

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, IrDA, LINbus, PMP, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, Motor Control PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 27x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512mcf064t-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-14: **USB1 AND USB2 PINOUT I/O DESCRIPTIONS**

	Pin N	umber								
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Pr Description					
VUSB3V3	55	35	Р	—	USB internal transceiver supply. This pin	should be connected to VDD.				
VBUS1	54	34	I	Analog	USB1 Bus Power Monitor					
VBUSON1	4	2	0	CMOS	USB1 VBUS Power Control Output					
VBUSON2	10	_	0	CMOS	USB2 VBUS Power Control Output					
D1+	57	37	I/O	Analog	USB1 D+					
D1-	56	36	I/O	Analog	USB1 D-					
USBID1	69	43	I	ST	USB1 OTG ID Detect					
VBUS2	58	_	I	Analog	USB2 Bus Power Monitor					
D2+	60	_	I/O	Analog	USB2 D+					
D2-	59	_	I/O	Analog	USB2 D-					
USBID2	77	—	I	ST	USB2 OTG ID detect					
Legend:	CMOS = CM ST = Schmi	MOS-compa	atible inpl	ut or output CMOS level	ut Analog = Analog input P = Power rels Q = Output I = Input					

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

TABLE 1-15: CTMU PINOUT I/O DESCRIPTIONS

	Pin N	umber							
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description				
CTED1	25	16	I	ST	CTMU External Edge Input 1				
CTED2	24	15	I	ST	CTMU External Edge Input 2				
CTCMP	27	18	I	Analog	CTMU external capacitor input for pulse	generation			
CTPLS	PPS	PPS	0	CMOS	CTMU Pulse Generator Output				
Legend:	CMOS = CI	MOS-comp	atible inp	ut or output	Analog = Analog input	P = Power			
	ST = Schmitten	itt Trigger ir	nut with (CMOS leve	O = Output	I = Input			

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-16: CDAC1 THROUGH CDAC3 PINOUT I/O DESCRIPTIONS

	Pin Nu	umber						
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description			
CDAC1	51	33	0	Analog	12-bit CDAC1 output			
CDAC2	71	45	0	Analog	12-bit CDAC2 output			
CDAC3	49	31	0	Analog	12-bit CDAC3 output			

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power

I = Input

The MIPS architecture defines that the result of a multiply or divide operation be placed in one of four pairs of HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as defined in the DSP ASE. The MDU supports all of the data types required for this purpose and includes three extra HI/LO registers as defined by the ASE. Table 3-2 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

TABLE 3-2:	DSP-RELATED LATENCIES
	AND REPEAT RATES

Op code	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	1
Multiply without accumulation	5	1

3.1.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as the presence of options like microMIPS is also available by accessing the CP0 registers, listed in Table 3-3.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MK GP Family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-privileged mode.
8	BadVAddr	Reports the address for the most recent address-related exception.
	BadInstr	Reports the instruction that caused the most recent exception.
	BadInstrP	Reports the branch instruction if a delay slot caused the most recent exception.
9	Count	Processor cycle count.
10	Reserved	Reserved in the PIC32MK GP Family core.
11	Compare	Core timer interrupt control.
12	Status	Processor status and control.
	IntCtl	Interrupt control of vector spacing.
	SRSCtl	Shadow register set control.
	SRSMap	Shadow register mapping control.
	View_IPL	Allows the Priority Level to be read/written without extracting or inserting that bit from/to the Status register.
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.
13	Cause	Describes the cause of the last exception.
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.
14	EPC	Program counter at last exception.
	NestedEPC	Contains the exception program counter that existed prior to the current exception.

TABLE 3-3:COPROCESSOR 0 REGISTERS

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

- bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits
 - 000 = Reserved
 - 001 = Reserved
 - 010 = Instruction Prefetch uncached (Default)
 - 011 = Instruction Prefetch cached (Recommended)
 - 100 = Reserved
 - •
 - •
 - •
 - 111 = Reserved

REGISTER 3-11: FCSR: FLOATING POINT CONTROL AND STATUS REGISTER; CP1 REGISTER 31

- bit 17 E: Unimplemented Operation bit
- bit 16 V: Invalid Operation bit
- bit 15 **Z:** Divide-by-Zero bit
- bit 14 **O:** Overflow bit
- bit 13 **U:** Underflow bit
- bit 12 I: Inexact bit
- bit 11-7 ENABLES<4:0>: FPU Exception Enable bits

These bits control whether or not a trap is taken when an IEEE exception condition occurs for any of the five conditions. The trap occurs when both an enable bit and its corresponding cause bit are set either during an FPU arithmetic operation or by moving a value to the FCSR or one of its alternative representations.

