
PMD11	87		I/O	TTL/ST																	
PMD12	79		I/O	TTL/ST																	
PMD13	80		I/O	TTL/ST																	
PMD14	83	_	I/O	TTL/ST																	
PMD15	84	_	I/O	TTL/ST																	
PMALH	43	29	0	TTL/CMOS	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)																
PMALL	44	30	0	—	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)																

TABLE 1-10: PMP PINOUT I/O DESCRIPTIONS (CONTINUED)

nd: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

TABLE 1-20: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS

	Pin N	umber							
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description				
					Power and Ground				
AVDD	30	19	Р	Р	Positive supply for analog modules. This pin must be connected at all times.				
AVss	31	20	Р	Р	Ground reference for analog modules. This pin must be connected at all times.				
Vdd	2, 16, 37, 46, 62, 86	10, 26, 38, 57	Р	—	Positive supply for peripheral logic and I/O pins. This pin must be con- nected at all times.				
Vss	15, 36, 45, 65, 75, 85	9, 25, 41, 56	Р	—	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.				
VBAT ⁽¹⁾	68	42	Р	Р	Battery backup for selected peripherals; otherwise connect to VDD.				
					Voltage Reference				
VREF+	29	16	I	Analog	Analog Voltage Reference (High) Input				
VREF-	28	15	I	Analog	Analog Voltage Reference (Low) Input				
Legend:	CMOS = CM ST = Schmi TTL = Trans	tt Trigger in	put with	CMOS leve	ls O = Output I = Input				

Note 1: VBAT functionality is compromised, see errata for additional information. This pin should be connected to VDD.

3.1 Architecture Overview

The MIPS32 microAptiv MCU core in the PIC32MK GP/ MC family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- · Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Floating Point Unit (FPU)
- · Power Management
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.1.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.1.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 Booth recoded multiplier, a pair of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the rs operand. The second number '16' of 32x16) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:MIPS32[®] microAptiv[™] MCU CORE HIGH-PERFORMANCE INTEGER MULTIPLY/
DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate		
MULT/MULTU, MADD/MADDU,	16 bits	5	1		
MSUB/MSUBU (HI/LO destination)	32 bits	5	1		
MUL (GPR destination)	16 bits	5	1		
	32 bits	5	1		
DIV/DIVU	8 bits	12/14	12/14		
	16 bits	20/22	20/22		
	24 bits	28/30	28/30		
	32 bits	36/38	36/38		

The MIPS architecture defines that the result of a multiply or divide operation be placed in one of four pairs of HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as defined in the DSP ASE. The MDU supports all of the data types required for this purpose and includes three extra HI/LO registers as defined by the ASE.

Table 3-2 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

TABLE 3-2:	DSP-RELATED LATENCIES
	AND REPEAT RATES

Op code	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	1
Multiply without accumulation	5	1

3.1.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as the presence of options like microMIPS is also available by accessing the CP0 registers, listed in Table 3-3.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MK GP Family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-privileged mode.
8	BadVAddr	Reports the address for the most recent address-related exception.
	BadInstr	Reports the instruction that caused the most recent exception.
	BadInstrP	Reports the branch instruction if a delay slot caused the most recent exception.
9	Count	Processor cycle count.
10	Reserved	Reserved in the PIC32MK GP Family core.
11	Compare	Core timer interrupt control.
12	Status	Processor status and control.
	IntCtl	Interrupt control of vector spacing.
	SRSCtl	Shadow register set control.
	SRSMap	Shadow register mapping control.
	View_IPL	Allows the Priority Level to be read/written without extracting or inserting that bit from/to the Status register.
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.
13	Cause	Describes the cause of the last exception.
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.
14	EPC	Program counter at last exception.
	NestedEPC	Contains the exception program counter that existed prior to the current exception.

