

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, IrDA, LINbus, PMP, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, Motor Control PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 27x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk0512mcf064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 MIPS32[®] microAptiv[™] MCU Core Configuration

Register 3-1 through Register 3-5 show the default configuration of the MIPS32 microAptiv MCU core, which is included on the PIC32MK GP/MC family of devices.

							, •==••	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31:24	—	—	—	—	—	-	—	ISP
00.40	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
23:16	DSP	UDI	SB	MDU	—	MM<	1:0>	BM
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-1
15:8	BE	AT<	1:0>		AR<2:0>		U-0	U-0
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	—	_
7.0	—	—	_	—	—		K0<2:0>	

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.	
--------	--	--

	······································
bit 30-25	Unimplemented: Read as '0'
bit 24	ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented
bit 23	DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented
bit 22	UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented
bit 21	SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU
bit 19	Unimplemented: Read as '0'
bit 18-17	MM<1:0>: Merge Mode bits 10 = Merging is allowed
bit 16	BM: Burst Mode bit 0 = Burst order is sequential
bit 15	BE: Endian Mode bit 0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits 00 = MIPS32
bit 12-10	AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2
bit 9-3	Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	-	—	_	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	-	—	_	-	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	-	—	-	-	—
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0				FCC<	7:0>			

REGISTER 3-8: FCCR: FLOATING POINT CONDITION CODES REGISTER; CP1 REGISTER 25

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FCC<7:0>:** Floating Point Condition Code bits These bits record the results of floating point compares and are tested for floating point conditional branches and conditional moves.

			SBTxF	REGy Regis	ter		SBTxRD	y Register	SBTxWR	y Register
Target Number	Target Description	Name	Region	Physical Start Address	Region Size	Priority Level	Name	Read Permission (Group3, Group2, Group1, Group0)	Name	Write Permission (Group3, Group2, Group1, Group0)
0	System Bus	SBT0REG0	Region 0	1F8F0000		0	SBT0RD0	1,1,1,1	SBT0WR0	1,1,1,1
0	System Bus	SBT0REG1	Region 1	1F8F8000	32 KB	3	SBT0RD1	0,0,0,1	SBT0WR1	0,0,0,1
		SBT1REG0	Region 0	1D000000		0	SBT1RD0	1,1,1,1	SBT1WR0	0,0,0,0
	Flash Memory (CPU Instruction)	SBT1REG2	Region 2	1FC04000	4 KB	2	SBT1RD2	0,0,0,1	SBT1WR2	0,0,0,0
1	Program Flash	SBT1REG3	Region 3	1FC24000	4 KB	2	SBT1RD3	0,0,0,1	SBT1WR3	0,0,0,0
	Boot Flash Prefetch	SBT1REG4	Region 4	1FC44000	4 KB	2	SBT1RD4	0,0,0,1	SBT1WR4	0,0,0,0
		SBT1REG5	Region 5	1FC64000	4 KB	2	SBT1RD5	0,0,0,1	SBT1WR5	0,0,0,0
		SBT2REG0	Region 0	1D000000		0	SBT2RD0	1,1,1,1	SBT2WR0	0,0,0,0
	Flash Memory (CPU data)	SBT2REG2	Region 2	1FC04000	4 KB	2	SBT2RD2	0,0,0,1	SBT2WR2	0,0,0,0
2	Program Flash	SBT2REG3	Region 3	1FC24000	4 KB	2	SBT2RD3	0,0,0,1	SBT2WR3	0,0,0,0
		SBT2REG4	Region 4	1FC44000	4 KB	2	SBT2RD4	0,0,0,1	SBT2WR4	0,0,0,0
		SBT2REG5	Region 5	1FC64000	4 KB	2	SBT2RD5	0,0,0,1	SBT2WR5	0,0,0,0
		SBT3REG0	Region 0	1D000000		0	SBT3RD0	1,1,1,1	SBT3WR0	0,0,0,0
		SBT3REG2	Region 2	1FC04000	4 KB	2	SBT3RD2	0,0,0,1	SBT3WR2	0,0,0,0
3	Flash Memory (peripheral) Program Flash	SBT3REG3	Region 3	1FC24000	4 KB	2	SBT3RD3	0,0,0,1	SBT3WR3	0,0,0,0
		SBT3REG4	Region 4	1FC44000	4 KB	2	SBT3RD4	0,0,0,1	SBT3WR4	0,0,0,0
		SBT3REG5	Region 5	1FC64000	4 KB	2	SBT3RD5	0,0,0,1	SBT3WR5	0,0,0,0
Legend:	R = Read; R/W =	Read/Write;		'x' in a reg	ister name	e = 0-13;	1	y' in a register	name = 0-8	

TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

TABLE 8-4: INTERRUPT REGISTER MAP (CONTINUED)

ress !)	-	e								B	lits								ţ
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0450	IPC49	31:16	_	—	—		OC10IP<2:03	>	OC1018	S<1:0>	—		—		IC10IP<2:0>	•	IC10IS	S<1:0>	0000
0450	IPC49	15:0	_	—	—		IC10EIP<2:0	>	IC10EIS	S<1:0>	—	_	—	—	_	_	—	_	0000
0460	IPC50	31:16	—	—	—		IC12EIP<2:0	>	IC12EIS	S<1:0>	_		—	(OC11IP<2:0	>	OC1118	S<1:0>	0000
0400	IF C50	15:0	—	—	—		IC11IP<2:0>		IC11IS	s<1:0>	—		—		C11EIP<2:0	>	IC11EI	S<1:0>	0000
0470	IPC51	31:16	_	—	—		IC13IP<2:0>		IC13IS	S<1:0>	—	—	—	1	C13EIP<2:0	>	IC13EI	S<1:0>	0000
0470	IF C51	15:0	_	—	—		OC12IP<2:0	>	OC1218	S<1:0>	—	_	—		IC12IP<2:0>	•	IC1215	6<1:0>	0000
0480	IPC52	31:16	—	—	—		OC14IP<2:0	>	OC1418	S<1:0>	_		—		C14IP<2:0>		C14IS	<1:0>	0000
0400	IF 052	15:0	—	—	—		IC14EIP<2:0	>	IC14EIS	S<1:0>	—		—	(OC13IP<2:0	>	OC131	S<1:0>	0000
0490	IPC53	31:16	—	-	-		IC16EIP<2:0	>	IC16EIS	S<1:0>	—		-	(OC15IP<2:0	>	OC151	S<1:0>	0000
0430	1 000	15:0	—	—	—		IC15IP<2:0>		IC15IS	S<1:0>	—	-	—		C15EIP<2:0	>	IC15EI	S<1:0>	0000
04A0	IPC54	31:16	—	—	—		SPI3RXIP<2:0)>	SPI3RX	IS<1:0>	—	_	—	5	SPI3EIP<2:0	>	SPI3EI	S<1:0>	0000
04A0	IF C54	15:0	—	-	-		OC16IP<2:0	>	OC1618	S<1:0>	—		-		IC16IP<2:0		IC1615	6<1:0>	0000
04B0	IPC55	31:16	—	—	_		SPI4TXIP<2:0)>	SPI4TX	IS<1:0>		_	—	S	PI4RXIP<2:()>	SPI4RX	IS<1:0>	0000
0400	1 000	15:0	—	—	_		SPI4EIP<2:0	>	SPI4EI	S<1:0>		_	—	S	PI3TXIP<2:0)>	SPI3TX	IS<1:0>	0000
04C0	IPC56	31:16	—	—	—		SPI6EIP<2:0	>	SPI6EI	S<1:0>	—	_	—	S	PI5TXIP<2:0)>	SPI5TX	IS<1:0>	0000
0400	1 030	15:0	—	—	—		SPI5RXIP<2:0)>	SPI5RX	IS<1:0>	—	-	—	9	SPI5EIP<2:0	>	SPI5EI	S<1:0>	0000
04D0	IPC57	31:16	—	—	—		—		_		—		—		SBIP<2:0>		SBIS	<1:0>	0000
0400	1 057	15:0	—	—	—		SPI6TXIP<2:0)>	SPI6TX	IS<1:0>	—		—	S	PI6RXIP<2:0)>	SPI6RX	IS<1:0>	0000
0510	IPC61	31:16	_	—	—	-	_	_	—	_	—	_	—	A	D1DC4IP<2:	0>	AD1DC4	HS<1:0>	0000
0510	IF C01	15:0	—	—	—	ŀ	AD1DC3IP<2:	0>	AD1DC3	SIS<1:0>	—		—	U	SB2IP<2:0>	(2)	USB2IS	<1:0> (2)	0000
0530	IPC63	31:16	—	-	-		—		_		—		-		CPCIP<2:0>		CPCIS	6<1:0>	0000
0000	1 005	15:0	_	—	—	_	—	_	—	_	—	_	—	—	_		—	—	0000
0540	OFF000	31:16	—	—	—		—		_		—		—	—	—		VOFF<	17:16>	0000
0540	OFFUUU	15:0								VOFF<15:1	>							—	0000
0544	OFF001	31:16	—	—	—		—		_		_		—	—	_		VOFF<	17:16>	0000
0044	OFFUUT	15:0								VOFF<15:1	>							—	0000
0548	OFF002	31:16		—	—	—	—	_	—	_	_	_	—	—	—	_	VOFF<	17:16>	0000
0546	0FF002	15:0					VOFF<15:1>									_	0000		

Legend:

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

PIC32MK GP/MC Famil

This bit is not available on 64-pin devices. 2:

This bit is not available on devices without a CAN module. 3:

4: This bit is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 22 is not available on 64-pin devices. 6:

The IFSx bits, as with all interrupt flag status register bits, are set as long as the peripheral is enabled and an interrupt condition event occurs. Interrupts do not have to be enabled for the IFSx bits to be set. If the user 7: application does not want to use an interrupt, it can poll the corresponding peripheral IFSx bit to see whether an interrupt condition has occurred. The IFSx bits are persistent, they must be cleared if they are set by user software after an IFSx user bit interrogation.