- bit 11 V: Invalid Operation bit
- bit 10 Z: Divide-by-Zero bit
- bit 9 **O:** Overflow bit
- bit 8 U: Underflow bit
- bit 7 I: Inexact bit
- bit 6-2 **FLAGS<4:0>:** FPU Flags bits These bits show any exception conditions that have occurred for completed instructions since the flag was last reset by software.
- bit 6 V: Invalid Operation bit
- bit 5 Z: Divide-by-Zero bit
- bit 4 O: Overflow bit
- bit 3 U: Underflow bit
- bit 2 I: Inexact bit
- bit 1-0 RM<1:0>: Rounding Mode control bits
 - 11 = Round towards Minus Infinity ($-\infty$)
 - 10 = Round towards Plus Infinity (+ ∞)
 - 01 = Round toward Zero (0)
 - 00 = Round to Nearest

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
31:24	PORIO	PORCORE	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1, HS	R/W-1, HS
23:10		—	—	—	—	—	VBPOR	VBAT
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
15:8		_	_	_	_	DPSLP ⁽¹⁾	CMR	_
7.0	R/W-0, HS	R/W-1, HS	R/W-1, HS					
7:0	EXTR	SWR	DMTO	WDTO	SLEEP	IDLE	BOR ⁽²⁾	POR ⁽²⁾

REGISTER 7-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 **PORIO:** I/O Voltage POR Flag bit
 - 1 = A Power-up Reset has occurred due to I/O Voltage
 - 0 = A Power-up Reset has not occurred due to I/O Voltage
 - **Note:** Set by hardware at detection of an I/O POR event. User software must clear this bit to view the next detection; however, writing a '1' to this bit does not cause a PORIO.
- bit 30 **PORCORE:** Core Voltage POR Flag bit
 - 1 = A Power-up Reset has occurred due to Core Voltage

0 = A Power-up Reset has not occurred due to Core Voltage

- **Note:** Set by hardware at detection of a Core POR event. User software must clear this bit to view the next detection; however, writing a '1' to this bit does not cause a PORCORE.
- bit 29-18 Unimplemented: Read as '0'
- bit 17 **VBPOR:** VBPOR Mode Flag bit
 - 1 = A VBAT domain POR has occurred
 - 0 = A VBAT domain POR has not occurred
- bit 16 **VBAT:** VBAT Mode Flag bit
 - 1 = A POR exit from VBAT has occurred (a true POR must be established with the valid VBAT voltage on the VBAT pin)
 - 0 = A POR exit from VBAT has not occurred
- bit 15-11 Unimplemented: Read as '0'
- bit 10 **DPSLP:** Deep Sleep Mode Flag bit⁽¹⁾ 1 = Deep Sleep mode has occurred 0 = Deep Sleep mode has not occurred
- bit 9 **CMR:** Configuration Mismatch Reset Flag bit 1 = A Configuration Mismatch Reset has occurred 0 = A Configuration Mismatch Reset has not occurred
- bit 8 Unimplemented: Read as '0'
- bit 7 **EXTR:** External Reset (MCLR) Pin Flag bit 1 = Master Clear (pin) Reset has occurred
 - 0 = Master Clear (pin) Reset has not occurred
- bit 6 SWR: Software Reset Flag bit 1 = Software Reset was executed 0 = Software Reset was not executed

Note 1: User software must clear this bit to view the next detection.