TABLE 3-3:COPROCESSOR 0 REGISTERS

FIGURE 4-3: BOOT AND ALIAS MEMORY MAP

Physical I	Memory Map ⁽¹⁾	
-		0x1FC64FFF
		0x1FC64000
	Seq/Configuration	0x1FC63FFF
Boot Flash 2	Word Space	0x1FC63FB0
		0x1FC63FAC
		0x1FC60000
		0x1FC5FFFF
R	eserved	
		0x1FC45800
		0x1FC457FF
		0x1FC45040
	DATA EE CAL	0x1FC4503C
	(DEVEE0-DEVEE3)	0x1FC45030
		0x1FC4502F
	Device Serial Number ⁽⁴⁾	0x1FC4502C
	DEVSNx, x=0-3	0x1FC45020
Public Test Flash	- ,	0x1FC4501C
FUDIIC TEST FIASIT		0x1FC4501C
	DEVADC7 DEVADC5	0x1FC45016
	DEVADC4	0x1FC45010
	DEVADC3	0x1FC4500C
	DEVADC2	0x1FC45008
	DEVADC1	0x1FC45004
	DEVADC0	0x1FC45000
		0x1FC44FFF
		0x1FC44000
Boot Flash 1	Seq/Configuration	0x1FC43FFF
Bootridon	Word Space	0x1FC43FB0
		0x1FC43FAC
		0x1FC40000
D	eserved	0x1FC3FFFF
	eserveu	0x1FC25000
		0x1FC24FFF
Uppe	r Boot Alias	
oppo		
		0x1FC20000
R	eserved	0x1FC1FFFF
		0x1FC05000
		0x1FC04FFF
		0x1FC04000
Lower Post Alice	Seq/Configuration	0x1FC03FFF
Lower Boot Alias	Word Space	0x1FC03FB0
		0x1FC03FAC
		0x1FC00000
Note 1: Memo	ory areas are not shown to	scale.
	ory locations 0x1FC03FB0	
	C03FFC are used to initialize guration registers (see 33.0	
	lires").	opeciai
Refer	to 4.1.1 "Boot Flash Seq	
Confi	guration Spaces" for mor bry locations 0x1FC5020 ar	e information.
	in a unique device serial ni	
33.0 "	Special Features").	
	configuration space cannot ting code in the upper Boo	
EXECU	ang oode in the upper DOC	

TABLE 4-1: SFR MEMORY MAP

	Virtual Address					
Peripheral	Base	Offset Start				
CFG-PMD		0x0000				
CACHE		0x0800				
FC-NVM		0x0A00				
WDT		0x0C00				
DMT	0xBF800000	0x0E00				
ICD		0x1000				
CRU		0x1200				
PPS		0x1400				
PLVD		0x1800				
EVIC	0.000	0x0000				
DMA	0xBF810000	0x1000				
Timer1-Timer9		0x0000				
IC1-IC9		0x2000				
OC1-OC9		0x4000				
I2C1-I2C2		0x6000				
SPI1-SPI2		0x7000				
UART1-UART2		0x8000				
DATAEE	0xBF820000	0x9000				
PWM1-PWM12		0xA000				
QEI1-QEI6		0xB200				
CMP		0xC000				
CDAC1		0xC200				
CTMU		0xD000				
PMP		0xE000				
IC10-IC16		0x3200				
OC10-OC16		0x5200				
I2C3-I2C4	0xBF840000	0x6400				
SPI3-SPI6	0107040000	0x7400				
UART3-UART6]	0x8400				
CDAC2-CDAC3		0xC400				
PORTA-PORTG	0xBF860000	0x0000				
CAN1-CAN4		0x0000				
ADC	0xBF880000	0x7000				
USB1-USB2		0x9000				
RTCC		0x0000				
Deep Sleep	0xBF8C0000	0x0200				
SSX CTL	0xBF8F0000	0x0000				

Note 1: Refer to 4.2 "System Bus Arbitration" for important legal information.

