

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	48
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 26x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpe064t-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

TABLE 3:	PIN NAMES FOR 64-PIN GENERAL PURPOSE	(GPD/GPE) DEVICES

6	4-PIN QFN ⁽⁴⁾ AND TQFP (TOP VIEW)		
	PIC32MK0512GPD064 PIC32MK0512GPE064 PIC32MK1024GPD064 PIC32MK1024GPE064	8FN ⁽⁴⁾	1 64 1 TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	TCK/RPA7/PMD5/RA7	33	OA5IN+/CDAC1/AN24/C5IN1+/C5IN3-/RPA4/T1CK/RA4
2	RPB14/VBUSON1/PMD6/RB14	34	VBUS
3	RPB15/PMD7/RB15	35	VUSB3V3
4	AN19/RPG6/PMA5/RG6	36	D1-
5	AN18/RPG7/PMA4/RG7 ⁽⁶⁾	37	D1+
6	AN17/RPG8/PMA3/RG8 ⁽⁷⁾	38	Vdd
7	MCLB	39	OSC1/CLKI/AN49/RPC12/RC12
8	AN16/RPG9/PMA2/RG9	40	OSC2/CLKO/RPC15/RC15
9	Vss	41	Vss
10	Vdd	42	VBAT ⁽⁸⁾
11	AN10/RPA12/RA12	43	PGED2/RPB5/USBID1/RB5 ⁽⁷⁾
12	AN9/RPA11/RA11	44	PGEC2/RPB6/SCK2/PMA15/RB6 ⁽⁶⁾
13	OA2OUT/AN0/C2IN4-/C4IN3-/RPA0/RA0	45	CDAC2/AN48/RPC10/PMA14/RC10
14	OA2IN+/AN1/C2IN1+/RPA1/RA1	46	OA5OUT/AN25/C5IN4-/RPB7/SCK1/INT0/RB7
15	PGED3/VREF-/OA2IN-/AN2/C2IN1-/RPB0/CTED2/RB0	47	SOSCI/RPC13 ⁽⁵⁾ /RC13 ⁽⁵⁾
16	PGEC3/OA1OUT/VREF+/AN3/C1IN4-/C4IN2-/RPB1/CTED1/PMA6/RB1	48	SOSCO/RPB8 ⁽⁵⁾ /RB8 ⁽⁵⁾
17	PGEC1/OA1IN+/AN4/C1IN1+/C1IN3-/C2IN3-/RPB2/RB2	49	TMS/OA5IN-/AN27/C5IN1-/RPB9/RB9
18	PGED1/OA1IN-/AN5/CTCMP/C1IN1-/RTCC/RPB3/RB3	50	TRCLK/RPC6/RC6
19	AVDD	51	TRD0/RPC7/RC7
20	AVss	52	TRD1/RPC8/PMWR/RC8
21	OA3OUT/AN6/C3IN4-/C4IN1+/C4IN4-/RPC0/RC0	53	TRD2/RPD5/PMRD/RD5
22	OA3IN-/AN7/C3IN1-/C4IN1-/RPC1/PMA7/RC1	54	TRD3/RPD6/RD6
23	OA3IN+/AN8/C3IN1+/C3IN3-/RPC2/PMA13/RC2	55	RPC9/RC9
24	AN11/C1IN2-/PMA12/RC11	56	Vss
25	Vss	57	VDD
26	VDD	58	RPF0/RF0
27	AN12/C2IN2-/C5IN2-/PMA11/RE12 ⁽⁷⁾	59	RPF1/RF1
28	AN13/C3IN2-/PMA10/RE13 ^(b)	60	RPB10/PMD0/RB10
29	AN14/RPE14/PMA1/RE14	61	RPB11/PMD1/RB11
30	AN15/RPE15/PMA0/RE15	62	RPB12/PMD2/RB12
31	TDI/CDAC3/AN26/RPA8/PMA9/RA8 ⁽⁷⁾	63	RPB13/CTPLS/PMD3/RB13
32	KPB4/PMA8/RB4 ⁽⁹⁾	64	IDO/PMD4/RA10

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 13.3 "Peripheral Pin Select (PPS) for restrictions.

Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See 13.0 "I/O Ports" for more information. 2:

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

5:

Functions are restricted to input functions only and inputs will be slower than the standard inputs. The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the 6: I²C master/slave clock, that is SCL

7: The I²C library is available in MPLAB Harmony. For future hardware or silicon compatibility, it is recommended to use these pins for the I²C data I/O, that is, SDA.

VBAT functionality is compromised, see errata for additional information. This pin should be connected to VDD. 8:

TABLE 1-20: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS

	Pin N									
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description					
					Power and Ground					
AVdd	30	19	Р	Р	Positive supply for analog modules. This pin must be connected at all times.					
AVss	31	20	Р	Р	bround reference for analog modules. This pin must be connected at all mes.					
Vdd	2, 16, 37, 46, 62, 86	10, 26, 38, 57	Р	—	Positive supply for peripheral logic and I/O pins. This pin must be con- nected at all times.					
Vss	15, 36, 45, 65, 75, 85	9, 25, 41, 56	Р	—	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.					
VBAT ⁽¹⁾	68	42	Р	Р	Battery backup for selected peripherals; otherwise connect to VDD.					
					Voltage Reference					
VREF+	29	16	I	Analog	Analog Voltage Reference (High) Input					
VREF-	28	15	I	Analog	Analog Voltage Reference (Low) Input					
Legend:	CMOS = CI ST = Schmi TTL = Trans	MOS-compa itt Trigger in sistor-transi	atible inpu put with (stor Logio	ut or output CMOS leve c input buffe	Analog = Analog input P = Power Is O = Output I = Input er PPS = Peripheral Pin Select					

