

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	48
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 26x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512gpe064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

	Pin N	umber						
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Descripti	on		
			Univ	ersal Asyr	nchronous Receiver Transmitter 1			
U1RX	PPS	PPS	I	ST	UART1 Receive			
U1TX	PPS	PPS	0	-	UART1 Transmit			
U1CTS	PPS	PPS	I	ST	UART1 Clear to Send			
U1RTS	PPS	PPS	0	-	UART1 Ready to Send			
			Univ	versal Asyr	nchronous Receiver Transmitter 2			
U2RX	PPS	PPS	I	ST	UART2 Receive			
U2TX	PPS	PPS	0		UART2 Transmit			
U2CTS	PPS	PPS	I	ST	UART2 Clear To Send			
U2RTS	PPS	PPS	0		UART2 Ready To Send			
Universal As					nchronous Receiver Transmitter 3			
U3RX	PPS	PPS	I	ST	UART3 Receive			
U3TX	PPS	PPS	0		UART3 Transmit			
U3CTS	PPS	PPS	I	ST	UART3 Clear to Send			
U3RTS	PPS	PPS	0		UART3 Ready to Send			
			Univ	versal Asyr	nchronous Receiver Transmitter 4			
U4RX	PPS	PPS	I	ST	UART4 Receive			
U4TX	PPS	PPS	0		UART4 Transmit			
U4CTS	PPS	PPS	I	ST	UART4 Clear to Send			
U4RTS	PPS	PPS	0		UART4 Ready to Send			
			Univ	versal Asyr	hchronous Receiver Transmitter 5			
U5RX	PPS	PPS	I	ST	UART5 Receive			
U5TX	PPS	PPS	0		UART5 Transmit			
U5CTS	PPS	PPS	I	ST	UART5 Clear to Send			
U5RTS	PPS	PPS	0		UART5 Ready to Send			
			Univ	versal Asyr	nchronous Receiver Transmitter 6			
U6RX	PPS	PPS	I	ST	UART6 Receive			
U6TX	PPS	PPS	0		UART6 Transmit			
U6CTS	PPS	PPS	I	ST	T UART6 Clear to Send			
U6RTS	PPS	PPS	0	—	- UART6 Ready to Send			
Legend:	TS PPS PPS I ST TS PPS PPS O — end: CMOS = CMOS-compatible input or output				Analog = Analog input	P = Power		

TABLE 1-7: UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

REGISTER 4-9: SBTxRDy: SYSTEM BUS TARGET 'x' REGION 'y' READ PERMISSIONS REGISTER ('x' = 0-3; 'y' = 0-2)

Bit Range	Bit Bit Range 31/23/15/7		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
45.0	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0
15:8	—	-	—	_	_	—	—	-
7:0	U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
7:0	_		_		GROUP3	GROUP2	GROUP1	GROUP0

Legend:

3		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 GROUP3: Group 3 Read Permissions bits 1 = Privilege Group 3 has read permission 0 = Privilege Group 3 does not have read permission bit 2 GROUP2: Group 2 Read Permissions bits 1 = Privilege Group 2 has read permission 0 = Privilege Group 2 does not have read permission GROUP1: Group 1 Read Permissions bits bit 1 1 = Privilege Group 1 has read permission 0 = Privilege Group 1 does not have read permission bit 0 GROUP0: Group 0 Read Permissions bits 1 = Privilege Group 0 has read permission 0 = Privilege Group 0 does not have read permission

Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.
2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

TABLE 8-4: INTERRUPT REGISTER MAP (CONTINUED)

