

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	77
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 42x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpd100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 100-PIN MOTOR CONTROL (MCF) DEVICES

100-PIN TQFP (TOP VIEW)

PIC32MK0512MCF100 PIC32MK1024MCF100

100

			1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN23/CVD23/PMPA23/RG15	36	Vss
2	VDD	37	Vdd
3	TCK/RPA7/PWM10H/PWM4L/PMPD5/RA7	38	AN35/CVD35/RG11
4	RPB14/PWM1H/VBUSON1/PMPD6/RB14	39	AN36/CVD36/RF13
5	RPB15/PWM7H/PWM1L/PMPD7/RB15	40	AN37/CVD37/RF12
6	PWM11H/PWM5L/RD1	41	AN12/CVD12/C2IN2-/C5IN2-/FLT5/PMPA11/RE12 ⁽⁶⁾
7	PWM5H/RD2	42	AN13/CVD13/C3IN2-/FLT6/PMPA10/RE13 ⁽⁵⁾
8	RPD3/PWM12H/PWM6L/RD3	43	AN14/CVD14/RPE14/FLT7/PMPA1/PSPA1/RE14
9	RPD4/PWM6H/RD4	44	AN15/CVD15/RPE15/FLT8/PMPA0/PSPA0/RE15
10	AN19/CVD19/RPG6/VBUSON2/PMPA5/RG6	45	Vss
11	AN18/CVD18/RPG7/PMPA4/RG7 ⁽⁵⁾	46	Vdd
12	AN17/CVD17/RPG8/PMPA3/RG8 ⁽⁶⁾	47	AN38/CVD38/RD14
13	MCLR	48	AN39/CVD39/RD15
14	AN16/CVD16/RPG9/PMPA2/RG9	49	TDI/DAC3/AN26/CVD26/RPA8/PMPA9/RA8 ⁽⁶⁾
15	Vss	50	FLT15/RPB4/PMPA8/RB4 ⁽⁵⁾
16	VDD	51	OA5IN+/DAC1/AN24/CVD24/C5IN1+/C5IN3-/RPA4/T1CK/T1G/RA4
17	AN22/CVD22/RG10	52	AN40/CVD40/RPE0/RE0
18	AN21/CVD21/RE8	53	AN41/CVD41/RPE1/RE1
19	AN20/CVD20/RE9	54	VBUS
20	AN10/CVD10/RPA12/USBOEN2/RA12	55	VUSB3V3
21	AN9/CVD9/RPA11/USBOEN1/RA11	56	D1-
22	OA2OUT/AN0/C2IN4-/C4IN3-/RPA0/RA0	57	D1+
23	OA2IN+/AN1/C2IN1+/RPA1/RA1	58	VBUS2
24	PGED3/OA2IN-/AN2/C2IN1-/RPB0/CTED2/RB0	59	D2-
25	PGEC3/OA1OUT/AN3/C1IN4-/C4IN2-/RPB1/CTED1/RB1	60	D2+
26	PGEC1/OA1IN+/AN4/C1IN1+/C1IN3-/C2IN3-/RPB2/RB2	61	AN45/CVD45/RF5
27	PGED1/OA1IN-/AN5/CTCMP/C1IN1-/RTCC/RPB3/RB3	62	Vdd
28	VREF-/AN33/CVD33/PMPA7/RF9	63	OSCI/CLKI/AN49/CVD49/RPC12/RC12
29	VREF+/AN34/CVD34/PMPA6/RF10	64	OSCO/CLKO/RPC15/RC15
30	AVDD	65	Vss
31	AVss	66	AN46/CVD46/RPA14/RA14
32	OA3OUT/AN6/CVD6/C3IN4-/C4IN1+/C4IN4-/RPC0/RC0	67	AN47/CVD47/RPA15/RA15
33	OA3IN-/AN7/CVD7/C3IN1-/C4IN1-/RPC1/RC1	68	RD8
34	OA3IN+/AN8/CVD8/C3IN1+/C3IN3-/RPC2/FLT3/PMPA13/RC2	69	PGED2/RPB5/USBID1/RB5 ⁽⁶⁾
35	AN11/CVD11/C1IN2-/FLT4/PMPA12/RC11	70	PGEC2/RPB6/SCK2/PMPA15/RB6 ⁽⁵⁾
Note	1: The RPn pins can be used by remappable peripherals. See 1	Table 1 fo	r the available peripherals and 13.3 "Peripheral Pin Select (PPS)"

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 13.3 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See 13.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: Functions are restricted to input functions only and inputs will be slower than standard inputs.