FIGURE 13-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

16.1 Deadman Timer Control Registers

TABLE 16-1: DEADMAN TIMER REGISTER MAP

Bits																			
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0=00	DMTCON	31:16	_		—			—	—		—		—					—	0000
000	DIVITCON	15:0	ON	—	—	_	—	—	_	—	—	_	—	—	_	_	_	—	0000
0=10		31:16		—	—	_	—	—	_	—	—	_	—	—	_	_	_	—	0000
0010	DWITFRECLR	15:0				STEP	1<7:0>				—	_	—	—	_	_	_	—	0000
0500		31:16	-	_	-	_	—	-	_	_	_	—	—	_	_	_	—	_	0000
UE20	DIVICER	15:0	STEP2<7:0>										0000						
0520	DMTOTAT	31:16	_	-	-	-	_	-	_	-	-	_	—	_	_	_	-	_	0000
0E30	DIVITSTAT	15:0	_	-	-	-	_	-	_	-	BAD1	BAD2	DMTEVENT	_	_	_	-	WINOPN	0000
0 - 40	DMTCNT	31:16														0000			
0E40	DIVITCINT	15:0								000	NIERSI.	2							0000
0560	DMTDCONT	31:16									2NIT - 24.05								0000
UEOU	DIMITPSCINT	15:0								P30	JN1<31.02	•							0000
0570		31:16													0000				
	DIVITESINT	15:0								P51	INT V<31:02	>							0000
Leger	d: x = unkn	own va	lue on Res	et; — = un	implement	ed, read a	s '0'. Reset	t values are	e shown in	hexadecir	nal.								

PIC32MK GP/MC Family

22.1 UART Control Registers

TABLE 22-1: UART1 AND UART2 REGISTER MAP

ess			Bits													s			
Virtual Addr BF82_#	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
8000		31:16	—	_	—	_	—		—	—	SLPEN	CKRDY		—	_	CLKSE	L<1:0>	RUNOV	0000
0000	ONNODL	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
8010	111STA(1)	31:16				ADDRM	SK<7:0>							ADDR	R<7:0>				0000
0010	UISIA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
8020		31:16	_	—	—	_	—	_	—	—	—	—	_	—	—	—	_	—	0000
0020	UTIXILO	15:0	_	—	—		_		_	TX8				Transmit	Register				0000
8030		31:16	—	—	—		—		_	_	_	—		_	_	—		—	0000
0030	UTIVILEO	15:0	_	—	—	_	—	_	—	RX8				Receive	Register				0000
8040		31:16	—	—	—		—		_	_	_	—		_		U1BRG	<19:16>		0000
0040	OTDICO	15:0								U1BRG	G<15:0>								0000
8200		31:16	_	—	_	-	—	_	—	_	SLPEN	CKRDY	—	—	_	CLKSE	L<1:0>	RUNOV	0000
0200	OZINODL	15:0	ON	—	SIDL	IREN	RTSMD	-	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
8210	112STA(1)	31:16				ADDRM	SK<7:0>							ADDR	R<7:0>				0000
0210	02017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
8220		31:16	—	—	—		—		_	_	_	—		_	_	—		—	0000
0220	021XILO	15:0	—	—	—	-	—	-	—	TX8				Transmit	Register				0000
8230		31:16	_	—	_	-	—	_	—	_	_	—	—	—	_	—	-	_	0000
0230	15:0 - - - - RX8 Receive Register						0000												
8240	112BRG(1)	31:16	_	—	-	—	—	_	_	_	—	—	—	—		BRG<	19:16>		0000
0240	CZDI(O	15:0								BRG<	<15:0>								0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	_	—	—	—	—	—				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CS2a	CS1a										
	RADDR23	RADDR22										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	RCS2	RCS1				2-12:05						
	RADDR15	RADDR14			RADDF	<13.0~						
7:0	R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0									
				RADDR<	7:0>							

REGISTER 23-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23	CS2a: Chip Select 2a bit
	This bit is only valid when the CSF<1:0> bits = 10 or 01.
	1 = Chip Select 2a is active
	0 =Chip Select 2a is inactive
bit 23	RADDR<23>: Target Address bit 23
	This bit is only valid when the CSF<1:0> bits = 00 and the EXADR bit = 1 and the DUALBUF bit = 1 .
bit 22	CS1a: Chip Select 1a bit
	This bit is only valid when the CSF<1:0> bits = 10.
	1 = Chip Select 1a is active
	0 = Chip Select 1a is inactive
bit 22	RADDR<22>: Target Address bit 22
	This bit is only valid when the CSF<1:0> bits = 00 and the EXADR bit = 1 and the DUALBUF bit = 1 .
bit 21-16	RADDR<21:16>: Address bits
	This bit is only valid when the EXADR bit = 1 and the DUALBUF bit = 1 .
bit 15	RCS2: Chip Select 2 bit
	This bit is only valid when the CSF<1:0> bits = 10 or 01.
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive (RADDR15 function is selected)
bit 15	RADDR<15>: Target Address bit 15
	This bit is only valid when the CSF<1:0> bits = 00.
bit 14	RCS1: Chip Select 1 bit
	This bit is only valid when the CSF<1:0> bits = 10.
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive (RADDR14 function is selected)
bit 14	RADDR<14>: Target Address bit 14
	This bit is only valid when the CSF<1:0> bits = 00 or 01.
bit 13-0	RADDR<13:0>: Address bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