REGISTER 9-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits

- 111 = Divide by 8
- 110 = Divide by 7
- 101 **=** Divide by 6
- 100 = Divide by 5
- 011 = Divide by 4
- 010 = Divide by 3
- 001 = Divide by 2 000 = Divide by 1
- The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 33-5 in **33.0** "**Special Features**" for information. If the PLLICLK is set for FRC, this setting is ignored by the PLL and the divider is set to Divide-by-1.
- bit 7 PLLICLK: System PLL Input Clock Source bit
 - 1 = FRC is selected as the input to the System PLL
 - 0 = Posc is selected as the input to the System PLL
 - The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to Register 33-5 in **33.0 "Special Features"** for information.
- bit 6-3 Unimplemented: Read as '0'
- bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits
 - 111 = Reserved 110 = 54-64 MHz 101 = 34-64 MHz 100 = 21-42 MHz 011 = 13-26 MHz 010 = 8-16 MHz 001 = 5-10 MHz 000 = Bypass

Use the highest filter range that covers the input freq to the VCO multiplier block that corresponds to the PLLIDIV output freq to minimize PLL system jitter (see Figure 9-1). For example, Crystal = 20 MHz, PLLIDIV<2:0> = 0b1; therefore, the filter input frequency is equal to 10 MHz and UPLLRANGE<2:0> = 0b010. The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 33-5 in **33.0** "**Special Features**" for information.

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

- 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).
- 3: While the PLL is active, and if updating the PLL bits in the OSCCON register at run-time, the user application must remain within the following limits at all times for all nodes in the PLL clock tree. Therefore, the order in which the PLL values may be modified, (i.e., PLLODIV, PLLMULT, PLLODIV) becomes important. Failure to maintain PLL nodes within min/max ranges may result in unstable PLL and system behavior.
 - Output and input to PLLIDIV block (i.e., FPLLI) 5 MHz to 64 MHz (min/max at all times)
 - · VCO output, (i.e., FVCO) 350 MHz to 700 MHz (min/max at all times)
 - Output of PLLODIV, (i.e., FPLL) 10 MHz to 120 MHz (min/max at all times)

11.1 DMA Control Registers

TABLE 11-1: DMA GLOBAL REGISTER MAP

ess		е								Bi	ts								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000	DMACON	31:16	_	_	_	-	—	_	_	_	_	_	_	_	_	_	—	_	0000
1000	DIVIACON	15:0	ON	_	—	SUSPEND	DMABUSY	_	_	_	_	_	_	_	_	_	—	—	0000
1010	DMASTAT	31:16	RDWR	_	—	_	—	_	_	_	_	_	_	_	_	_	—	—	0000
1010	DIVIASTAT	15:0		—	—	—	—	_	—	—	_	—	—	—	—	C	0MACH<2:0	>	0000
1020	DMAADDR	31:16								DMAADD	P-31.05								0000
1020	DIVIAADDR	15:0								DIVIAADL	11-31.02								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

TABLE 11-2: DMA CRC REGISTER MAP

ess										Bi	ts								6
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1020	DCRCCON	31:16	_	_	BYTO	<1:0>	WBO	—	—	BITO	—	_	_	_	_	_	—	_	0000
1030	DURUUUN	15:0	_	—	—			PLEN<4:0>			CRCEN	CRCAPP	CRCTYP	—	—	C	RCCH<2:0	>	0000
1040	DCRCDATA	31:16									TA<31:0>								0000
1040	DEREDAIA	15:0								DURUDA	14-21.0-								0000
1050	DCRCXOR	31:16														0000			
1050	DUNUAUR	15:0								DURUAL	01.02								0000
Logon	d	aknown	value on D	onot: = I	inimplomor	stad road a	a 'o' Booo	t values are	abourn in h	ovodooimo	1								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and INV Registers" for more information.