5: The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the I²C master/slave clock. (i.e., SCL).

6: The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the I²C data I/O, (i.e., SDA).

REGISTER 4-8: SBTxREGy: SYSTEM BUS TARGET 'x' REGION 'y' REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
R/W0		R/W-0	R/W0	R/W-0	R/W0	R/W-0	R/W0	R/W-0		
31:24	BASE<21:14>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	BASE<13:6>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	U-0		
15:8				PRI	—					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
7:0			SIZE<4:0>			_	_	—		

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-10 BASE<21:0>: Region Base Address bits

bit 9 PRI: Region Priority Level bit 1 = Level 2 0 = Level 1 bit 2

bit 8 Unimplemented: Read as '0'

- bit 7-3 SIZE<4:0>: Region Size bits
 - Permissions for a region are only active is the SIZE is non-zero. 11111 = Region size = $2^{(SIZE - 1)} \times 1024$ (bytes)

•

- .
- .

00001 = Region size = $2^{(SIZE - 1)} \times 1024$ (bytes)

00000 = Region is not present

bit 2-0 Unimplemented: Read as '0'

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.

2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				NMIKI	EY<7:0>			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	—	MVEC	_		TPC<2:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 **NMIKEY<7:0>:** Software Generated NMI Key Register bits Software NMI event when the correct key (4Eh) is written. Software NMI event not generated when any other value (not the key) is written.

bit 23-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for multi vectored mode
 - 0 = Interrupt controller configured for single vectored mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer
- bit 7-5 Unimplemented: Read as '0'
- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge

```
0 = Falling edge
```

- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 8-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER 'x' ('x' = 0-63) (CONTINUED)

bit 12-10 IP1<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 . 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 **IS1<1:0>:** Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Note: This register represents a generic definition of the IPCx register. Refer to Table 8-3 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24		U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24				—	_		—	_
23:16	U-0	U-0	U-0	U-0 U-0		U-0	U-0	U-0
23.10	_	_		—	_		—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	_	_	-	—	_	—	—	—
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND	—	—	USLPGRD	USBBUSY ⁽¹⁾	—	USUSPEND	USBPWR

REGISTER 12-5: UxPWRC: USB POWER CONTROL REGISTER ('x' = 1 AND 2)

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB hardware has detected a change in link status; however, an interrupt is pending and has not yet been generated. Software should not put the device into Sleep mode.
 - 0 = An interrupt is not pending

bit 6-5 Unimplemented: Read as '0'

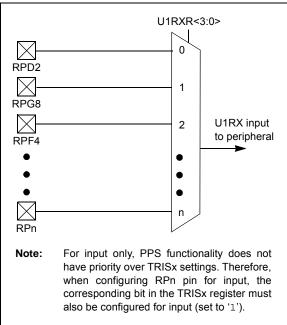
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry

bit 3 USBBUSY: USB Module Busy bit⁽¹⁾

- 1 = USB module is active or disabled, but not ready to be enabled
- 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

bit 2 Unimplemented: Read as '0'

bit 1 USUSPEND: USB Suspend Mode bit


- 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
- 0 = USB module operates normally