TABLE 4-9: SYSTEM BUS TARGET 1 REGISTER MAP

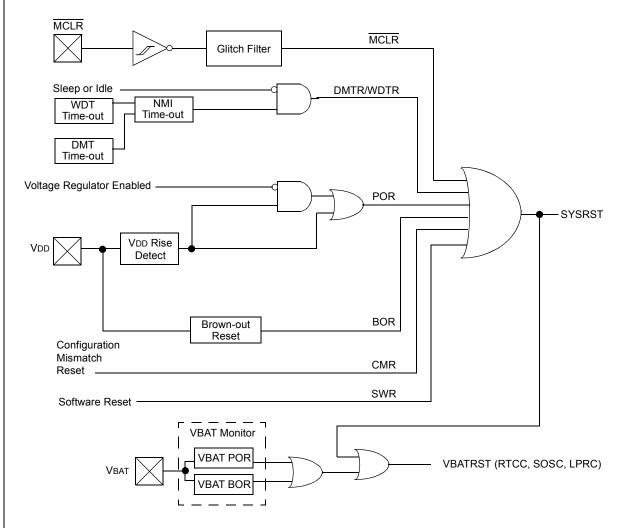
	LE 4-9.	0.0		000	IARGEI	TREO					D '4								т —
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	Bits 23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8420	SBT1ELOG1	31:16	MULTI	—	—			CODE	<3:0>		_	—	—		—	—	—		0000
0420	SBITEEOOT	15:0				INI	TID<7:0>					REGIO	N<3:0>		—	C	CMD<2:0>		0000
8424	SBT1ELOG2	31:16	—	—	—	—	—	—	_	—	_	_	_	_	—	—	—	—	0000
0424	OBTILLOOZ	15:0	_	—	—	—	—	—	—	—	_	—	—	—	—	—	GROU	P<1:0>	0000
8428	SBT1ECON	31:16	—	—	—	—	—			ERRP			—		—	—	—	—	0000
0420	OBTILOON	15:0	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
8430	SBT1ECLRS	31:16	—	—	—	—	—			—			—		—	—	—	—	0000
0100	OBTIEGENO	15:0		—	—	—	—	—	—	—	_	—	—	—	—	—	—	CLEAR	0000
8438	SBT1ECLRM	31:16		—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
0.00	021120214	15:0		—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8440	SBT1REG0	31:16							1	BAS	SE<21:6>								xxxx
		15:0			BA	\SE<5:0>			PRI	—			SIZE<4:0	>	1	—	—	—	XXXX
8450	SBT1RD0	31:16	_	—	—	—	—		—	_		—	—	—		—	—	—	XXXX
		15:0		—		—	—	—	—	—		—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8458	SBT1WR0	31:16		—		—	—	—	—	—		—	—	—	—	—	—	—	XXXX
		15:0		—	—	_	—	—	—	-	—	—	_	_	GROUP3	GROUP2	GROUP1	GROUP0	+
8480	SBT1REG2	31:16									SE<21:6>								XXXX
		15:0			BA	\SE<5:0>			PRI	—	SIZE<4:0>					-	—	-	XXXX
8490	SBT1RD2	31:16				_	_	_	_	_	_	_	_	_	-	-	-	-	XXXX
		15:0				_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	
8498	SBT1WR2	31:16				_	_	_	_	_	_	_	_	_	-	-	-	-	XXXX
		15:0		—	_			_	_	—	-				GROUP3	GROUP2	GROUP1	GROUP0	
84A0	SBT1REG3	31:16			DA						SE<21:6>						r		XXXX
		15:0		_	BA	ASE<5:0>	_	_	PRI		_		SIZE<4:0	>		_			XXXX
84B0	SBT1RD3	31:16 15:0													GROUP3	GROUP2	GROUP1	GROUP0	XXXX
		31:16					—	_			_				GROUPS	GROUPZ	GROUPT	GROUPU	
84B8	SBT1WR3	15:0			_			_				_		_	GROUP3	GROUP2		GROUP0	XXXX
		31:16		—				—		— BA	— SE<21:6>	—	_	_	GROUPS	GROUPZ	GROUPI	GROUPU	-
84C0	SBT1REG4	15:0			D /	ASE<5:0>			PRI	ВА	52~21.02		SIZE<4:0	`					XXXX
<u> </u>		31:16	_	_	BA	ASE<5.0>	_	_					5IZE<4.0		_				xxxx xxxx
84D0	SBT1RD4	15:0		_						_			_		GROUP3	GROUP2	GROUP1	GROUP0	
		31:16		_	_		_								GROUPS	GROUPZ			
84D8	SBT1WR4	15:0		_								_			GROUP3	GROUP2		GROUP0	XXXX
Leaen		ļ				ented, read a						_	_	_		010012	51.0011	51.00110	~~~~

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

7.0 RESETS

FIGURE 7-1:


Note: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

SYSTEM RESET BLOCK DIAGRAM

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

- · Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

A simplified block diagram of the Reset module is illustrated in Figure 7-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	-	—	_	F	RCDIV<2:0>		
00.40	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0	
23:16	DRMEN	—	SLP2SPD	_	_	_	—	—	
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15:8	—		COSC<2:0>		_		NOSC<2:0>		
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	R/W-0	R/W-y	R/W-y	
7:0	CLKLOCK		_	SLPEN	CF	UFRCEN	SOSCEN	OSWEN ⁽¹⁾	

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Config	HS = Hardware Set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-27 Unimplemented: Read as '0'

bit 26-24 **FRCDIV<2:0>:** Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2
- 000 = FRC divided by 1 (default setting)

bit 23 DRMEN: Dream Mode Enable bit

- 1 = Dream mode is enabled
- 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep Two-speed Start-up Control bit 1 = Use FRC as SYSCLK until the selected clock is ready 0 = Use the selected clock directly
 - 0 4 C Unimplemented Deed es (o)
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (SOSC)
 - 011 = USB PLL (UPLL) input clock and divider are set by UPLLCON
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL) input clock and divider set by SPLLCON
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV) supports FRN divided by N, where 'N' is 1, 2, 4, 8, 16, 32, 64, and 256
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