25.2 ADC Control Registers

TABLE 25-2: ADC REGISTER MAP

		۵								Bit	s								s
Virtual Address	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
7000	ADCCON1	31:16	TRBEN	TRBERR	-	TRBMST<2:0	>		TRBSLV<2:0>	•	FRACT	SELRE	S<1:0>		S	rrgsrc<4:0)>		0600
		15:0	ON	_	SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	_	_		IRQVS<2:0>		STRGLVL	-	_	—	0000
7010	ADCCON2	31:16	BGVRRDY	REFFLT	EOSRDY	(CVDCPL<2:0	>					SAMC	<9:0>					0000
		15:0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	_		ADCEIS<2:0>	•	—			Α	DCDIV<6:0>				0000
7020	ADCCON3	31:16	ADCSE	EL<1:0>			CONCL	(DIV<5:0>			DIGEN7	—	DIGEN5	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0	0000
		15:0	١	/REFSEL<2:0)>	TRGSUSP	UPDIEN	UPDRDY	SAMP	RQCNVRT	GLSWTRG	GSWTRG			ADINSE	L<5:0>			0000
7030	ADCTRGMODE	31:16	_		—	—	SH5AL	T<1:0>	SH4AL	.T<1:0>	SH3A	LT<1:0>	SH2AL	T<1:0>	SH1AL	.T<1:0>	SH0AL	.T<1:0>	0000
		15:0	—	_	STRGEN5	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGEN0	_	—	SSAMPEN5	SSAMPEN4	SSAMPEN3	SSAMPEN2	SSAMPEN1	SSAMPEN) 0000
7040	ADCIMCON1	31:16	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8	0000
		15:0	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	0000
7050	ADCIMCON2	31:16	—	_	—	—	—	—	—	—	DIFF27	SIGN27	DIFF26	SIGN26	DIFF25	SIGN25	DIFF24	SIGN24	0000
		15:0	DIFF23 ⁽¹⁾	SIGN23 ⁽¹⁾	DIFF22 ⁽¹⁾	SIGN22 ⁽¹⁾	DIFF21 ⁽¹⁾	SIGN21 ⁽¹⁾	DIFF20 ⁽¹⁾	SIGN20 ⁽¹⁾	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16	0000
7060	ADCIMCON3	31:16	DIFF47 ⁽¹⁾	SIGN47 ⁽¹⁾	DIFF46 ⁽¹⁾	SIGN46 ⁽¹⁾	DIFF45 ⁽¹⁾	SIGN45 ⁽¹⁾	—	—	—	—	—	—	DIFF41 ⁽¹⁾	SIGN41 ⁽¹⁾	DIFF40 ⁽¹⁾	SIGN40 ⁽¹⁾	0000
		15:0	DIFF39 ⁽¹⁾	SIGN39 ⁽¹⁾	DIFF38 ⁽¹⁾	SIGN38 ⁽¹⁾	DIFF37 ⁽¹⁾	SIGN37 ⁽¹⁾	DIFF36 ⁽¹⁾	SIGN36 ⁽¹⁾	DIFF35 ⁽¹⁾	SIGN35 ⁽¹⁾	DIFF34 ⁽¹⁾	SIGN34 ⁽¹⁾	DIFF33 ⁽¹⁾	SIGN33 ⁽¹⁾	_	—	0000
7070	ADCIMCON4	31:16	—	-	—	—	_	—	-	—	—	—	-	—	—	—	—	—	0000
		15:0	—	-	_	_	_	—	—	—	—	—	—	—	DIFF49	SIGN49	DIFF48	SIGN48	0000
7080	ADCGIRQEN1	31:16	—	_	—	—	AGIEN27	AGIEN26	AGIEN25	AGIEN24	AGIEN23 ⁽¹⁾	AGIEN22 ⁽¹⁾	AGIEN21 ⁽¹⁾	AGIEN20 ⁽¹⁾	AGIEN19	AGIEN18	AGIEN17	AGIEN16	0000
		15:0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0	0000
7090	ADCGIRQEN2	31:16	—	-	_	_	_	—	—	—	—	—	AGIEN53(3)	AGIEN52 ⁽³⁾	AGIEN51 ⁽³⁾	AGIEN50 ⁽³⁾	AGIEN49	AGIEN48	0000
		15:0	AGIEN47 ⁽¹⁾	AGIEN46 ⁽¹⁾	AGIEN45 ⁽¹⁾	—	_	—	AGIEN41 ⁽¹⁾	AGIEN40 ⁽¹⁾	AGIEN39 ⁽¹⁾	AGIEN38 ⁽¹⁾	AGIEN37 ⁽¹⁾	AGIEN36 ⁽¹⁾	AGIEN35 ⁽¹⁾	AGIEN34 ⁽¹⁾	AGIEN33 ⁽¹⁾	AGIEN32 ⁽¹⁾) 0000
70A0	ADCCSS1	31:16	—	-	_	_	CSS27	CSS26	CSS25	CSS24	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19	CSS18	CSS17	CSS16	0000
		15:0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
70B0	ADCCSS2	31:16	—	_	—	—	—	—	—	—	_	—	CSS53	CSS52	—	CSS50	CSS49	CSS48	0000
		15:0	CSS47 ⁽¹⁾	CSS46 ⁽¹⁾	CSS45 ⁽¹⁾	_	_	—	CSS41 ⁽¹⁾	CSS40 ⁽¹⁾	CSS39 ⁽¹⁾	CSS38 ⁽¹⁾	CSS37 ⁽¹⁾	CSS36 ⁽¹⁾	CSS35 ⁽¹⁾	CSS34 ⁽¹⁾	CSS33 ⁽¹⁾	—	0000
70C0	ADCDSTAT1	31:16	—	-	_	_	ARDY27	ARDY26	ARDY25	ARDY24	ARDY23(1)	ARDY22(1)	ARDY21 ⁽¹⁾	ARDY20 ⁽¹⁾	ARDY19	ARDY18	ARDY17	ARDY16	0000
		15:0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0	0000
70D0	ADCDSTAT2	31:16	—	_	—	_	_	—	_	_	_	—	ARDY53	ARDY52	_	ARDY50	ARDY49	ARDY48	0000
		15:0	ARDY47 ⁽¹⁾	ARDY46 ⁽¹⁾	ARDY45 ⁽¹⁾	_	_	—	ARDY41 ⁽¹⁾	ARDY40 ⁽¹⁾	ARDY39(1)	ARDY38(1)	ARDY37 ⁽¹⁾	ARDY36(1)	ARDY35 ⁽¹⁾	ARDY34(1)	ARDY33 ⁽¹⁾	—	0000
70E0	ADCCMPEN1	31:16	—	_	—	_	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23 ⁽¹⁾	CMPE22 ⁽¹⁾	CMPE21 ⁽¹⁾	CMPE20 ⁽¹⁾	CMPE19	CMPE18	CMPE17	CMPE16	0000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
70F0	ADCCMP1	31:16								DCMPH	l<15:0>								0000
		15:0								DCMPLC	0<15:0>								0000