bit 0 USBPWR: USB Operation Enable bit

- 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

FIGURE 13-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 13-15: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SS										E	Bits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
153C	INDX3R	31:16	_	-	—	—	—	—	—	-	—	—	—	—	-	—	—	—	0000
1000		15:0	—	_	—	_	_	_	_	_	_	_	_	_		INDX3	R<3:0>		0000
1540	HOME3R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1040	HOMEOR	15:0	—	_	—	_				_			_	_		HOME	3R<3:0>		0000
1544	QEA4R	31:16	—	_	—	_				_			_	_	_	—		—	0000
1044		15:0	—	_	—	—	—	—	—	_	—	—	—	—		QEA4	R<3:0>	_	0000
1548	QEB4R	31:16	—	_	—	_				_			_	_	_	—	_	—	0000
1040	QLDHK	15:0	—	_	—	_				_			_	_		QEB4	R<3:0>		0000
154C	INDX4R	31:16	—	_	—	—	—	—	—	_	—	—	—	—	_	—	—	—	0000
1010		15:0	—	_	—	_	_	_	_	_	_	_	_	_		INDX4	R<3:0>		0000
1550	HOME4R	31:16	—	_	—	_				_			_	_	_	—		—	0000
1000	HOME III	15:0	—	_	—	_				_			_	_		HOME4	R<3:0>		0000
1554	QEA5R	31:16	—	_	—	_	_	_	—	_	_	_	_	_	_	—	—	—	0000
1004	QL/ (OIX	15:0	—	_	—	_				_			_	_		QEA5	R<3:0>		0000
1558	QEB5R	31:16	—	_	—	—	—	—	—	_	—	—	—	—	_	—	—	—	0000
1000	QLDOIX	15:0	—	_	—	_				_			_	_		QEB5	R<3:0>		0000
155C	INDX5R	31:16	—	_	—	_				_			_	_	_	—		—	0000
1000	INDICIN	15:0	—	_	—	—	—	—	—	_	—	—	—	—		INDX5	R<3:0>	_	0000
1560	HOME5R	31:16	—	_	—	—	—	—	—	_	—	—	—	—	_	—	—	—	0000
1000	HOMEOR	15:0	—	_	—	_				_			_	_		HOME	5R<3:0>		0000
1564	QEA6R	31:16	—	_	—	—	—	—	—	_	—	—	—	—	_	—	—	—	0000
1004	QL/IOR	15:0	—	_	—	_				_			_	_		QEA6	R<3:0>		0000
1568	QEB6R	31:16	—	_	—	—	—	—	—	_	—	—	—	—	—		—	—	0000
1300	QLDUK	15:0	—	_	—	—	—	—	—	_	—	—	—	—		QEB6	R<3:0>	_	0000
156C	INDX6R	31:16	_	_	_	_	_	_	_	_	_	_	—	_	_		_	—	0000
1000	INDAUX	15:0	_	-	—	—	—	—	—	-	—	—	_	—		INDX6	R<3:0>		0000
1570	HOME6P	31:16	_		—	—	—	—	—		—	—	—	—		_	_	—	0000
1370	1570 HOME6R	15:0	_	—		_		—	_	—	—	_		_		HOME	6R<3:0>		0000

PIC32MK GP/MC Family

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

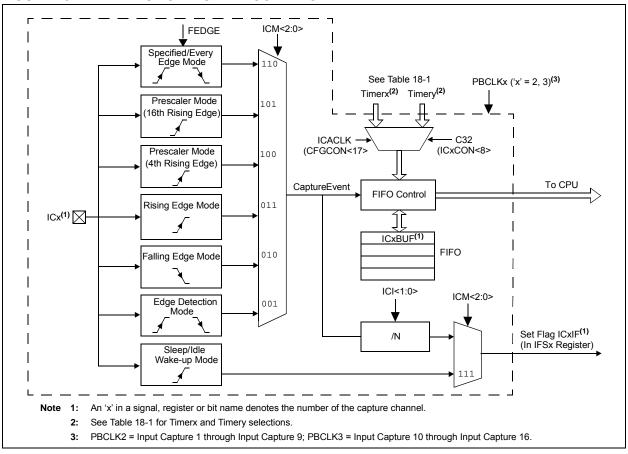
3: This register is only available on PIC32MKXXXGPEXXX devices.

18.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin.


Capture events are caused by the following factors:

- Capture timer value on every edge (rising and falling), specified edge first
- · Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between either four 16-bit time bases or two 32-bit time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values; Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 18-1: INPUT CAPTURE BLOCK DIAGRAM

TABLE 25-2: ADC REGISTER MAP (CONTINUED)