Note 1: VBAT functionality is compromised, see errata for additional information. This pin should be connected to VDD.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—		—	—	—	—	—				
23.16	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y				
20.10	—	IPLW	<1:0>		MMAR<2:0>		MCU	ISAONEXC				
15:8	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1				
	ISA<1	1:0>(')	ULRI	RXI	DSP2P	DSPP	—	IIL				
7:0	0-0					0-0	0-0	R-0 TI				
	_	VEIC	VIINT	- SF	CDIVIIVI			16				
Legend:			r = Reserved	d bit	v = Value se	t from Confia	uration bits of	on POR				
R = Read	lable bit		W = Writable	e bit	U = Unimple	emented bit. r	ead as '0'					
-n = Value	e at POR		'1' = Bit is se	et .	'0' = Bit is cl	eared	x = Bit is ur	nknown				
					0 211.0 01							
bit 31	Reserved: 1	This bit is hard	lwired as '1' t	o indicate the	presence of	the Config4 re	egister					
bit 30-23	Unimpleme	nted: Read a	s '0'			U	0					
bit 22-21	IPLW<1:0>:	Width of the	Status IPL an	d Cause RIPI	L bits							
	01 = IPL and	d RIPL bits are	e 8-bits in wid	th								
bit 20-18	MMAR<2:0>	-: microMIPS	Architecture I	Revision Leve	el bits							
	000 = Relea	ise 1										
bit 17	r-1U-0U-0U-0U-0U-0U-0											
	31/23/15/730/22/14/629/21/13/528/20/12/427/19/11/326/18/10/225/77/9/124/16/80 $r-1$ $u-0$ R_0 R_1 R_0 R_0 R_0 R_1 R R $u-0$ R_0 R_1 R_1 R_1 R_1 R_1 R R $u-0$ R_1 R_1 R_1 R_1 R_1 R_1 R_1 R $u-0$ R_1 R_1 R_1 R_1 R_1 $u-0$ R_2 R_2 $u-0$ R_1 R_1 R_1 R_1 R_1 $U-0$ R_2 $u-0$ R_2 R_1 R_1 R_1 R_1 $U-0$ R_2 $u-1$ U_1 R_1 R_1 R_1 R_1 $U-0$ R_2 $u-1$ U_1 R_1 R_1 R_1 $U-0$ R_2 R_2 $u-1$ U_1 R_1 R_1 R_1 $U-0$ R_2 R_2 $u-1$ U_1 R_1 R_1 R_2 D_2 D_2 D_2 $u-1$ $u-1$ $u-1$ $u-1$ $u-1$ $u-1$ U_2 $u-1$											
bit 16	Bit aBit 31/23/15/7Bit 30/22/14/6Bit 29/21/13/5Bit 28/20/12/4Bit 27/19/11/12Bit 25/17/9/1Bit 											
	1 = microMI	PS is used on	entrance to a	an exception	vector							
6:4 6 6 6	0 = MIPS32	ISA IS USED O	n entrance to	an exception	vector							
DIT 15-14	15A<1:0>: If	ISTRUCTION Set	Availability bi	implomented	· microMIDS i		coming out	of rosot				
	10 = Both M	IPS32 and mi	croMIPS are	implemented	· MIPS32 ISA	used when c	coming out o	f reset				
bit 13	UI RI: Useri	ocal Register		hit	, 1011 002 10/ 1		onning out o	110001				
bit 10	etaJuly 2013/13/13/2013/13/2013/12/4Z010/12/4 <td></td>											
bit 12	RXI: RIE and	d XIE Implem	ented in Page	Grain bit								
	 MCU: MIPS[®] MCU[™] ASE Implemented bit 1 = MCU ASE is implemented ISAONEXC: ISA on Exception bit⁽¹⁾ 1 = microMIPS is used on entrance to an exception vector 0 = MIPS32 ISA is used on entrance to an exception vector 14 ISA<1:0>: Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset ULRI: UserLocal Register Implemented bit 1 = UserLocal Coprocessor 0 register is implemented RXI: RIE and XIE Implemented in PageGrain bit 1 = RIE and XIE bits are implemented DSP2P: MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present 											
bit 11	 14 ISA<1:0>: Instruction Set Availability bits⁽¹⁾ 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset ULRI: UserLocal Register Implemented bit 1 = UserLocal Coprocessor 0 register is implemented RXI: RIE and XIE Implemented in PageGrain bit 1 = RIE and XIE bits are implemented DSP2P: MIPS DSP ASE Revision 2 Presence bit 1 = DSP Revision 2 is present 											
	1 = DSP Rev	vision 2 is pre	sent									
bit 10	DSPP: MIPS	S DSP ASE PI	resence bit									
	1 = DSP is p	present										
bit 9	Unimpleme	nted: Read a	s '0'									
bit 8	ITL: Indicate	es that iFlowtra	ace [®] hardwar	e is present								
	1 = The iFlow	wtrace [®] 2.0 h	ardware is im	plemented in	the core							
bit 7	Unimpleme	nted: Read a	s '0'									
bit 6	VEIC: Extern	nal Vector Inte	errupt Control	ler bit	1							
6.14 F	\perp = Support	for an externa	ai interrupt co	ntroller is imp	lementea.							
DILD	1 - Voctor in	torrupt on	mplomontod									
bit 4		ago bit	npiementeu									
DIL 4	0 = 4 KB parts	aye bit ne size										
bit 3	CDMM: Con	nmon Device	Memory Man	bit								
Dit U	1 = CDMM is	s implemente	d	~								
bit 2-1	Unimpleme	nted: Read a	s '0'									
bit 0	TL: Trace Lo	ogic bit										
	0 = Trace loo	gic is not impl	emented									

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	W-0	W-0	W-0	W-0	V-0 W-0 W-0		W-0	W-0				
	NVMKEY<31:24>											
23:16	W-0	W-0										
				NVMKE	Y<23:16>		Bit 25/17/9/1 Bit 24/16/8/0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0					
15:8	W-0	W-0										
				NVMKI	EY<15:8>							
7:0	W-0	W-0										
				NVMK	EY<7:0>							

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	NVMADDR<31:24> ⁽¹⁾												
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				NVMADDR<23:16> ⁽¹⁾									
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				NVMADE	0R<15:8>(1)								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				NVMAD	DR<7:0>(1)								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits⁽¹⁾

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)							
Page Erase	Address identifies the page to erase (NVMADDR<11:0> are ignored).							
Row Program	Address identifies the row to program (NVMADDR<8:0> are ignored).							
Word Program	Address identifies the word to program (NVMADDR<1:0> are ignored).							
Quad Word Program	Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are ignored).							
Note 1: For all othe	r NVMOP<3:0> bit settings, the Flash address is ignored. See the NVMCON							

register (Register 5-1) for additional information on these bits.

Note: The bits in this register are only reset by a POR and are not affected by other reset sources.

Figure 8-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 8-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

8.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 8-2 lists the exception types in order of priority.