ress)	20	e								В	its								ş		
Virtual Add (BF81_#	Registe Name ⁽¹⁾	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset		
00D0	IEC1	31:16	U3RXIE	U3EIE	-	_	_	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	CNGIE	CNFIE	CNEIE	0000		
		15:0	CNDIE	CNCIE	CNBIE	CNAIE	_	_	—	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USB1IE	CMP2IE	CMP1IE	0000		
00E0	IEC2	31:16	AD1DC2IE	AD1DC1IE	-	AD1IE	OC9IE	IC9IE	IC9EIE	T9IE	OC8IE	IC8IE	IC8EIE	T8IE	OC7IE	IC7IE	IC7EIE	T7IE	0000		
		15:0	OC6IE	IC6IE	IC6EIE	T6IE	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	U5TXIE	U5RXIE	U5EIE	U4TXIE	U4RXIE	U4EIE	U3TXIE	0000		
00F0	IEC3	31:16	AD1D21IE	AD1D20IE	AD1D19IE	AD1D18IE	AD1D17IE	AD1D16IE	AD1D15IE	AD1D14IE	AD1D13IE	AD1D12IE	AD1D11IE	AD1D10IE	AD1D09IE	AD1D08IE	AD1D07IE	AD1D06IE	. 0000		
		15:0	AD1D05IE	AD1D04IE	AD1D03IE	AD1D02IE	AD1D01IE	AD1D00IE	AD1G1IE	AD1FCBTIE	AD1RSIE	AD1ARIE	AD1EOSIE	AD1F1IE	AD1DF4IE	AD1DF3IE	AD1DF2IE	AD1DF1IE	. 0000		
0100	IEC4	31:16	AD1D53IE	AD1D52IE	AD1D51IE	AD1D50IE	AD1D49IE	AD1D48IE	AD1D47IE	AD1D46IE	AD1D45IE	—	—	—	AD1D41IE	AD1D40IE	AD1D39IE	AD1D38IE	. 0000		
		15:0	AD1D37IE	AD1D36IE	AD1D35IE	AD1D34IE	AD1D33IE		_	_		—	AD1D27IE	AD1D26IE	AD1D25IE	AD1D24IE	AD1D23IE	AD1D22IE	. 0000		
0110	IEC5	31:16	QEI5IE	QEI4IE	QEI3IE	CAN4IE ⁽³⁾	CAN3IE ⁽³⁾	DATAEEIE	DMA7IE	DMA6IE	DMA5IE	DMA4IE	-	—	—	PWM6IE	PWM5IE	PWM4IE	0000		
		15:0	PWM3IE	PWM2IE	PWM1IE	PWM SEVTIE	PWM PEVTIE	QEI2IE	QEI1IE	CAN2IE ⁽³⁾	CAN1IE ⁽³⁾	U6TXIE	U6RXIE	U6EIE	—	CMP5IE	CMP4IE	CMP3IE	0000		
0120	IEC6	31:16	SPI4TXIE	SPI4RXIE	SPI4EIE	SPI3TXIE	SPI3RXIE	SPI3EIE	OC16IE	IC16IE	IC16EIE	OC15IE	IC15IE	IC15EIE	OC14IE	C14IE	IC14EIE	OC13IE	0000		
		15:0	IC13IE	IC13EIE	OC12IE	IC12IE	IC12EIE	OC11IE	IC11IE	IC11EIE	OC10IE	IC10IE	IC10EIE	_	_	_	_	QEI6IE	0000		
0130	IEC7	31:16	_	CPCIE	_	_	_	_	_	_	_	AD1DC4IE	AD1DC3IE	USB2IE ⁽²⁾	PWM12IE	PWM11IE	PWM10IE	PWM9IE	0000		
		15:0	—	—	—	—	_	_	_	—	_	SBIE	SPI6TXIE	SPI6RXIE	SPI6EIE	SPI5TXIE	SPI5RXIE	SPI5EIE	0000		
0140		31:16	—	-	—		INT0IP<2:0>	•	INT0IS<1:0>		-	—	_	CS1IP<2:0>		CS1IP<2:0>			CS1IS	<1:0>	0000
0140	11 00	15:0	—	—	—		CS0IP<2:0>		CS0IS	s<1:0>	—	—	—	CTIP<2:0>			CTIS<	:1:0>	0000		
0150		31:16	_	_	—		OC1IP<2:0>	•	OC1IS	S<1:0>	_	—	_	IC1IP<2:0>			IC1IS•	<1:0>	0000		
0130		15:0	—		—		IC1EIP<2:0>	•	IC1EIS	6<1:0>		—	_		T1IP<2:0>		T1IS<	1:0>	0000		
0160	IPC2	31:16	—		—		IC2IP<2:0>		IC2IS	<1:0>		—	_	IC2EIP<2:0>			IC2EIS	<1:0>	0000		
0100	11 02	15:0	—	_	—		T2IP<2:0>		T2IS•	<1:0>	_	—	_		INT1IP<2:0	>	INT1IS	<1:0>	0000		
0170	IPC3	31:16	—	—	—		IC3EIP<2:0>	•	IC3EIS	6<1:0>	—	—	—		T3IP<2:0>		T3IS<	1:0>	0000		
00		15:0	—	—	—		INT2IP<2:0>	•	INT2IS	S<1:0>	—	—	—		OC2IP<2:0	>	OC2IS	<1:0>	0000		
0180	IPC4	31:16	—	—	—		T4IP<2:0>		T4IS•	<1:0>	—	—	—		INT3IP<2:0	>	INT3IS	<1:0>	0000		
0100		15:0	—	_	—		OC3IP<2:0>		OC3IS	S<1:0>	_	—	_		IC3IP<2:0>		IC3IS•	<1:0>	0000		
0190	IPC5	31:16	—	—	—		INT4IP<2:0>		INT4IS	INT4IS<1:0>		—	—	OC4IP<2:0>		OC4IP<2:0>		OC4IS	<1:0>	0000	
5.00		15:0	_	_	—		IC4IP<2:0>		IC4IS	<1:0>	_	—	_	IC4EIP<2:0> IC4E		IC4EIS	<1:0>	0000			
01A0	IPC6	31:16	—	_	—		OC5IP<2:0>	,	OC5IS	OC5IS<1:0>		—	_	IC5IP<2:0>			IC5IP<2:0>		IC5IS<1:0>		0000
2.7.10		15:0	_	_	—		IC5EIP<2:0>	C5EIP<2:0> IC5E			_	—	_	T5IP<2:0>			T5IS<1:0>		0000		