TABLE 13-15: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

ss										B	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1480	U4CTSR	31:16	_	—	—	_	_	_	—	_	—	—	_	—	_	_	-	—	0000
1460	04015R	15:0	_	—	—	_	—	_	_	_	—	—	—	_		U4CTS	R<3:0>		0000
1484	U5RXR	31:16	_	—	—	_	_	_	_	_	—	—	-	_	-			—	0000
1404	USKAR	15:0		—	—	_	_	_	_	_	—	—	_	_		U5RXI	R<3:0>	•	0000
1488	U5CTSR	31:16	_	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
1400	USCISK	15:0	_	—	—	—	_	—	—	_	—	—	_	-		U5CTS	R<3:0>		0000
148C	U6RXR	31:16	_	—	—	_	_	_	_	_	—	—	-	_	-			—	0000
1400	UORAR	15:0	_	—	—	_	—	_	_	_	—	—	—	_		U6RXI	R<3:0>	•	0000
1490	U6CTSR	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
1490	UCISK	15:0	—	—	—	—	—	—	—	_	—	—	_	—		U6CTS	R<3:0>		0000
1498	SDI1R	31:16	_	—	—	_	—	_	—	—	—	—	—	—	—	_	_	—	0000
1490	SDIIK	15:0	_	—	_	_	_	_	_	_	_	_	_	_		SDI1F	R<3:0>		0000
149C	SS1R	31:16	—	—	—	—	—	—	—	_	—	—	_	—	_	—	—	—	0000
1490	55 IK	15:0	_	—	—	_	—	_	_	_	—	—	—	_		SS1R	<3:0>	•	0000
1444	SDI2R	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
14A4	SDIZR	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SDI2F	<3:0>		0000
14A8	SS2R	31:16	_	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
14A0	332R	15:0	_	—	—	_	—	_	—	—	—	—	—	—		SS2R	<3:0>		0000
14AC	SCK3R	31:16	—	—	—	—	—	—	—	_	—	—	_	—	_	—	—	—	0000
14AC	SCRJR	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SCK3	R<3:0>		0000
14B0	SDI3R	31:16	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	—	0000
1460	SDISK	15:0	—	—	—	—	—	—	—	_	—	—	_	—		SDI3F	<3:0>		0000
14B4	SS3R	31:16	_	—	—	_	—	_	_	_	—	—	—	_	—	_	—	—	0000
1404	333K	15:0	_	—	—	_	—	_	_	_	—	—	—	_		SS3R	<3:0>		0000
14B8	SCK4R	31:16	—	—	—	—	_	—	—	_	—	—	_	—	_	—	—	—	0000
1400	30N4K	15:0		—	—	—		—	—		—	—		—		SCK4	R<3:0>		0000
14BC	SDI4R	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	—	_	—	0000
14BC	SUI4K	15:0		—	—	—		—	—		—	—		—		SDI4F	<3:0>		0000
1400	SS4R	31:16	-	—	—	—	-	—			—	—	-	—	_	—	—	—	0000
14C0	554K	15:0	-	—	—	—	-	—			—	—	-	—		SS4R	<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

3: This register is only available on PIC32MKXXXGPEXXX devices.

DS60001402E-page 266

16.1 Deadman Timer Control Registers

TABLE 16-1: DEADMAN TIMER REGISTER MAP

ess											Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0E00	DMTCON	31:16	_																
UEUU	DIMITCON	15:0	ON													0000			
0E10	DMTPRECLR	31:16	_													0000			
UEIU	DMTPRECLR	15:0			STEP1<7:0> 000												0000		
0E20	DMCLR	31:16	—													0000			
UEZU	DIVICER	15:0	—	—	_					-				STEP	2<7:0>				0000
0E30	DMTSTAT	31:16	—	—	_					-	—		—	—	_			_	0000
0230	DIVITSTAT	15:0	_	—	—	—	_	_	_	_	BAD1	BAD2	DMTEVENT	_	—	_	_	WINOPN	0000
0E40	DMTCNT	31:16								COLL	NTER<31:0	15							0000
0240	DIVITCINT	15:0								000		<u> </u>							0000
0E60	DMTPSCNT	31:16								DS	CNT<31:0>								0000
	DIVITESCINT	15:0								FO	5111-51.02								0000
0E70	DMTPSINTV	31:16								PSI	NT\/<31.05								0000
0270	Diviti Silvi V	15:0		PSIN I V<31'U>													0000		
Legen	d: x = unkn	own va	lue on Res	eset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.															

PIC32MK GP/MC Family

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register, the OC32 bit in the OCxCON register, and the OCTSEL bit in the OCxCON register. The available configurations are shown in Table 19-1.