TABLE 8-3: INTERRUPT IRQ, VECTOR AND BIT LOCATION

	X000 Viete News	IRQ			Persistent			
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
	Highest	Natura	I Order Priority					
Core Timer Interrupt	_CORE_TIMER_VECTOR	0	OFF000<17:1>	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
Core Software Interrupt 0	_CORE_SOFTWARE_0_VECTOR	1	OFF001<17:1>	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
Core Software Interrupt 1	_CORE_SOFTWARE_1_VECTOR	2	OFF002<17:1>	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
External Interrupt 0	_EXTERNAL_0_VECTOR	3	OFF003<17:1>	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
Timer1	_TIMER_1_VECTOR	4	OFF004<17:1>	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
Input Capture 1 Error	_INPUT_CAPTURE_1_ERROR_VECTOR	5	OFF005<17:1>	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
Input Capture 1	_INPUT_CAPTURE_1_VECTOR	6	OFF006<17:1>	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>	Yes
Output Compare 1	_OUTPUT_COMPARE_1_VECTOR	7	OFF007<17:1>	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>	No
External Interrupt 1	_EXTERNAL_1_VECTOR	8	OFF008<17:1>	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>	No
Timer2	_TIMER_2_VECTOR	9	OFF009<17:1>	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>	No
Input Capture 2 Error	_INPUT_CAPTURE_2_ERROR_VECTOR	10	OFF010<17:1>	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>	Yes
Input Capture 2	_INPUT_CAPTURE_2_VECTOR	11	OFF011<17:1>	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>	Yes
Output Compare 2	_OUTPUT_COMPARE_2_VECTOR	12	OFF012<17:1>	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>	No
External Interrupt 2	_EXTERNAL_2_VECTOR	13	OFF013<17:1>	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>	No
Timer3	_TIMER_3_VECTOR	14	OFF014<17:1>	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>	No
Input Capture 3 Error	_INPUT_CAPTURE_3_ERROR_VECTOR	15	OFF015<17:1>	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>	Yes
Input Capture 3	_INPUT_CAPTURE_3_VECTOR	16	OFF016<17:1>	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>	Yes
Output Compare 3	_OUTPUT_COMPARE_3_VECTOR	17	OFF017<17:1>	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>	No
External Interrupt 3	_EXTERNAL_3_VECTOR	18	OFF018<17:1>	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>	No
Timer4	_TIMER_4_VECTOR	19	OFF019<17:1>	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>	No
Input Capture 4 Error	_INPUT_CAPTURE_4_ERROR_VECTOR	20	OFF020<17:1>	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>	Yes
Input Capture 4	_INPUT_CAPTURE_4_VECTOR	21	OFF021<17:1>	IFS0<21>	IEC0<21>	IPC5<12:10>	IPC5<9:8>	Yes
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No
Reserved	—	28	—	—	_	—	_	_

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MK General Purpose (GP) Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

REGISTER 11-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER ('x' = 0-7) (CONTINUED)

- bit 4 **CHAEN:** Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 - 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