		e								Bit	5								s
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
76E0	ADCDATA14	31:16								DATA<3	1:16>								000
		15:0								DATA<	5:0>								000
76F0	ADCDATA15	31:16								DATA<3	1:16>								000
		15:0								DATA<	5:0>								000
7700	ADCDATA16	31:16								DATA<3	1:16>								000
		15:0								DATA<	5:0>								000
7710	ADCDATA17	31:16								DATA<3	1:16>								000
		15:0		DATA<15:0> 0000															
7720	ADCDATA18	31:16								DATA<3	1:16>								000
		15:0								DATA<	5:0>								000
7730	ADCDATA19	31:16								DATA<3	1:16>								000
		15:0								DATA<1	5:0>								000
7740	ADCDATA20 ⁽¹⁾	31:16								DATA<3	1:16>								000
		15:0		DATA<15:0> 0000															
7750	ADCDATA21 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7760	ADCDATA22 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7770	ADCDATA23 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7780	ADCDATA24	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7790	ADCDATA25	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
77A0	ADCDATA26	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
77B0	ADCDATA27	31:16								DATA<3	1:16>								0000
		15:0		DATA<15:0> 0000															
7810	ADCDATA33 ⁽¹⁾	31:16	DATA<31:16> 0000																
		15:0		DATA<15:0> 0000															
7820	ADCDATA34 ⁽¹⁾	31:16		DATA<31:16> 0000															
		15:0								DATA<									0000
7830	ADCDATA35 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000

Note

This bit or register is not available on 64-pin devices. This register is for internal ADC input sources (i.e., VBAT, and CTMU Temperature Sensor. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory programmed DEVADCx Flash locations starting at 0xBFC45000 into the ADCxCFG registers starting at 0xBF887D00, respectively. 1: 2: 3:

Bit Bit Range 31/23/15/7		Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24 U-0 —		U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		—			SH5AL	.T<1:0>	SH4AL	.T<1:0>
23:16	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	SH3A	LT<1:0>	SH2AL	T<1:0>	SH1AL	.T<1:0>	SH0AL	.T<1:0>
15:8	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	—	—	STRGEN5	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGEN0
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	SSAMPEN5	SSAMPEN4	SSAMPEN3	SSAMPEN2	SSAMPEN1	SSAMPEN0

REGISTER 25-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-28 Unimplemented: Read as '0'

bit 27-26 SH5ALT<1:0>: ADC5 Analog Input Select bit

 $11 = AN25^{(1)}$ $10 = AN6^{(1)}$

01 = AN2⁽¹⁾

00 **= AN5**

bit 25-24 SH4ALT<1:0>: ADC4 Analog Input Select bit

- $11 = AN0^{(1)}$
- 10 = AN9⁽¹⁾
- $01 = AN1^{(1)}$
- 00 = AN4

bit 23-22 SH3ALT<1:0>: ADC3 Analog Input Select bit

- $11 = AN26^{(1)}$
- $10 = AN8^{(1)}$
- $01 = AN0^{(1)}$
- 00 **= AN3**

bit 21-20 SH2ALT<1:0>: ADC2 Analog Input Select bit

- $11 = AN25^{(1)}$
- $10 = AN6^{(1)}$
- $01 = AN5^{(1)}$
- 00 **= AN2**

bit 19-18 SH1ALT<1:0>: ADC1 Analog Input Select bit

- $11 = AN0^{(1)}$
- $10 = AN7^{(1)}$
- 01 = AN4⁽¹⁾
- 00 **= AN1**

bit 17-16 SH0ALT<1:0>: ADC0 Analog Input Select bit

- $11 = AN24^{(1)}$
- $10 = AN5^{(1)}$
- 01 = AN3⁽¹⁾
- 00 **= AN0**
- bit 15-14 Unimplemented: Read as '0'
- **Note 1:** Regardless of which alternate input is selected by SHxALT, for ADC0-ADC5 only, all control and results are handled by the native SHxALT = `0b00 input. For example, SH0ALT = `0b11 = AN24. However, from a software and silicon hardware control and results register perspective, the user must initialize the ADC0 module as if AN24 were actually AN0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	—	_	-	CSS27	CSS26	CSS25	CSS24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19	CSS18	CSS17	CSS16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

REGISTER 25-11: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

bit 27-0 CSS27:CSS0: Analog Common Scan Select bits

Analog inputs AN27-AN6 are always Class 3 shared ADC7.

- 1 = Select AN*x* for input scan (i.e., ANx = CSSx and scan is sequential starting with the lowest to highest enabled CSSx analog input pin)
- 0 = Skip ANx for input scan

Note 1: This bit is not available on 64-pin devices.