OCx	OCACLK CFGCON<16>	OC32 (OCxCON<5>	OCTSEL OCxCON<3>	Timerx	Timery	Output Compare Timer Source
OC1-OC3			0	TMR2<15:0>	—	TMR2<15:0>
	0	0	1	_	TMR3<15:0>	TMR3<15:0>
		-	0	TMR2<31:0>	—	TMR2<31:0>
	0	1	1	_	TMR2<31:0>	TMR2<31:0>
		_	0	TMR4<15:0>	—	TMR4<15:0>
	1	0	1	_	TMR5<15:0>	TMR5<15:0>
		_	0	TMR4<31:0>	—	TMR4<31:0>
	1	1	1	_	TMR4<31:0>	TMR4<31:0>
OC4-OC6,	_	_	0	TMR2<15:0>	—	TMR2<15:0>
OC13-OC16	0	0	1	_	TMR3<15:0>	TMR3<15:0>
			0	TMR2<31:0>	—	TMR2<31:0>
	0	1	1	_	TMR2<31:0>	TMR2<31:0>
			0	TMR2<15:0>	—	TMR2<15:0>
	1	0	1	_	TMR3<15:0>	TMR3<15:0>
		_	0	TMR2<31:0>	—	TMR2<31:0>
	1	1	1	_	TMR2<31:0>	TMR2<31:0>
OC7-OC9			0	TMR2<15:0>	—	TMR2<15:0>
	0	0	1	_	TMR3<15:0>	TMR3<15:0>
		-	0	TMR2<31:0>	—	TMR2<31:0>
	0	1	1	_	TMR2<31:0>	TMR2<31:0>
	1		0	TMR6<15:0>	—	TMR6<15:0>
	1	0	1	_	TMR7<15:0>	TMR7<15:0>
		-	0	TMR6<31:0>	—	TMR6<31:0>
	1	1	1	_	TMR6<31:0>	TMR6<31:0>
OC10-OC12			0	TMR2<15:0>	—	TMR2<15:0>
	0	0	1	_	TMR3<15:0>	TMR3<15:0>
		-	0	TMR2<31:0>	—	TMR2<31:0>
	0	1	1	—	TMR2<31:0>	TMR2<31:0>
		<u>_</u>	0	TMR8<15:0>	—	TMR8<15:0>
	1	0	1	_	TMR9<15:0>	TMR9<15:0>
	1	1	0	TMR8<31:0>	—	TMR8<31:0>
	1	1	1	_	TMR8<31:0>	TMR8<31:0>

TABLE 19-1: TIMER SOURCE CONFIGURATIONS

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
04-04	R/W-0	R/W-0													
31:24				DATA<3	1:24>										
00:40	R/W-0	R/W-0													
23:16				DATA<2	3:16>		8/10/2 25/17/9/1 24/16/8 /W-0 R/W-0 R/W-0 /W-0 R/W-0 R/W-0 /W-0 R/W-0 R/W-0								
45.0	R/W-0	R/W-0													
15:8		DATA<15:8>													
7.0	R/W-0	R/W-0													
7:0	DATA<7:0>														

REGISTER 20-4: SPIxBUF: SPIx BUFFER REGISTER ('x' = 1-6)

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 DATA<31:0> FIFO Data bits

When MODE32 or MODE16 selects 32-bit data, the SPI uses DATA<31:0>. When MODE32 or MODE16 selects 24-bit data, the SPI only uses DATA<24:0>. When MODE32 or MODE16 selects 16-bit data, the SPI only uses DATA<15:0>. When MODE32 or MODE16 selects 8-bit data, the SPI only uses DATA<7:0>.

REGISTER 20-5: SPIxBRG: SPIx BAUD RATE GENERATOR REGISTER ('x' = 1-6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	-	—	-	-	—
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	_	_	_	_		_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—			BRG<12:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BRG<	7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 **BRG<12:0>** Baud Rate Generator Divisor bits Baud Rate = FPBCLKx / (2 * (SPIxBRG + 1)), where x = 2 and 3, (FPBCLK2 for SPI1-SPI2, FPBCLK3 for SPI3-SPI6.) Therefore, the maximum baud rate possible is FPBCLKx / 2 (SPIXBRG = 0) and the minimum baud rate possible is FPBCLKx / 16384.