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

2: This bit is not available on 64-pin devices.

3: This bit is not available on devices without a CAN module.

4: This bit is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 22 is not available on 64-pin devices.

7: The IFSx bits, as with all interrupt flag status register bits, are set as long as the peripheral is enabled and an interrupt condition event occurs. Interrupts do not have to be enabled for the IFSx bits to be set. If the user application does not want to use an interrupt, it can poll the corresponding peripheral IFSx bit to see whether an interrupt condition has occurred. The IFSx bits are persistent, they must be cleared if they are set by user software after an IFSx user bit interrogation.

PIC32MK GP/MC Family

TABLE 9-2: OSCILLATOR CONFIGURATION REGISTER MAP (CONTINUED)

sse											Bits								÷
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹
1240		31:16	_	_	-	—	—	—	—	_	—	_	—	_	—	—	_	—	0000
1340	FB3DIV	15:0	ON	_	-	_	PBDIVRDY	_	_	—	—				PBDIV<6:0)>			8801
1250		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1350	FBODIV	15:0	ON	—	_	_	PBDIVRDY	_	—	—	_		PBDIV<6:0>						8801
1260	(3) ווחדפם	31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1300	FBIDING	15:0	ON	—	_	_	PBDIVRDY	_	—	—	_				PBDIV<6:0)>			8800
1200		31:16	_	_	_	_		_	_	_	_	_	_			SYSE) V<3:0>		0000
1360	SLEWCON	15:0	_		_	—		S	SLWDIV<2:0	>	_	_	—	_		UPEN	DNEN	BUSY	0000
1200		31:16	_	_	_	_	—	_	_	_	—	_	—	_	_	_	_	_	0000
1390	ULKSTAI	15:0	_	_		_	—	_	—	UPLLRDY	SPLLRDY		LPRCRDY	SOSCRDY		POSCRDY	_	FRCRDY	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1:

Reset values are dependent on the DEVCFGx Configuration bits and the type of reset. Refer to Table 36-16 in **36.0** "Electrical Characteristics" for PBCLK6 frequency limitations. 2:

3: The PB7DIV register is read-only.