1: 2: 3: Note

This bit or register is not available on 64-pin devices. This register is for internal ADC input sources (i.e., VBAT, and CTMU Temperature Sensor. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory programmed DEVADCx Flash locations starting at 0xBFC45000 into the ADCxCFG registers starting at 0xBF887D00, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0

REGISTER 25-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	DIFF15: AN15 Mode bit
	1 = Selects AN15 differential input pair as AN15+ and AN1-
	0 = AN15 is using Single-ended mode
bit 30	SIGN:15 AN15 Signed Data Mode bit
	1 = AN15 is using Signed Data mode
	0 = AN15 is using Unsigned Data mode
bit 29	DIFF14: AN14 Mode bit
	1 = Selects AN14 differential input pair as AN14+ and AN1-
	0 = AN14 is using Single-ended mode
bit 28	SIGN14: AN14 Signed Data Mode bit
	1 = AN14 is using Signed Data mode
	0 = AN14 is using Unsigned Data mode
bit 27	DIFF13: AN13 Mode bit
	1 = Selects AN13 differential input pair as AN13+ and AN1-
	0 = AN13 is using Single-ended mode
bit 26	SIGN13: AN13 Signed Data Mode bit
	1 = AN13 is using Signed Data mode
	0 = AN13 is using Unsigned Data mode
bit 25	DIFF12: AN12 Mode bit
	1 = Selects AN12 differential input pair as AN12+ and AN1-
	0 = AN12 is using Single-ended mode
bit 24	SIGN12: AN12 Signed Data Mode bit
	1 = AN12 is using Signed Data mode
	0 = AN12 is using Unsigned Data mode
bit 23	DIFF11: AN11 Mode bit
	1 = Selects AN11 differential input pair as AN11+ and AN1-
	0 = AN11 is using Single-ended mode
bit 22	SIGN11: AN11 Signed Data Mode bit
	1 = AN11 is using Signed Data mode
	0 = AN11 is using Unsigned Data mode