Note: Changing the BRG value when the ON bit is equal to '1' causes undefined behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	TRBEN	TRBERR	٦	RBMST<2:0>	> TRBSLV<2:0>						
23:16	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	FRACT	SELRES	S<1:0>	STRGSRC<4:0>							
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
15.0	ON		SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	-			
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0	—		RQVS<2:0>		STRGLVL						

REGISTER 25-1: ADCCON1: ADC CONTROL REGISTER 1

Legend:	HC = Hardware Set	HS = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

- bit 31 TRBEN: Turbo Channel Enable bit
 - 1 = Enable the Turbo channel
 - 0 = Disable the Turbo channel
- bit 30 **TRBERR:** Turbo Channel Error Status bit
 - 1 = An error occurred while setting the Turbo channel and Turbo channel function to be disabled regardless of the TRBEN bit being set to '1'.
 - 0 = Turbo channel error did not occur
 - Note: The status of this bit is valid only after the TRBEN bit is set.

bit 29-27 TRBMST<2:0>: Turbo Master ADCx bits

- 111 = Reserved
 - 110 = Reserved
 - 101 **= ADC5**
 - 100 **= ADC4**
 - 011 = ADC3
 - 010 = ADC2
 - 001 = ADC1
 - 000 = ADC0

bit 26-24 TRBSLV<2:0>: Turbo Slave ADCx bits

- 111 = Reserved
- 110 = Reserved
- 101 = ADC5
- 100 = ADC4
- 011 = ADC3
- 010 = ADC2
- 001 = ADC1
- 000 **= ADC0**
- bit 23 FRACT: Fractional Data Output Format bit
 - 1 = Fractional
 - 0 = Integer

bit 22-21 SELRES<1:0>: Shared ADC7 (i.e., AN6-AN53) Resolution bits

- 11 = 12 bits (default)
- 10 = 10 bits
- 01 = 8 bits
- 00 = 6 bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	_	—	_	_	CSS27	CSS26	CSS25	CSS24
00.40	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19	CSS18	CSS17	CSS16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

REGISTER 25-11: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

bit 27-0 CSS27:CSS0: Analog Common Scan Select bits

Analog inputs AN27-AN6 are always Class 3 shared ADC7.

- 1 = Select AN*x* for input scan (i.e., ANx = CSSx and scan is sequential starting with the lowest to highest enabled CSSx analog input pin)
- 0 = Skip ANx for input scan

Note 1: This bit is not available on 64-pin devices.

- **Note 1:** In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.
 - 2: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode (`0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

REGISTER 25-17: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6) (CONTINUED)

- AFRDY: Digital Filter 'x' Data Ready Status bit bit 24
 - 1 = Data is ready in the FLTRDATA<15:0> bits
 - 0 = Data is not ready

Note: This bit is cleared by reading the FLTRDATA<15:0> bits or by disabling the Digital Filter module (by setting AFEN to '0').

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 CHNLID<4:0>: Digital Filter Analog Input Selection bits

These bits specify the analog input to be used as the oversampling filter data source. 11111 = Reserved 11100 = Reserved 11011 = AN27 input 11010 = AN26 input 11001 = AN25 input 11000 = AN24 input 10111 = AN23⁽¹⁾ input 10110 = AN22⁽¹⁾ input 10101 = AN21⁽¹⁾ input 10100 = AN20⁽¹⁾ input 10011 = AN19 input 10110 = AN6 input 00101 = ADC5 Module 00100 = ADC4 Module 00011 = ADC3 Module 00010 = ADC2 Module00001 = ADC1 Module 00000 = ADC0 Module

Note: Only the first 32 analog inputs (Class 1 and Class 2) can use a digital filter.

FLTRDATA<15:0>: Digital Filter 'x' Data Output Value bits bit 15-0 The filter output data is as per the fractional format set in the FRACT (ADCCON1<23>) bit. The FRACT bit should not be changed while the filter is enabled. Changing the state of the FRACT bit after the operation of the filter ended will not update the value of FLTRDATA<15:0> to reflect the new format.

Note 1: This selection is not available on 64-pin devices.

27.0 OP AMP/COMPARATOR MODULE

Note: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Op amp/Comparator" (DS60001178), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

Depending on the device, the Op amp/Comparator module consists of a Comparator and Op amp modules. When available, the Op amps can be independently enabled or disabled from the Comparator.

Key features of the Comparator include:

- Differential inputs
- Rail-to-rail operation
- · Selectable output and trigger event polarity
- · Selectable inputs:
- Analog inputs multiplexed with I/O pins
- On-chip internal voltage reference via a 12-bit CDAC output or an external pin
- Output debounce or Digital noise filter with these selectable clocks:
 - Peripheral Bus Clock (PBCLK2)
 - System Clock (SYSCLK)
 - Reference Clock 3 (REFCLK3)
 - PBCLK2/Timer PRx ('x' = 2-5)
 - PWM Secondary Special Event
- Outputs can be internally configured as trigger sources

The following are key features of the Op amps:

- Inverting and non-inverting Inputs and output accessible on pins
- Rail-to-rail operation $(3V \le AVDD \le 3.6V)$
- Internal connection to ADC Sample and Hold circuits/SAR cores
- Special voltage follower mode for buffering signals

Please refer to the PIC32MK GP Family Features in TABLE 1: "PIC32MK General Purpose (GP) Family Features" for the actual number of available Op amp/ Comparator modules on your specific device.