	REGISTER 9-8:	SLEWCON: OSCILLATOR SLEW CONTROL REGISTER
--	---------------	---

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—			—	—		
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	—	—	—	—	SYSDIV<3:0>(1)					
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	—	—	—	—	—	SLWDIV<2:0>				
7.0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-0, HS, HC		
7:0	_	_	_	_	_	UPEN	DNEN	BUSY		

Legend:	HC = Hardware Cleared	HS = Hardware Set					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-20 Unimplemented: Read as '0'

```
bit 19-16 SYSDIV<3:0>: System Clock Divide Control bits<sup>(1)</sup>
```

```
1111 = SYSCLK is divided by 16
1110 = SYSCLK is divided by 15
.
.
0010 = SYSCLK is divided by 3
0001 = SYSCLK is divided by 2
0000 = SYSCLK is not divided
```

- bit 15-11 Unimplemented: Read as '0'
- bit 10-8 **SLWDIV<2:0>:** Slew Divisor Steps Control bits

These bits control the maximum division steps used when slewing during a frequency change.

- 111 = Steps are divide by 128, 64, 32, 16, 8, 4, 2, and then no divisor
- 110 = Steps are divide by 64, 32, 16, 8, 4, 2, and then no divisor
- 101 = Steps are divide by 32, 16, 8, 4, 2, and then no divisor
- 100 = Steps are divide by 16, 8, 4, 2, and then no divisor
- 011 = Steps are divide by 8, 4, 2, and then no divisor
- 010 = Steps are divide by 4, 2, and then no divisor
- 001 = Steps are divide by 2, and then no divisor
- 000 = No divisor is used during slewing

The steps apply in reverse order (i.e., 2, 4, 8, etc.) during a downward frequency change.

bit 7-3 Unimplemented: Read as '0'

bit 2 **UPEN:** Upward Slew Enable bit

1 = Slewing enabled for switching to a higher frequency

- 0 = Slewing disabled for switching to a higher frequency
- bit 1 DNEN: Downward Slew Enable bit
 - 1 = Slewing enabled for switching to a lower frequency
 - 0 = Slewing disabled for switching to a lower frequency
- bit 0 BUSY: Clock Switching Slewing Active Status bit
 - 1 = Clock frequency is being actively slewed to the new frequency
 - 0 = Clock switch has reached its final value

Note 1: The SYSDIV<3:0> bit settings are ignored if both UPEN and DNEN = 0, and SYSCLK will be divided by 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	—	BITO
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10		—		—	—	—	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	_		Р	LEN<4:0> ^{(1,2,}	Bit Bit 25/17/9/1 24/16/8 U-0 R/W-0 — BITO U-0 U-0 — RITO Q-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	_	Bit 26/18/10/2 Bit 25/17/9/1 U-0 U-0 — — U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CRCCH<2:0>	•	

REGISTER 11-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 **BYTO<1:0>:** CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 WBO: CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered

bit 26-25 Unimplemented: Read as '0'

bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
- bit 23-13 Unimplemented: Read as '0'
- bit 12-8 **PLEN<4:0>:** Polynomial Length bits^(1,2,3)

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.
 - 2: The maximum CRC length supported by the DMA module is 32.
 - 3: This bit is unused when CRCTYP is equal to '1'.