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	AGIEN27	AGIEN26	AGIEN25	AGIEN24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	AGIEN23 ⁽¹⁾	AGIEN22 ⁽¹⁾	AGIEN21 ⁽¹⁾	AGIEN20 ⁽¹⁾	AGIEN19	AGIEN18	AGIEN17	AGIEN16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0

REGISTER 25-9: ADCGIRQEN1: ADC GLOBAL INTERRUPT ENABLE REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

bit 27-0 AGIEN27: AGIEN0: ADC Global Interrupt Enable bits

 1 = Interrupts are enabled for the selected analog input. The interrupt is generated after the converted data is ready (indicated by the AIRDYx bit of the ADCDSTAT1 register)

0 = Interrupts are disabled

Note 1: This bit is not available on 64-pin devices.

REGISTER 26-12: CxFLTCON2: CAN FILTER CONTROL REGISTER 2 ('x' = 1-4) (CONTINUED)

bit 15	FLTEN9: Filter 9 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL9<1:0>: Filter 9 Mask Select bits
	11 = Reserved
	10 - Acceptance Mask 2 is selected 01 = Accentance Mask 1 is selected
	00 = Acceptance Mask 0 is selected
bit 12-8	FSEL9<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN8: Filter 8 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 6-5	MSEL8<1:0>: Filter 8 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 0 is selected
hit 1 0	
DIL 4-0	11111 - Mossage matching filter is stored in EIEO buffer 31
	11111 – Message matching filter is stored in FIFO buffer 20
	•
	•
	00000 = Message matching filter is stored in FIFO buffer 1
	00000 - Message matching miler is stored in FIFO build 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 26-13: CxFLTCON3: CAN FILTER CONTROL REGISTER 3 ('x' = 1-4) (CONTINUED)

bit 15	FLTEN13: Filter 13 Enable bit							
	1 = Filter is enabled							
	0 = Filter is disabled							
bit 14-13	MSEL13<1:0>: Filter 13 Mask Select bits							
	11 = 11 = Reserved							
	10 = Acceptance Mask 2 is selected							
	01 = Acceptance Mask 1 is selected							
	00 = Acceptance Mask U is selected							
bit 12-8	FSEL13<4:0>: FIFO Selection bits							
	11111 = Message matching filter is stored in FIFO buffer 31							
	11110 = Message matching filter is stored in FIFO buffer 30							
	•							
	•							
	00001 = Message matching filter is stored in FIFO buffer 1							
	00000 = Message matching filter is stored in FIFO buffer 0							
bit 7	FLTEN12: Filter 12 Enable bit							
	1 = Filter is enabled							
	0 = Filter is disabled							
bit 6-5	MSEL12<1:0>: Filter 12 Mask Select bits							
	11 = 11 = Reserved							
	10 = Acceptance Mask 2 is selected							
	01 = Acceptance Mask 1 is selected							
	00 = Acceptance Mask 0 is selected							
bit 4-0	FSEL12<4:0>: FIFO Selection bits							
	11111 = Message matching filter is stored in FIFO buffer 31							
	11110 = Message matching filter is stored in FIFO buffer 30							
	•							
	00001 = Message matching filter is stored in FIFO buffer 1							
	00000 = Message matching filter is stored in FIFO buffer 0							

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MK GP/MC Family

REGISTER 26-16: CxFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('x' = 1-4:'n' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	-	—	—	_	-		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	—	—	—	FSIZE<4:0> ⁽¹⁾						
15.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0		
10.0	_	FRESET	UINC	DONLY ⁽¹⁾	—	—	_	_		
7:0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>		