TABLE 13-11: PORTF REGISTER MAP FOR 100-PIN DEVICES ONLY

sse										Bi	ts								
Virtual Addr (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0500	ANSELF	31:16	_	-	—	—	_	—	—	-	—	—	_	—	_	—	—	—	0000
		15:0	_		ANSF13	ANSF12		ANSF10	ANSF9				ANSE5			_			3620
0510	TRISF	31:16	_	—	-	-	_	-	-	_	-	-	-	_		_	-	-	0000
		15:0	_		TRISF13	TRISF12		TRISF10	TRISF9		TRISF7	TRISF6	TRISF5	_	_	_	TRISF1	TRISFO	36E3
0520	PORTF	31:16	_	_	-	-	_	-	-	_	-	-	-	_		_	-	-	0000
		15:0	_		RF13	RF12		RF10	RF9		RF7	RF0	RF5			_	RF1	RF0	XXXX
0530	LATF	31:16	_	_			_			_				_	_	_			0000
		15:0	_	_	LAIF13	LAIF12	_	LAIF10	LAIF9	_	LAIF7	LAIF6	LAIF5	_	_	_	LAIF1	LAIFU	XXXX
0540	ODCF	31:16	_	_		-	_	-	-	_	-	-	-	_	_	_		-	0000
		15:0	_	_	ODCF13	ODCF12	_	ODCF10	ODCF9	_	ODCF7	UDCF6	UDCF5	_	_	_	ODCF1	ODCFU	0000
0550	CNPUF	31.10	_	_											_	_			0000
		15.0	_		CNPUF 13	CNPUF 12		CNPUFIU	CNPUF9		CNPUF7	CNPUF6	CNPUF5				CNPUFI	CNPUFU	0000
0560	CNPDF	31.10	_																0000
		15.0	_		CINFUE 13	CINFUFIZ		CINFUFIU	CINFDF9		CNFDF7	CINFDF0	CNFDF5				CINFUEL	CINFDFU	0000
0570	CNCONF	15:0	ON		SIDL		EDGE DETECT									_	_		0000
	-	31:16	_	_	_		_		_	_	_	_	_	_	_	_	_		0000
0580	CNENF	15:0	_	_	CNIEF13	CNIEF12	_	CNIEF10	CNIEF9	_	CNIEF7	CNIEF6	CNIEF5	_	_	_	CNIEF1	CNIEF0	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0590	CNSTATF	15:0	_	-	CN STATF13	CN STATF12	-	CN STATF10	CN STATF9	_	CN STATF7	CN STATF6	CN STATF5	_	_	_	CN STATF1	CN STATF0	0000
0540		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
05A0	CNNEF	15:0	_	-	CNNEF13	CNNEF12	-	CNNEF10	CNNEF9		CNNEE7	CNNEF6	CNNEF5	_	_	_	CNNEF1	CNNEF0	0000
0500	ONEE	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
0580	CNFF	15:0	_	-	CNFF13	CNFF12	-	CNFF10	CNFF9		CNFE7	CNFF6	CNFF5	_	_	_	CNFF1	CNFF0	0000
05C0	SRCON0F	31:16	_	—	—	—	—	_	—	_	_	—	—	_	—	_	—	_	0000
		15:0	—	_	—		_	—	—	_	—	—	—		—	_	SR0F1	SR0F0	0000
05D0	SRCON1F	31:16	_	_	—	_	—	_	_	_	_	_	_	_	—	_	_	—	0000
1		15.0			_									_	_		SR1F1	SR1F0	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See **13.2** "CLR, SET, and INV Registers" for more

Legend: Note 1:

information.

© 2016-2018 Microchip Technology Inc.

PIC32MK GP/MC Family

Watchdog Timer Control Registers 17.1

TABLE 17-1: WATCHDOG TIMER REGISTER MAP

ess		6	Bits											s					
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16								WDTO	CLRKEY<1	5:0>							0000
0000	WDICON	15:0	ON	ON – – RUNDIV<4:0> – – SLPDIV<4:0> WDTWINEN 0000															

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

DS60001402E-page 294

PIC32MK GP/MC Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	CAI	_<9:8>
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10				CAL	_<7:0>			
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	—	—	RTCCLK	(SEL<1:0>	RTC OUTSEL<1> ⁽²⁾
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0
7:0	RTC OUTSEL<0> ⁽²⁾	RTC CLKON ⁽⁵⁾		_	RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE

REGISTER 24-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Unimplemented: Read as '0'

bit 25-16	CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value
	0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute
	•
	•
	000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute 0000000000 = No adjustment
	1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute
	•
	1000000000 = Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute
bit 15	ON: RTCC On bit ⁽¹⁾
	1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Disables RTCC operation when CPU enters Idle mode
	0 = Continue normal operation when CPU enters Idle mode
bit 12-11	Unimplemented: Read as '0'
Note 1:	The ON bit is only writable when RTCWREN = 1.
2:	Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
3:	The RTCWREN bit can be set only when the write sequence is enabled.
4:	This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
5:	This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

Note: This register is reset only on a POR.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	-	—	—	—	—	—	—	_		
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23.10		MONT	H10<3:0>		MONTH01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		DAY	10<1:0>			DAY01	<3:0>			
7.0	U-0	U-0 U-0		U-0	R/W-x	R/W-x	R/W-x	R/W-x		
7:0	_	_	_			WDAYC)1<3:0>			

REGISTER 24-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

REGISTER 25-21: ADCTRG4: ADC TRIGGER SOURCE 4 REGISTER

- bit 20-16 **TRGSRC14<4:0>:** Trigger Source for Conversion of Analog Input AN14 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC13<4:0>:** Trigger Source for Conversion of Analog Input AN13 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC12<4:0>:** Trigger Source for Conversion of Analog Input AN12 Select bits See bits 28-24 for bit value definitions.