18.1 Input Capture Control Registers

TABLE 18-2: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 9 REGISTER MAP

SS										Bi	ts								
Virtual Addre BF82_#	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	0000
2000	IC ICOIN!	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2010	IC1BUE	31:16								IC1BUE	<31.0>								XXXX
2010	101001	15:0									101.04								XXXX
2200	IC2CON ⁽¹⁾	31:16	-	—	-	—	—	_	—		-	-	—	-	-	_	-	—	0000
		15:0	ÛN		SIDL	_		_	FEDGE	032	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICIM<2:0>		0000
2210	IC2BUF	31.10								IC2BUF	<31:0>								XXXX
	(4)	31:16	_	_	_	_	_	_		_	_			_	_	_	_	_	0000
2400	IC3CON ⁽¹⁾	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0440		31:16							<u>.</u>		<21.05	ļ							XXXX
2410	ICSBUF	15:0								ICSBUF	<31.0>								XXXX
2600	IC4CON ⁽¹⁾	31:16	—	—	—	_	—		—	—	—	—		—			—	—	0000
2000		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2610	IC4BUF	31:16								IC4BUF	<31:0>								XXXX
		15:0												1			I		XXXX
2800	IC5CON ⁽¹⁾	15.0							EEDGE	 C32			1.0>		ICBNE		ICM<2:0>	_	0000
		31:16	ÖN		OIDE				TEDOL	002	1011111	101	1.0	1001	IODITE		10111-2.0		
2810	IC5BUF	15:0								IC5BUF	<31:0>								XXXX
		31:16	_	—		_	—	—		_		_		—		_	—	—	0000
2A00		15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2A10	IC6BUE	31:16								IC6BUF	<31.0>								XXXX
_,		15:0												-			,		XXXX
2C00	IC7CON ⁽¹⁾	31:16		—		_	—	_				—	1:0>	-		_		_	0000
		31.16	UN		SIDL				FEDGE	032	ICTIVIR		1.0~	1000	ICDINE		10101~2.0~		0000
2C10	IC7BUF	15:0								IC7BUF	<31:0>								XXXX
		31:16	_	_	_	_	_	_		_	_	_		_	_	_	—	—	0000
2E00	IC8CON()	15:0	ON	_	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2510		31:16									<31.0>								XXXX
2010	100001	15:0		-			-			ICODUI	~31.02	-	-						XXXX
3000	IC9CON ⁽¹⁾	31:16	_	—	—	—	—	_	—	_	—	—	_	—		—	—	—	0000
		15:0	ON	—	SIDL	_	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
3010	IC9BUF	31:16								IC9BUF	<31:0>								XXXX
Legen	d: x=	nknown	value on F	Reset: — = I	unimplemer	nted read a	s '0' Reset	values are	shown in h	exadecima	1								XXXX

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV registers" for more information. Note 1:

21.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MK GP/MC family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Inter-Integrated Circuit" (DS0000000), which from is available the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The I^2C software library is available in MPLAB Harmony. If the user application is to implement I^2C , for future device pin compatibility, it is recommended to assign software I^2C functions according to the details provided in the device pin tables (Table 3 through Table 6):

- For 64-pin packages, refer to Notes 6 and 7 in Table 3 and Table 4
- For 100-lead packages, refer to Notes 5 and 6 in Table 5 and Table 6.

21.1 Software I²C Performance

Table 21-1 provides the performance details of the l^2C .

I ² C Baud Rate	I ² C CPU Utilization	
	22070 (continuous)	50.76%
400 kH -	16841	38.73%
400 KHZ	4079	9.38%
	429	0.99%
	5581 (continuous)	12.84%
100 kHz	4077	9.38%
	429	0.99%

TABLE 21-1: I²C PERFORMANCE

TABLE 25-2: ADC REGISTER MAP (CONTINUED)

		е	Bits									s							
Virtual Addres	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
7840	ADCDATA36 ⁽¹⁾	31:16		DATA<31:16> 0000													0000		
		15:0		DATA<15:0> 000												0000			
7850	ADCDATA37 ⁽¹⁾	31:16		DATA<31:16> 0/												0000			
		15:0								DATA<1	5:0>								0000
7860	ADCDATA38 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7870	ADCDATA39 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7880	ADCDATA40 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
7890	ADCDATA41 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
78D0	ADCDATA45 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
78E0	ADCDATA46 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
78F0	ADCDATA47 ⁽¹⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
7900	ADCDATA48	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
7910	ADCDATA49	31:16								DATA<3	1:16>								0000
	(-)	15:0								DATA<1	5:0>								0000
7920	ADCDATA50 ⁽²⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<1	5:0>								0000
7940	ADCDATA52 ⁽²⁾	31:16								DATA<3	1:16>								0000
		15:0								DATA<	5:0>								0000
7950	ADCDATA53 ⁽²⁾	31:16								DATA<3	1:16>								0000
		15:0	:0 DATA<15:0>									1	0000						
7E00	ADCSYSCFG0	31:16	_	—	-	_	AN27	AN26	AN25	AN24	AN23 ⁽¹⁾	AN22 ⁽¹⁾	AN21 ⁽¹⁾	AN20 ⁽¹⁾	AN19	AN18	AN17	AN16	OFxF
		15:0 AN15 AN14 AN13 AN12 AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1								AN0	FFFF								
7E10	ADCSYSCFG1	31:16	-	—	-	—	—	—	—	—	—	—	AN53 ⁽¹⁾	AN52 ⁽¹⁾	—	AN50 ⁽¹⁾	AN49	AN48	00xx
L	4-1	15:0	AN47 ⁽¹⁾	AN46 ⁽¹⁾	AN45 ⁽¹⁾	—	_	—	AN41 ⁽¹⁾	AN40 ⁽¹⁾	AN39 ⁽¹⁾	AN38 ⁽¹⁾	AN37 ⁽¹⁾	AN36 ⁽¹⁾	AN35 ⁽¹⁾	AN34 ⁽¹⁾	AN33 ⁽¹⁾	—	xxxx
7D00	ADC0CFG ⁽³⁾	31:16								ADCCFG<	<31:16>								0000
		15:0	ADCCFG<15:0> 0000																