Block diagrams of the Op amp/Comparator module are illustrated in Figure 27-1 through Figure 27-5.

Note: The Op amps are disabled by default (i.e., OPAxMD bit in the PMD2 register is equal to '1') on any Reset. Before use or access to any corresponding Op amp, ensure that the OPAxMD bit is equal to '0'.

TABLE 31-1: MCPWM REGISTER MAP (CONTINUED)

ess										Bits									s
Virtual Address (BF82_#) 	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A9A0 AL	UXCON9	31:16	_	_	_	_	—	—	_	_	_	_	_	—	—	—	_	_	000
		15:0	—	—	—	—	—	—	—	—	—	—		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	1000
A9B0 PT	TMR9	31:16	_	_		—	—	_	_	_	_	_	-	_	—	_	_	_	000
		15:0								TMR<15	5:0>								000
A9C0 PV	WMCON10	31:16	FLTIF																
		15:0	FLTSTAT	CLTSTAT		_	ECAM	<1:0>	ITB	_	DTC<	<1:0>	DTCP	PTDIR	MTBS	_	XPRES	—	000
A9D0 IO	CON10	31:16	—	—		CLSR	C<3:0>		CLPOL	CLMOD	—		FLTS	RC<3:0>		FLTPOL	FLTMO	D<1:0>	007
		15:0	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDAT	<1:0>	SWAP	OSYNC	000
A9E0 PC	DC10	31:16	—	—		_	_	_		_		—			_	_	—	_	000
		15:0		PDC<15:0> 0000															
A9F0 SE	DC10	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—		—		000
		15:0								SDC<15	5:0>								000
AA00 PH	HASE10	31:16	—	_	-	_	-	—	-	_	-	—	-	-	—	_	—	_	000
		15:0								PHASE<1	15:0>								000
AA10 DT	TR10	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—		—		000
		15:0								DTR<15	5:0>								000
AA20 AL	LTDTR10	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—		—		000
		15:0								ALTDTR<	15:0>								000
AA30 DT	TCOMP10	31:16	—	—	—	—	—	_	—	—	—	_	—	_	—	_	—		000
		15:0	—	_							COMP	<13:0>							000
AA40 TF	RIG10	31:16	—	_	—	—	—	_	—	—	—	_	—	—	—		—		0000
		15:0								TRGCMP<	:15:0>								000
AA50 TF	RGCON10	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—		000
		15:0		TRGDIV	/<3:0>		TRGSE	L<1:0>	STRGS	EL<1:0>	DTM	STRGIS	—	—	—		—		000
AA60 ST	TRIG10	31:16	_	_	_	_	—	_	—	_	—	_	—	_	—	_	—	_	000
		15:0							;	STRGCMP	<15:0>								000
AA70 CA	AP10	31:16	—		—	—	—		—	—	—	—	—	—	—		—		0000
		15:0	CAP<15:0> 0000																
AA80 LE	EBCON10	31:16	_	_	_	—	—	_	—	_	_	—	_	_	_	_	—	_	000
		15:0	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	_	_	_	_	_	_	000
AA90 LE	EBDLY10	31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	000
		15:0	_	_	_	_						LEB	<11:0>						000
AAA0 AL	UXCON10	31:16	_		_	_	—	_	—	_	—	—	—	—	—	—	—		000
		15:0	_	_	_	_	_	_	_	_	_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: '—' = unimplemented; read as '0'.

DS60001402E-page 536

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
51.24	—	_	—	_		_		_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—		—	—	—		
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	PHASE<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0	PHASE<7:0>									

REGISTER 31-15: PHASEX: PWM PRIMARY PHASE SHIFT REGISTER 'x' ('x' = 1 THROUGH 12)

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 PHASE<15:0>: PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator bits⁽⁶⁾

Phase shifting is used to offset the start of a PWM Generator's time base period, relative to a master time base, as well as the generated duty cycle. Also, the effects on the operation of the PWM signals through any external control signals, such as current-limit, Fault, and dead time compensation, are also shifted in time.