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-21 Unimplemented: Read as '0'

- bit 20-16 FSIZE<4:0>: FIFO Size bits⁽¹⁾
 - 11111 = FIFO is 32 messages deep
 - •

 - 00010 = FIFO is 3 messages deep
 - 00001 = FIFO is 2 messages deep
 - 00000 = FIFO is 1 message deep
- bit 15 Unimplemented: Read as '0'
- bit 14 FRESET: FIFO Reset bits
 - 1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll whether this bit is clear before taking any action.
 - 0 = No effect

bit 13 UINC: Increment Head/Tail bit

 $\frac{TXEN = 1:}{FIFO}$ (FIFO configured as a Transmit FIFO) When this bit is set the FIFO head will increment by a single message $\frac{TXEN = 0:}{FIFO}$ (FIFO configured as a Receive FIFO) When this bit is set the FIFO tail will increment by a single message

bit 12 **DONLY:** Store Message Data Only bit⁽¹⁾

<u>TXEN = 1:</u> (FIFO configured as a Transmit FIFO) This bit is not used and has no effect.

TXEN = 0: (FIFO configured as a Receive FIFO)

- 1 = Only data bytes will be stored in the FIFO
- 0 = Full message is stored, including identifier
- bit 11-8 Unimplemented: Read as '0'
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CxCON<23:21>) = 100).
 - **2:** This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 27-2: CMxCON: OP AMP/COMPARATOR 'x' CONTROL REGISTER ('x' = 1-5) (CONTINUED)

- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is present on the CxOUT pin
 - 0 = Comparator output is internal only
- bit 13 CPOL: Comparator Output Polarity Select bit
 - 1 = Comparator output is inverted
 - 0 = Comparator output is not inverted
- bit 12 Unimplemented: Read as '0'
- bit 11 **OAO:** Op amp Output Enable bit⁽¹⁾
 - 1 = Op amp output is present on the OAxOUT pin
 - 0 = Op amp output is not present on the OAxOUT pin

bit 10 AMPMOD: Op amp Mode Enable bit⁽¹⁾

1 = Amplifier/Comparator operating in Dual mode (both Op amps and Comparators are enabled)0 = Amplifier/Comparator operating in Comparator-only mode

bit 9 Unimplemented: Read as '0'

bit 8 **COUT:** Comparator Output bit

When CPOL = 0 (non-inverted polarity):

1 = VIN+ > VTH+

0 = VIN + < VTH-

When CPOL = 1 (inverted polarity):

1 = VIN + < VTH-

0 = VIN + > VTH +

- bit 7-6 EVPOL<1:0>: Trigger/Event Polarity Select bits
 - 11 = Trigger/Event generated on any change of the comparator output
 - 10 = Trigger/Event generated only on high-to-low transition of the polarity-selected comparator output

If CPOL = 0 (non-inverted polarity):

High-to-low transition of the comparator output

If CPOL = 1 (inverted polarity):

Low-to-high transition of the comparator output

01 = Trigger/Event generated only on low-to-high transition of the polarity-selected comparator output

If CPOL = 0 (non-inverted polarity):

Low-to-high transition of the comparator output

If CPOL = 1 (inverted polarity):

High-to-low transition of the comparator output

00 = Trigger/Event generation is disabled

bit 5 Unimplemented: Read as '0'

- bit 4 CREF: Op amp/Comparator Reference Select bit
 - 1 = VIN+ input connects to internal CDAC3 output voltage
 - 0 = VIN+ input connects to CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- **Note 1:** Before attempting to initialize or enable any of the Op amp bit, the user application must clear the corresponding OPA5MD, OPA3MD, OPA2MD, and OPA1MD bits in the PMD register.

Note: The IFSx bits, as with all interrupt flag status register bits, are set as long as the peripheral is enabled and an interrupt condition event occurs. Interrupts do not have to be enabled for the IFSx bits to be set. If the user application does not want to use an interrupt, it can poll the corresponding peripheral IFSx bit to see whether an interrupt condition is occurred. The IFSx bits are persistent, so they must be cleared if they are set by user software after an IFSx user bit interrogation.

© 2016-2018 Microchip Technology Inc.

32.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MK GP/MC devices include two features to prevent alterations to enabled or disabled peripherals:

- Control Register Lock Sequence
- Configuration Bit Select Lock

32.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting the PMDLOCK bit prevents writes to the control registers and clearing the PMDLOCK bit allows writes.