27.6 Op amp Unity Gain Mode

Usually the Op amps have a minimum gain stable setting as defined in Table 36-29 in **36.0** "**Electrical Characteristics**". However, there is one exception in that the Op amps have an internal 1x gain setting (i.e., the ENPGAx bits in the CFGCON2 register = 1). The mode utilizes only the inverting input pin of the Op amp. This configuration needs no external components. The Op amps will be placed in a unity gain/follower mode following a software write to these bits:

- CFGCON2<16> for Op amp 1
- CFGCON2<17> for Op amp 2
- CFGCON2<18> for Op amp 3
- CFGCON2<20> for Op amp 5

Please refer to **36.0** "Electrical Characteristics" for the specifications in this mode.

27.7 Comparator Configuration

The Comparator and the relationship between the analog input levels and the digital output are illustrated in Figure 27-9. Each Comparator can be individually configured to compare against an external voltage reference or internal voltage reference. For more information on the internal op amp/comparator voltage reference, refer to **Section 45.** "Control Digital-to-Analog converter" (DS60001327) of the "PIC32 Family Reference Manual".

A standard configuration with default built in hysteresis is shown in Figure 27-9. The external reference at VIN+ is a fixed voltage. The analog input signal at VIN- is compared to the reference signal at VIN+, and the digital output of the comparator is created by the difference between the two signals as shown in the figure. The polarity of the comparator output can be inverted by writing a '1' to the CPOL bit (CMxCON<13>) such that the output is a digital low level when VIN+ > VIN-.

FIGURE 27-9: COMPARATOR CONFIGURATION FOR DEFAULT BUILT-IN HYSTERESIS

TABLE 31-1: MCPWM REGISTER MAP (CONTINUED)

ess		Bits								s									
Virtual Addr (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
A9A0	AUXCON9	31:16	_	—	-	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	_	—	_		—	—	—	—	—	—		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000
A9B0	PTMR9	31:16	_	—	_	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
		15:0								TMR<15	:0>								0000
A9C0	PWMCON10	31:16	FLTIF	CLIF	TRGIF	PWMLIF	PWMHIF	—	—	—	FLTIEN	CLIEN	TRGIEN	PWMLIEN	PWMHIEN	—	—		0000
		15:0	FLTSTAT	CLTSTAT	—	—	ECAM	<1:0>	ITB	—	DTC<	<1:0>	DTCP	PTDIR	MTBS	—	XPRES	—	0000
A9D0	IOCON10	31:16	_	—		CLSR	C<3:0>		CLPOL	CLMOD	—		FLTS	RC<3:0>		FLTPOL	FLTMO	D<1:0>	0078
		15:0	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	AT<1:0>	CLDAT	[<1:0>	SWAP	OSYNC	0000
A9E0	PDC10	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								PDC<15	:0>								0000
A9F0	SDC10	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								SDC<15	:0>								0000
AA00	PHASE10	31:16	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								PHASE<1	5:0>								0000
AA10	DTR10	31:16		—	—	—		—	—	—	—		—	_	—	—	—	—	0000
		15:0								DTR<15	:0>						-		0000
AA20	ALTDTR10	31:16	_	—	—	—	—	—	—		—	_	—	—	—	—	—	—	0000
		15:0								ALTDTR<	15:0>								0000
AA30	DTCOMP10	31:16		—	—	—	—	—	—		—	_	—	—	—	—	—	—	0000
		15:0		—							COMP	<13:0>							0000
AA40	TRIG10	31:16	—	—	—	—	—						—	—	—		-	—	0000
		15:0								TRGCMP<	15:0>								0000
AA50	TRGCON10	31:16	—	—	—	—	—		—	—		—	—	—	—	—	—		0000
		15:0		TRGDIV	/<3:0>		TRGSE	L<1:0>	STRGS	EL<1:0>	DTM	STRGIS	_	_	_	—			0000
AA60	STRIG10	31:16	—	—	—	—			—	—			—	—	—			—	0000
		15:0							;	STRGCMP	<15:0>								0000
AA70	CAP10	31:16	—	—	—	—	—	—	—				—	—	_	—	—	_	0000
		15:0								CAP<15	:0>								0000
AA80	LEBCON10	31:16	—	—	_	_	—		_	—	_		_			_	_	_	0000
		15:0	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	—	_		_			_	_		0000
AA90	LEBDLY10	31:16	_	—	—		—	—	_		—		—		—	—	—	—	0000
		15:0	_	—	—							LEB	<11:0>						0000
AAA0	AUXCON10	31:16	—	—	—	_	—	_	_	_	—		_		—	—	—	-	0000
		15:0	—	—	—	-	-	—	—	—	_			CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: '—' = unimplemented; read as '0'.