Not	e 1:	If the ITB bit (PWMCONx<9>) = 0, the following applies based on the mode of operation:								
		Complementary, Redundant and Push-Pull Output modes (PMOD<1:0> (IOCONx<11:10>) = 00, 01, or 10) PHASE<15:0> = Phase shift value for PWMxH and PWMxL outputs								
	2:	If the ITB bit = 1, the following applies based on the mode of operation:								
		Complementary, Redundant, and Push-Pull Output modes (PMOD<1:0> = 00, 01, or 10) PHASE<15:0> = local time base period value for TMRx								
	3:	A Phase offset that exceeds the PWM period will lead to unpredictable results.								
	4:	The minimum period value is 0x0008.								
	5:	The SDCx register is used in Independent PWM mode only (PMOD<1:0> = 11). When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.								
	6:	PHASEx = (FSYSCLK / (FPWM * PCLKDIV<2:0> bits (PTCON<6:4>)) FPWM = User-desired PWM Frequency.								

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	_	—
45.0	HC, R/W-y	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
15:8	DSEN ⁽¹⁾	—	DSGPREN	RTCDIS	—	_	_	RTCCWDIS
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	—	_	_	_	—	_	DSBOR ⁽²⁾	RELEASE

REGISTER 32-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽³⁾

Legend:	HC = Hardware Cleared	y = Value set from Configuration bits on POR			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **DSEN:** Deep Sleep Enable bit⁽¹⁾ 1 = Deep Sleep mode is entered on a WAIT command 0 = Sleep mode is entered on a WAIT command
- bit 14 Unimplemented: Read as '0'
- bit 13 **DSGPREN:** General Purpose Registers Enable bit
 - 1 = General purpose register retention is enabled in Deep Sleep mode
 - 0 = No general purpose register retention in Deep Sleep mode
- bit 12 RTCDIS: RTCC Module Disable bit
 - 1 = RTCC module is not enabled
 - 0 = RTCC module is enabled
- bit 11-9 Unimplemented: Read as '0'
- bit 8 RTCCWDIS: RTCC Wake-up Disable bit
 - 1 = Wake-up from RTCC is disabled
 - 0 = Wake-up from RTCC is enabled
- bit 7-2 Unimplemented: Read as '0'
- bit 1 DSBOR: Deep Sleep BOR Event Status bit⁽²⁾

1 = DSBOREN was enabled and VDD dropped below the DSBOR threshold during Deep Sleep⁽²⁾
 0 = DSBOREN was disabled, or VDD did not drop below the DSBOR threshold during Deep Sleep

- bit 0 **RELEASE:** I/O Pin State Release bit
 - 1 = Upon waking from Deep Sleep, the I/O pins maintain their previous states
 - 0 = Release I/O pins and allow their respective TRIS and LAT bits to control their states
- Note 1: To enter Deep Sleep mode, Sleep mode must be executed after setting the DSEN bit.
 - 2: Unlike all other events, a Deep Sleep Brown-out Reset (BOR) event will not cause a wake-up from Deep Sleep mode; this bit is present only as a status bit.
 - 3: The DSCON<RELEASE> must be cleared after waking from deep sleep to write to the DSWAKE register.

Note: To ensure a successful write, this register must be written twice consecutively, back-to-back with the same value, and no interrupts in between the writes.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol Characteristics '		Min. Typ. ⁽²		Max.	Units	Conditions	
SP9a	Тѕск	SCKx Period (SPI1-2 only)	28			ns	$(VDD \ge 3.0V and the SMP bit$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin) SRCON0x.y = 0, SRCON1x.y = 0 Dedicated SCK1 and SCK2 on RB7 and RB6, respectively or PPS remappable SPI onto pins RB5, RA1, and RB15.	
			_	35		ns	$(VDD \ge 3.0V and the SMP bit$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin) SRCON0x.y = 1, SRCON1x.y = 0 Dedicated SCK1 and SCK2 on RB7 and RB6, respectively or PPS remappable SPI onto pins RB5, RA1, and RB15.	
		_	41		ns	$(VDD \ge 3.0V and the SMP bit (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin) SRCON0x.y = 0, SRCON1x.y = 1 Dedicated SCK1 and SCK2 on RB7 and RB6, respectively or PPS remappable SPI onto pins RB5, RA1, and RB15.$		
			_	47		ns	$(VDD \ge 3.0V and the SMP bit$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin) SRCON0x.y = 1, SRCON1x.y = 1 Dedicated SCK1 and SCK2 on RB7 and RB6, respectively or PPS remappable SPI onto pins RB5, RA1, and RB15.	

TABLE 36-32: SPIX MASTER MODE (CKE = 0, SMP = 1) TIMING REQUIREMENTS

These parameters are characterized, but not tested in manufacturing. Note 1:

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Assumes 30 pF load on all SPIx pins.