PIC32MK GP/MC Family

1: 2: 3: Note

This bit or register is not available on 64-pin devices. This register is for internal ADC input sources (i.e., VBAT, and CTMU Temperature Sensor. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory programmed DEVADCx Flash locations starting at 0xBFC45000 into the ADCxCFG registers starting at 0xBF887D00, respectively.

REGISTER 25-3: ADCCON3: ADC CONTROL REGISTER 3 (CONTINUED)

bit 5-0 ADINSEL<5:0>: Analog Input Select bits

These bits select the analog input to be converted when the RQCNVRT bit is set.

```
111111 = Reserved
110110 = Reserved
110101 = CTMU Temperature Sensor (internal AN53)
110100 = VBAT/2 (internal AN52)
110011 = Reserved
110010 = IVREF 1.2V (internal AN50)
110001 = AN49
101101 = AN45
101100 = Reserved
101010 = Reserved
101001 = AN41
100001 = AN33
100000 = Reserved
011100 = Reserved
011011 = AN27
000000 = ANO
```

- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

Note: AN20-AN23, AN33-AN41, and AN45-AN47 are not available on 64-pin devices. Refer to TABLE 1-1: "ADC1 Pinout I/O Descriptions" for details.

1141190 31/23/13/1 30/22/14/0 29/21/13/3 20/20/12/4	27/19/11/3	26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24 U-0 U-0 U-0 U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
	AIRDY27	AIRDY26	AIRDY25	AIRDY24
R-0, HS, HC R-0, HS, HC R-0, HS, HC R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
^{23.10} AIRDY23 ⁽¹⁾ AIRDY22 ⁽¹⁾ AIRDY21 ⁽¹⁾ AIRDY20 ⁽¹⁾	AIRDY19	AIRDY18	AIRDY17	AIRDY16
15:0 R-0, HS, HC R-0, HS, HC R-0, HS, HC R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
AIRDY15 AIRDY14 AIRDY13 AIRDY12	AIRDY11	AIRDY10	AIRDY9	AIRDY8
7:0 R-0, HS, HC R-0, HS, HC R-0, HS, HC R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
AIRDY7 AIRDY6 AIRDY5 AIRDY4	AIRDY3	AIRDY2	AIRDY1	AIRDY0

REGISTER 25-13: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-28 Unimplemented: Read as '0'

- bit 27-0 AIRDY27:AIRDY0: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read
- Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0							
51.24	_	—	—	—	—	—	—	—
22.16	U-0	U-0	R-0, HS, HC					
23.10	—	—	AIRDY53	AIRDY52	AIRDY51	AIRDY50	AIRDY49	AIRDY48
15.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
15.0	AIRDY47 ⁽¹⁾	AIRDY46 ⁽¹⁾	AIRDY45 ⁽¹⁾	—	—	—	AIRDY41 ⁽¹⁾	AIRDY40 ⁽¹⁾
7:0	R-0, HS, HC	U-0						
	AIRDY39 ⁽¹⁾	AIRDY38 ⁽¹⁾	AIRDY37 ⁽¹⁾	AIRDY36 ⁽¹⁾	AIRDY35 ⁽¹⁾	AIRDY34 ⁽¹⁾	AIRDY33 ⁽¹⁾	_

REGISTER 25-14: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-22 Unimplemented: Read as '0'

- bit 23-13 AIRDY53:AIRDY45: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read
- bit 12-10 Unimplemented: Read as '0'
- bit 23-13 AIRDY41:AIRDY33: Conversion Data Ready for Corresponding Analog Input Ready bits
 - 1 = This bit is set when converted data is ready in the data register
 - 0 = This bit is cleared when the associated data register is read

Note 1: This bit is not available on 64-pin devices.