DS60001402E-page 536

REGISTER 31-12: IOCONx: PWMX I/O CONTROL REGISTER 'x' ('x' = 1 THROUGH 12) (CONTINUED)

- bit 25 **CLPOL:** Current-Limit Polarity bits for PWM Generator 'x'^(2,4)
 - 1 = The selected current-limit source is active-low
 - 0 = The selected current-limit source is active-high
- bit 24 **CLMOD:** Current-Limit Mode Enable bit for PWM Generator 'x'^(2,4)
 - 1 = Current-limit function is enabled
 - 0 = Current-limit function is disabled, current-limit overrides disabled (current-limit interrupts can still be generated). If Faults are enabled, FLTMOD will override the CLMOD bit.

Changes take effect on the next PWM cycle boundary following PWM being enabled, and subsequently on each PWM cycle boundary. When updating CLMOD from '1' to '0', if the current-limit input is still active, the current-limit override condition will not be removed.

- bit 23 Unimplemented: Read as '0'
- Note 1: During PWM initialization, if the PWMLOCK fuse bit is 'enabled' (logic '0'), the control on the state of the PWMxL/PWMxH output pins rests solely with the PENH and PENL bits. However, these bits are at '0', which leaves the pin control with the I/O module. Care must be taken to not inadvertently set the TRIS bits to output, which could impose an incorrect output on the PWMxH/PWMxL pins even if there are external pull-up and pull-down resistors. The data direction for the pins must be set to input if tri-state behavior is desired or be driven to the appropriate logic states. The PENH and PENL bits must always be initialized prior to enabling the MCPWM module (PTEN bit = 1).
 - 2: These bits must not be changed after the MCPWM module is enabled (PTEN bit = 1).
 - 3: State represents Active/Inactive state of the PWM, depending on the POLH and POLL bits. For example, if FLTDAT<1> is set to '1' and POLH is set to '1', the PWMxH pin will be at logic level 0 (active level) when a Fault occurs.
 - 4: If (PWMLOCK = 0), these bits are writable only after the proper sequence is written to the PWMKEY register. If (PWMLOCK = 1), these bits are writable at all times. The user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation for the IOCONx register if PWMLOCK = 1. Write access to a IOCONx register must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. This is not an atomic operation, and therefore, any CPU interrupts that occur during or immediately after an unlock sequence may cause the IOCONx SFR write access to fail.

Note: Dead Time Compensation, Current-Limit, and Faults share common inputs on the FLTx inputs ('x' = 1-8, and 15). Therefore, it is not recommended that a user application assign these multiple functions on the same Fault FLTx pin. In addition, DTCMP functions are fixed to specific FLTx inputs, where Current-Limit, (CLSRC<3:0> bits) and Faults (FLTSRC<3:0> bits) can be assigned to any one of 15 unique and separate inputs. For example, if a user application was required to assign multiple simultaneous Fault, Current-Limit, DTCMP to a single PWM1. Refer to the following examples for both desirable and undesirable practices.

Desirable Example PWM1: (DTCMP1 = FLT3 pin, Current Limit = FLT7 pin, Fault = FLT8 pin)