- **Note 1:** In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.
 - 2: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode (`0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC			
	—	—	—	—	AIRDY27	AIRDY26	AIRDY25	AIRDY24			
00.40	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC			
23:16	AIRDY23 ⁽¹⁾	AIRDY22 ⁽¹⁾	AIRDY21 ⁽¹⁾	AIRDY20 ⁽¹⁾	AIRDY19	AIRDY18	AIRDY17	AIRDY16			
15:8	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC			
15.0	AIRDY15	AIRDY14	AIRDY13	AIRDY12	AIRDY11	AIRDY10	AIRDY9	AIRDY8			
7:0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC			
7:0	AIRDY7	AIRDY6	AIRDY5	AIRDY4	AIRDY3	AIRDY2	AIRDY1	AIRDY0			

REGISTER 25-13: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Clear	ed		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-28 Unimplemented: Read as '0'

- bit 27-0 AIRDY27:AIRDY0: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read
- Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0							
51.24	—	_	—	—	—	_	_	—
23:16	U-0	U-0	R-0, HS, HC					
23.10	—	—	AIRDY53	AIRDY52	AIRDY51	AIRDY50	AIRDY49	AIRDY48
15:8	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
15.0	AIRDY47 ⁽¹⁾	AIRDY46 ⁽¹⁾	AIRDY45 ⁽¹⁾	—	—	—	AIRDY41 ⁽¹⁾	AIRDY40 ⁽¹⁾
7:0	R-0, HS, HC	U-0						
7.0	AIRDY39 ⁽¹⁾	AIRDY38 ⁽¹⁾	AIRDY37 ⁽¹⁾	AIRDY36 ⁽¹⁾	AIRDY35 ⁽¹⁾	AIRDY34 ⁽¹⁾	AIRDY33 ⁽¹⁾	—

REGISTER 25-14: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-22 Unimplemented: Read as '0'

- bit 23-13 AIRDY53:AIRDY45: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read
- bit 12-10 Unimplemented: Read as '0'
- bit 23-13 AIRDY41:AIRDY33: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

TABLE 26-1: CAN1 THROUGH CAN4 REGISTER SUMMARY (CONTINUED)

esa										Bit	S								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OAINIT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_				—	_	_	MODIE	CTMRIE	RBIE	TBIE	0000
5020	C4INT	15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	_	_	_	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF	0000
5020	C4VEC	31:16	—	_	_	—	_	_		_	_	_	—	_	—	_	—	—	0000
5030	C4VEC	15:0	_	_	_			FILHIT<4:0>	>		_				CODE<6:0>				0040
50.40	0.47050	31:16	_	_	_	_	_	—	_	—	_	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
5040	C4TREC	15:0				TERRC	NT<7:0>							RERRCM	VT<7:0>				0000
5050	CAFOTAT	31:16	—	—	—	—	_	—	_	—	_	—	_	_	—	—	—	—	0000
5050	C4FSTAT	15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0	0000
5000	060 C4RXOVF	31:16	_	_	_	_	—	_	—	—	_	_	_	_	—	_	—	—	0000
5060	C4RXUVF	15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
5070	CATMO	31:16												0000					
5070	C4TMR	15:0							CAI	NTSPRE<15	:0>								0000
5000	0.453/440	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
5080	C4RXM0	15:0								EID<1	5:0>								xxxx
		31:16												xxxx					
5090	C4RXM1	15:0											xxxx						
		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
50A0	C4RXM2	15:0								EID<1	5:0>								xxxx
		31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
50B0	C4RXM3	15:0								EID<1	5.0>								XXXX
		31:16	FLTEN3	MSEL	3<1:0>			FSEL3<4:0>	>	2.0	FLTEN2	MSEL	2<1:0>		F				0000
50C0	C4FLTCON0	15:0	FLTEN1	-	1<1:0>			FSEL1<4:0			FLTEN0	-	0<1:0>			SEL0<4:0>			0000
		31:16	FLTEN7		7<1:0>			FSEL7<4:0>			FLTEN6		6<1:0>			SEL6<4:0>			0000
50D0	C4FLTCON1	15:0	FLTEN5		5<1:0>			FSEL5<4:0>			FLTEN4		4<1:0>			SEL4<4:0>			0000
		31:16	FLTEN11	MSEL1				FSEL11<4:0			FLTEN10	MSEL1				SEL10<4:0>			0000
50E0	C4FLTCON2	15:0	FLTEN9	MSEL				FSEL9<4:0>			FLTEN8	MSEL				SEL8<4:0>			0000
		31:16	FLTEN15	MSEL1				FSEL15<4:0			FLTEN14	MSEL1				SEL14<4:0>			0000
50F0	C4FLTCON3	15:0	FLTEN13	MSEL1				FSEL13<4:0			FLTEN12		2<1:0>			SEL12<4:0>			0000
	C4RXFn	31:16						SID<10:0>							EXID	_	EID<1	7:16>	xxxx
5140	(n = 0.15)	15:0						2.12 .0.0.		EID<1	5.0>						1 2.5 1		XXXX
	,	31:16																	0000
5340	C4FIFOBA	15:0								C4FIFOB/	A<31:0>								0000
	C4FIFOCONn	31:16	_	_	_	_		_		_	_	_				FSIZE<4:0>			0000
5350		S												1		0.22 0.04			0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section13.2 "CLR, SET, and INV Registers" for more Note 1: information.