REGISTER 25-26: ADCCMPCONx: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 4) (CONTINUED)

- bit 5 DCMPED: Digital Comparator 'x' "Output True" Event Status bit The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI, IEHILO, IELOHI and IELOLO bits. This bit is cleared by reading the AINID<5:0> bits (ADCCMPCONx<13:8>) or by disabling the Digital Comparator module (by setting ENDCMP to '0'). 1 = Digital Comparator 'x' output true event has occurred (output of Comparator is '1') 0 = Digital Comparator 'x' output is false (output of Comparator is '0') bit 4 IEBTWN: Between Low/High Digital Comparator 'x' Event bit 1 = Generate a digital comparator event when the DCMPLO<15:0> bits \leq DATA<31:0> bits < DCMPHI<15:0> bits 0 = Do not generate a digital comparator event IEHIHI: High/High Digital Comparator 'x' Event bit bit 3 1 = Generate a Digital Comparator 'x' Event when the DCMPHI<15:0> bits \leq DATA<31:0> bits 0 = Do not generate an event IEHILO: High/Low Digital Comparator 'x' Event bit bit 2 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPHI<15:0> bits 0 = Do not generate an event bit 1 IELOHI: Low/High Digital Comparator 'x' Event bit 1 = Generate a Digital Comparator 'x' Event when the DCMPLO<15:0> bits \leq DATA<31:0> bits 0 = Do not generate an event IELOLO: Low/Low Digital Comparator 'x' Event bit bit 0 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPLO<15:0> bits 0 = Do not generate an event
- Note 1: This setting is not available on 64-pin devices.

REGISTI	ER 28-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 12	TGEN : Time Generation Enable bit ⁽¹⁾
	1 = Enables edge delay generation
	0 = Disables edge delay generation
bit 11	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
hit 0	CTTPIC: Trigger Control bit
DILO	1 = Trigger output is enabled
	0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current
	011110
	•
	•
	000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	•
	100010 100001 = Maximum negative change from nominal current
hit 1-0	IBNG-1:0>: Current Range Select bits ⁽³⁾
DIL 1-0	11 = 100 times base current (i.e. 55 uA Typical(6))
	10 = 10 times base current (i.e., 55 µA Typical ⁽⁵⁾)
	01 = Base current level (i.e., 0.55 μA Typical ⁽⁴⁾)
	00 = 1000 times base current (i.e., 550 μΑ Typical ⁽⁴⁾)
Note 1:	When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1101' to select
ე.	CTOUT.
۷.	cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor
	before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC
	module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor
	array.
3:	Refer to the CTMU Current Source Specifications (Table 36-43) in Section 36.0 "Electrical

- 4: This bit setting is not available for the CTMU temperature diode.
- 5: For CTMU temperature measurements on this range, ADC sampling time \geq 1.6 $\mu s.$
- 6: For CTMU temperature measurements on this range, ADC sampling time \geq 300 ns.

TABLE 31-1: MCPWM REGISTER MAP (CONTINUED)