PW	MCON1bits.DTC = 0b11;	//Enable	DTCMP1 input on FLT3 function pin
IO	CON1bits.CLMOD = 1;	//Enable	PWM1 Current-Limit mode
IO	CON1bits.CLSRC = 0b0110;	//Enable	current limit for PWM1 on FLT7 pin
IO	CON1bits.FLTMOD = 1;	//Enable	PWM1 Fault mode
IO	CON1bits.FLTSRC = 0b0111;	//Enable	Fault for PWM1 on FLT8 pin
Undoo	inchie Exemple: DWM4. (DTCM)	-1 - Curre	at Limit – Coult – CLT2 nin)
Undes	Trable Example: PWWT: (DICIVII		ni Linii – Fauli – FLIS pin)
PW	MCON1bits.DTC = 0b11;	//Enable	DTCMP1 input on FLT3 function pin
PW IO	MCON1bits.DTC = 0b11; CON1bits.CLMOD = 1;	//Enable //Enable	DTCMP1 input on FLT3 function pin PWM1 Current-Limit mode
PW IO IC	MCON1bits.DTC = 0b11; DCON1bits.CLMOD = 1; DCON1bits.CLSRC = 0b0010;	//Enable //Enable //Enable	DTCMP1 input on FLT3 function pin PWM1 Current-Limit mode current limit for PWM1 on FLT3 pin
PW IC IC IC	MCON1bits.DTC = 0b11; DCON1bits.CLMOD = 1; DCON1bits.CLSRC = 0b0010; DCON1bits.FLTMOD = 1;	//Enable //Enable //Enable //Enable	DTCMP1 input on FLT3 function pin PWM1 Current-Limit mode current limit for PWM1 on FLT3 pin PWM1 Fault mode
PW IC IC IC IC	MADIE EXAMPLE: FWWMT: (DTCMM MCON1bits.DTC = 0b11; DCON1bits.CLMOD = 1; DCON1bits.CLSRC = 0b0010; DCON1bits.FLTMOD = 1; DCON1bits.FLTSRC = 0b0010;	//Enable //Enable //Enable //Enable //Enable	DTCMP1 input on FLT3 function pin PWM1 Current-Limit mode current limit for PWM1 on FLT3 pin PWM1 Fault mode Fault for PWM1 on FLT3 pin

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—	—	—	—	—	—	—
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_		CHOPSE	L<3:0> ⁽¹⁾		CHOPHEN	CHOPLEN

REGISTER 31-25: AUXCONx: PWM AUXILIARY CONTROL REGISTER 'x' ('x' = 1 THROUGH 12)

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

CHOPSEL<3:0>: PWM Chop Clock Source Select bits⁽¹⁾ bit 5-2 The selected signal will enable and disable (CHOP) the selected PWM outputs. 1111 = Reserved. Do not use 1110 = Reserved. Do not use 1101 = Reserved. Do not use 1100 = PWM12H selected as CHOP clock source 0111 = PWM7H selected as CHOP clock source 0001 = PWM1H selected as CHOP clock source 0000 = Chop clock generator selected as CHOP clock source bit 1 CHOPHEN: PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

Note 1: This bit should be changed only when the PTEN bit (PTCON<15>) = 0.

35.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

35.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 36-41: ADC SAMPLE TIMES WITH CVD ENABLED

АС СНА	RACTER	RISTICS ⁽²⁾	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
AD60a	TSAMP	Sample Time for ADC7 (Class 2 and Class 3 Inputs) with the CVDEN bit (ADCCON1<11>) = 1	8 9 11 12 14 16 17	_		Tad	$\label{eq:source_states} \begin{aligned} & \text{Source Impedance} \le 200\Omega \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 001 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 010 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 011 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 100 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 101 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 101 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 110 \\ & \text{CVDCPL} < 2:0 > (\text{ADCCON2} < 28:26 >) = 111 \end{aligned}$		
			10 12 14 16 18 19 21	_		TAD	$\begin{array}{l} Source \mbox{ Impedance} \le 500\Omega \\ CVDCPL<2:0> (ADCCON2<28:26>) = 001 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 010 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 011 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 100 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 101 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 101 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 111 \\ \end{array}$		
			13 16 18 21 23 26 28	_		Tad	$\begin{array}{l} Source \mbox{ Impedance } \le 1 \ K\Omega \\ CVDCPL<2:0> (ADCCON2<28:26>) = 001 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 010 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 011 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 100 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 101 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 101 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 110 \\ CVDCPL<2:0> (ADCCON2<28:26>) = 111 \\ \end{array}$		
			41 48 56 63 70 78 85			Tad	Source Impedance $\leq 5 \text{ K}\Omega$ CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 110		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S			
Dimension	MIN	NOM	MAX			
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	5.30	5.40	5.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	5.30	5.40	5.50		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2