REGISTER 26-2: CxCFG: CAN BAUD RATE CONFIGURATION REGISTER ('x' = 1-4) (CONTINUED)

- bit 10-8 **PRSEG<2:0>:** Propagation Time Segment bits⁽⁴⁾ 111 = Length is $8 \times TQ$ $000 = \text{Length is } 1 \times TQ$ SJW<1:0>: Synchronization Jump Width bits⁽³⁾ bit 7-6 11 = Length is $4 \times TQ$ $10 = \text{Length is } 3 \times TQ$ 01 = Length is 2 x TQ 00 = Length is 1 x TQ bit 5-0 BRP<5:0>: Baud Rate Prescaler bits 111111 = TQ = (2 x 64) / PBCLK5 111110 = TQ = (2 x 63) / PBCLK5 • 000001 = Tq = (2 x 2) / PBCLK5 $000000 = TQ = (2 \times 1) / PBCLK5$ Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically. **2:** 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CxCON<23:21>) = 100).

PIC32MK GP/MC Family

REGISTER 26-17: CxFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('x' = 1-4); n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
31:24	_	_	—	_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE						
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	—	—	—	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE						
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0						
15:8	—	—	—	—	_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾						
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0						
7:0	_	_			RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾						

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

DIL 31-21	Unimplemented. Read as 0
bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty
h:+ 00 00	0 = Interrupt disabled for FIFO empty
	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 16	
DIL 10	RXNEMPTYIE: Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty
hit 15_11	Unimplemented: Read as '0'
bit 10	•
	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0: (FIFO configured as a receive buffer)
	Unused, reads '0'
Note 1:	This bit is read-only and reflects the status of the FIFO.

REGIST	TER 26-17: CxFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' ('x' = 1-4); n' = 0 THROUGH 15) (CONTINUED)
bit 9	TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1</u> : (FIFO configured as a transmit buffer) 1 = FIFO is \leq half full 0 = FIFO is > half full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'
bit 8	TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is empty 0 = FIFO is not empty, at least 1 message queued to be transmitted
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'
bit 7-4	Unimplemented: Read as '0'
bit 3	RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = Overflow event has occurred 0 = No overflow event occured
bit 2	RXFULLIF: Receive FIFO Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is full 0 = FIFO is not full
bit 1	RXHALFIF: Receive FIFO Half Full Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is \geq half full 0 = FIFO is < half full
bit 0	RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit ⁽¹⁾ <u>TXEN = 1:</u> (FIFO configured as a transmit buffer) Unused, reads '0'
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) 1 = FIFO is not empty, has at least 1 message 0 = FIFO is empty

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3			Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	—	—	—	_	—	_	_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	_	—	_	_	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	PTPER<15:8> ^(1,2)										
7:0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾			
7.0				PTPER•	<7:0>(1,2)						

REGISTER 31-2: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER

Legend:

Togonal				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PTPER<15:0>:** Primary Master Time Base Period Value bits^(1,2,4)

Note 1: Minimum LSb = 1 / FSYSCLK.

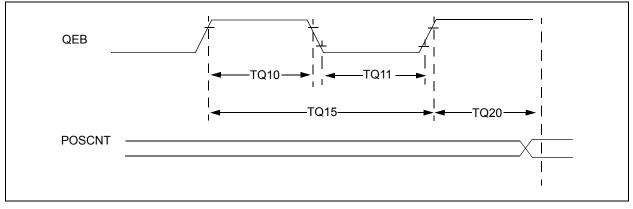
- **2:** Minimum value is 0x0008.
- **3:** If a period value is lesser than 0x0008 is chosen, the internal hardware forcefully sets the period to a minimum value of 0x0008.
- **4:** PTPER = (FSYSCLK / (FPWM * PCLKDIV<2:0> bits (PTCON<6:4>)). FPWM = User-desired PWM Frequency.