To set or clear the PMDLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators** with Enhanced PLL" (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

32.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If the PMDLOCK bit remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

33.3 On-Chip Voltage Regulator

The core and digital logic for all PIC32MK GP/MC devices is designed to operate at a nominal 1.2V. To simplify system designs, devices in the PIC32MK GP/ MC family incorporate an on-chip regulator providing the required core logic voltage from VDD.

33.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

33.3.2 ON-CHIP REGULATOR AND BOR

PIC32MK GP/MC devices also have a simple brownout capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **36.1 "DC Characteristics"**.

33.4 On-chip Temperature Sensor

PIC32MK GP/MC devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see **36.2** "AC **Characteristics and Timing Parameters**" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see 25.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" for more information).

33.5 Programming and Diagnostics

PIC32MK GP/MC devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32MK devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 33-1:

BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param. No.	Typical ⁽²⁾	Maximum	Units	Conditions							
Power-Down Current (IPD) (Note 1)											
DC40k	400	1200	μA	-40°C							
DC40I	600	1200	μA	+25°C	Base Power-Down Sleep						
DC40m	1.8	6	mA	+85°C							
DC40o	4.5	10	mA	+125°C							
DC41	6	40	μΑ	-40°C to 125°C	Deep Sleep						
DC42	6	40	μA	-40°C to 125°C	VBAT						
Module Differential Current											
DC41e	5	—	μΑ	3.6V	Watchdog Timer Current: ΔIWDT (Note 3)						
DC42e	25	_	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)						
DC43d	3	—	mA	3.6V	ADC: ΔIADC (Notes 3, 4)						

TABLE 36-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Sleep:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled, VUSB3V3 is connected to VDD
- PBCLKx divisor = 1:2 ('x' =/= 1,6,7), PBCLK6 = 1:4, PBCLK1 and PBCLK7 = 1:1
- CPU is in Sleep mode
- · Prefetch module is disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is '0' (i.e., clocks enabled)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0)
- IOANCPEN (CFGCON<7>) = 0, I/O Analog Charge Pump disabled
- AICPMPEN (ADCCON1><12>) = 0, ADC Input Charge Pump disabled

Deep Sleep Base plus Sleep:

- DSCON = POR state
- UPLLEN (DEVCFG2<31>) = 1 (PLL disabled)
- FSDEN (DEVCFG2<28>) = 1 (Deep Sleep enabled)
- DSWDTEN (DEVCFG2<27>) = 0 (Deep Sleep Watchdog disabled)
- DSBOREN (DEVCFG2<20>) = 0 (Deep Sleep BOR disabled)
- VBATBOREN (DEVCFG2<19>) = 0 (VBAT BOR disabled)

Deep Sleep with DSWDT:

- Deep Sleep Base plus DSWDTEN (DEVCFG2<27>) = 1 (Deep Sleep Watchdog enabled)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Voltage regulator is operational (VREGS = 1)

TABLE 36-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾	
DO20a	Vон1	Output High Voltage I/O Pins: 4x Source Driver Pins -	1.5			V	IOH \ge -14 mA, VDD = 3.3V	
		RA0, RA4, RA11, RA12, RA14, RA15 RB0-RB3, RB8, RB9 RC0, RC1, RC2, RC10, RC12, RC13 RD8, RD12-RD15	2.0	_	_	v	IOH \geq -12 mA, VDD = 3.3V	
		RE0, RE1, RE8, RE9 RF5, RF6, RF7, RF9, RF10, RF12, RF13 RG0, RG1, RG6-RG15	3.0	_	_	v	IOH \ge -7 mA, VDD = 3.3V	
		Output High Voltage I/O Pins: 8x Source Driver Pins -	1.5		_	v	IOH \ge -22 mA, VDD = 3.3V	
		8x Source Driver Pins - RA1, RA7, RA8, RA10 RB4-RB7, RB10-RB15 RC6, RC7, RC8, RC9, RC11, RC15 RD1-RD6 RE12-RE15 RF0, RF1	2.0	_	_	v	Ioh \geq -18 mA, VDD = 3.3V	
			3.0	_	_	V	IOH ≥ -10 mA, VDD = 3.3V	

Note 1: Parameters are characterized, but not tested.