SSS			Bits																	
Virtual Addre (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
A890	LEBDLY8	31:16	_	—	—	—	—	—	—	—	_	_	—	—	—	—	-	—	0000	
		15:0	—	—	—	—						LEB	<11:0>					•	0000	
A8A0	AUXCON8	31:16	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—	—	0000	
		15:0	_	_	_		—		—	—	_	—		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000	
A8B0	PTMR8	31:16	—	—	—		—		—	—	—	—	—	—	—		—	—	0000	
		15:0		r		1				TMR<15	5:0>		r						0000	
A8C0	PWMCON9	31:16	FLTIF	CLIF	TRGIF	PWMLIF	PWMHIF		—	—	FLTIEN	CLIEN	TRGIEN	PWMLIEN	PWMHIEN		—	—	0000	
		15:0	FLTSTAT	CLTSTAT	—		ECAM	<1:0>	ITB	—	DTC	<1:0>	DTCP	PTDIR	MTBS	—	XPRES	—	0000	
A8D0	IOCON9	31:16	—	—		CLSR	C<3:0>		CLPOL	CLMOD	-		FLTS	RC<3:0>		FLTPOL	FLTMO	D<1:0>	0078	
		15:0	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRD	AT<1:0>	FLTDA	AT<1:0>	CLDAT	<1:0>	SWAP	OSYNC	0000	
A8E0	PDC9	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0 PDC<15:0>									0000									
A8F0	SDC9	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0								SDC<15	5:0>		-					-	0000	
A900	PHASE9	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0		-						PHASE<1	15:0>		-							
A910	DTR9	31:16	—	—	—	—	—	—	—	—	—	—							0000	
		15:0								DTR<15	5:0>		-					-	0000	
A920	ALTDTR9	31:16	_	_	_		—		—	—	—	—	—		_		—	—	0000	
		15:0								ALTDTR<	15:0>									
A930	DTCOMP9	31:16	—	-	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0	_	_							COMP	<13:0>							0000	
A940	TRIG9	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0								TRGCMP<	:15:0>								0000	
A950	TRGCON9	31:16	—	—	—	—	—	—	—	—	-	—	—	—	—	—	—	—	0000	
		15:0		TRGDI	/<3:0>		TRGSE	L<1:0>	STRGS	EL<1:0>	DTM	STRGIS	—	—	—	—	—	—	0000	
A960	STRIG9	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0				STRGCMP<15:0>									0000					
A970	CAP9	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0								CAP<15	:0>								0000	
A980	LEBCON9	31:16	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—	0000	
		15:0	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	_	—	-	—	—	—	—	—	0000	
A990	LEBDLY9	31:16	_	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0	_		—	—						LEB	<11:0>						0000	

Legend: '—' = unimplemented; read as '0'.

REGISTER 33-5: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

bit 25-21 DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscale Select bits

The DS WDT prescaler is 32; this creates an approximate base time unit of 1 ms.

11111 = 1:236 (25.7 days) 11110 = 1:235 (12.8 days) 11101 = 1:234 (6.4 days) 11100 = 1:233 (77.0 hours) 11011 = 1:232 (38.5 hours) 11010 = 1:231 (19.2 hours) 11001 = 1:230 (9.6 hours) 11000 = 1:229 (4.8 hours) 10111 = 1:228 (2.4 hours) 10110 = 1:227 (72.2 minutes) 10101 = 1:226 (36.1 minutes) 10100 = 1:225 (18.0 minutes) 10011 = 1:224 (9.0 minutes) 10010 = 1:223 (4.5 minutes) 10001 = 1:222 (135.3 s)10000 = 1:221 (67.7 s) 01111 = 1:220 (33.825 s) 01110 = 1:219 (16.912 s) 01101 = 1:218 (8.456 s) 01100 = 1:217 (4.228 s)01011 = 1:65536 (2.114 s) 01010 = 1:32768 (1.057 s) 01001 = 1:16384 (528.5 ms) 01000 = 1:8192 (264.3 ms) 00111 = 1:4096 (132.1 ms) 00110 = 1:2048 (66.1 ms) 00101 = 1:1024 (33 ms) 00100 = 1:512 (16.5 ms) 00011 = 1:256 (8.3 ms) 00010 = 1:128 (4.1 ms) 00001 = 1:64 (2.1 ms)00000 = 1:32 (1 ms)

bit 20 **DSBOREN:** Deep Sleep Zero-Power BOR Enable bit 1 = Enable ZPBOR during deep sleep 0 = Disable ZPBOR during deep sleep

bit 19 VBATBOREN: VBAT Zero-Power BOR Enable bit 1 = Enable ZPBOR during VBAT mode 0 = Disable ZPBOR during VBAT mode

bit 18-16 **FPLLODIV<2:0>:** Default System PLL Output Divisor bits

111 = PLL output divided by 32 110 = PLL output divided by 32 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 2

bit 15 **Reserved:** Write as '1'

35.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

35.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	MIN	NOM	MAX			
Contact Pitch		0.50 BSC				
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2855-8