32.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MK GP/MC devices include two features to prevent alterations to enabled or disabled peripherals:

- Control Register Lock Sequence
- Configuration Bit Select Lock

32.4.1.1 Control Register Lock


Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting the PMDLOCK bit prevents writes to the control registers and clearing the PMDLOCK bit allows writes.

To set or clear the PMDLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators** with Enhanced PLL" (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

32.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If the PMDLOCK bit remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

FIGURE 36-14: QEI MODULE EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHARACTERISTICS			(u	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Mi	n.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchrono with presca		r) / N]			ns	Must also meet parameter TQ15. N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ11	TtQL	TQCK Low Time	Synchrono with presca		r) / N]			ns	Must also meet parameter TQ15. N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ15	TtQP	TQCP Input Period	Synchrono with presca			_	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		ock –	-	1	Тсү	_	_

TABLE 36-36: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: N = Index Channel Digital Filter Clock Divide Select bits.

APPENDIX A: REVISION HISTORY

Revision A (April 2016)

This is the initial released version of the document.

Revision B (September 2016)

This revision of the document was updated to include information for PIC32MK Motor Control (MC) devices.

Revision C (December 2016)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-1.

In addition, minor updates to text and formatting were incorporated throughout the document.

Section Name	Update Description			
32-bit General Purpose and Motor Control Application MCUs with FPU and up to 1 MB Live- Update Flash, 256 KB SRAM, 4 KB EEPROM, and Op amps	Removed I ² C and HLVD references (see Table 1 and Table 2). Updated pin names to remove references to I ² C and HLVD, added Notes 6 and 7 for 64-pin devices, and Notes 5 and 6 for 100-pin devices (see Table 3, Table 4, Table 5, and Table 6). Removed references to FRM Section 24 and Section 38 (see Referenced Sources).			
1.0 "Device Overview"	Removed original Table 1-9. Removed HLVD reference and added a new Note 1 (see Table 1-20).			
2.0 "Guidelines for Getting Started with 32-bit MCUs"	2.1 "Basic Connection Requirements" - removed bullet point discussing V _{CAP} . In Figure 2-4, reversed direction OSC1 and OSC2 arrows.			
6.0 "Data EEPROM"	6.0 "Data EEPROM" - updated Note 2. Updated table under Note 2.			
7.0 "Resets"	Removed HLVD references (see Table 7-1 and Register 7-3).			
8.0 "CPU Exceptions and Interrupt Controller"	Added Note 2 (see Table 8-1). Removed I ² C references (see Table 8-3). Added Note 7 (see Table 8-4).			
9.0 "Oscillator Configuration"	Corrected typo to "POSCMOD", added PWM block to connect to SYSCLK (see Figure 9-1). Removed I ² C and HLVD references (see Table 9-1).			
21.0 "Inter-Integrated Circuit (I ² C)"	21.0 "Inter-Integrated Circuit (I²C)" - Removed original chapter contents and added an intro that points to MPLAB Harmony, Notes 5 and 6 for 100-pin devices, and Notes 6 and 7 for 64-pin devices.			
22.0 "Universal Asynchronous Receiver Transmitter (UART)"	Corrected the label for bit 19-0 (see Register 22-5).			
25.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)"	Updated the definition list for bit 20-16 (see Register 25-17). Added Note 1 to Register 25-4.			
27.0 "Op Amp/Comparator Module"	Removed I ² C reference (see Figure 27-2). Removed I ² C and HLVD references (see Figure 27-5). Updated CDAC1 to CDAC3, and added Note 3 (see Figure 27-1, Figure 27-2, Figure 27-3, Figure 27-4, and Figure 27-5). Removed CEVT labels from bit 9. Changed bit 9 definition to "unimplemented" (see Table 27-2). Removed CEVT references, changed bit 9 definition to "unimplemented", and added two notes (see Register 27-2).			

TABLE A-1: MAJOR SECTION UPDATES