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection		
INT2	INT2R<3:0>	INT2R	0000 = RPB6		
T4CK	T4CKR<3:0>	T4CKR	0001 = RPC15		
T8CK	T8CKR<3:0>	T8CKR			
IC1	IC1R<3:0>	IC1R	0010 = RPA4		
IC5	IC5R<3:0>	IC5R	0011 = RPB13		
IC9	IC9R<3:0>	IC9R			
IC13	IC13R<3:0>	IC13R	0100 = RPB2		
U1RX	U1RXR<3:0>	U1RXR	0101 = RPC6		
U2CTS	U2CTSR<3:0>	U2CTSR	0110 = RPC1		
U5RX	U5RXR<3:0>	U5RXR			
SS1	SS1R<3:0>	SS1R	0111 = RPA7		
SS3	SS3R<3:0>	SS3R	1000 = RPE14		
SS4	SS4R<3:0>	SS4R			
SS5	SS5R<3:0>	SS5R	1001 = RPC13		
INDX1	INDX1R<3:0>	INDX1R	1010 = RPG8		
QEB2	QEB2R<3:0>	QEB2R	1011 = Reserved		
INDX3	INDX3R<3:0>	INDX3R			
QEB4	QEB4R<3:0>	QEB4R	1100 = RPF0		
INDX5	INDX5R<3:0>	INDXR5	1101 = RPD4 ⁽¹⁾		
QEB6	QEB6R<3:0>	QEB6R			
C1RX	C1RXR<3:0>	C1RXR	1110 = Reserved		
OCFB	OCFBR<3:0>	OCFBR	1111 = Reserved		

TABLE 13-1:	INPUT PIN SELECTION (CONTINUED)
-------------	-----------------------	------------

Note 1: This selection is not available on 64-pin devices.

TABLE 13-8: PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY

s										Bit	•								Τ
()	5	e					1		I	Bit	s		1					I	_
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0310	TRISD	31:16		_	—	—	—	_		—	_			_	—	—	—		0000
0310	TRISD	15:0	_	—			—	—	_	TRISD8 ⁽²⁾	—	TRISD6	TRISD5	—		_		_	0160
0320	PORTD	31:16	_	—	-	-	—	_	—	-	_	_	—	—	-	_		_	0000
0320	FORID	15:0	—	_	—	_	—	_	—	RD8 ⁽²⁾	—	RD6	RD5	_	—	—	_	_	xxxx
0330	LATD	31:16	—	_	—	_	—	_	—	_	_		—	_	_	—	_	—	0000
0000	LATE	15:0	—	—	—	_	—	—	—	LATD8 ⁽²⁾	—	LATD6	LATD5	—	—	—	—	—	xxxx
0340	ODCD	31:16	—	—	—	_	—	—	—	—	—		—	—	—	—	—	—	0000
0010	0000	15:0	—	—	—	—	—	_	—	ODCD8 ⁽²⁾	—	ODCD6	ODCD5	—	—	—	_	—	0000
0350	CNPUD	31:16	—	—	—	—	—	_	—	—	—	_	—	—	—	—	_	—	0000
0000		15:0	—	—	—	—	—	—	—	CNPUD8 ⁽²⁾	—	CNPUD6	CNPUD5	—	—	—	—	—	0000
0360	CNPDD	31:16	—	—	—	—	—	—	—	—	—		—	—	—	—	—	—	0000
0000		15:0	—	—	—	—	—	_	—	CNPDD8 ⁽²⁾	—	CNPDD6	CNPDD5	—	—	—	_	—	0000
		31:16	—	_	—	—	—	—	—	-	—	—	—	—	—	—	_	—	0000
0370	CNCOND	15:0	ON	—	SIDL	-	EDGE DETECT	—	—	—	—	—	—	—	_	_		—	0000
0380	CNEND	31:16	_	—			—	_	_	_	_	_	—	—		_		_	0000
0300	CINLIND	15:0	_	—			—	—	_	CNIED8 ⁽²⁾	—	CNIED6	CNIED5	—		_		_	0000
		31:16	_	_	—	_	—	—	—	—	—	—	—	_	—	—	-	—	0000
0390	CNSTATD	15:0	—	—	—	—	—	-	—	CN STATD8 ⁽²⁾	—	CN STATD6	CN STATD5	—	—	—	—	—	0000
00.4.0		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
03A0	CNNED	15:0	_	_	—	_	—	_	_	CNNED8(2)	_	CNNED6	CNNED5	_	_	—		—	0000
0200	CNFD	31:16		_	—	_	_	_	_	-	_	-	—	_	_	-	_	_	0000
03B0	CINFD	15:0			_		—	_		CNFD8 ⁽²⁾		CNFD6	CNFD5		-	_			0000
		31:16		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	0000
03C0	SRCON0D	15:0	_	_	-				_	SR0D8 ⁽²⁾	_	SR0D6	SR0D5	_	_	_	_	_	0000
		31:16	_	_			_	_	_	_	_	_		—		_		_	0000
03D0	SRCON1D	15:0		_	_	_	_	_	_	SR1D8 ⁽²⁾	_	SR1D6	SR1D5	_	_	-	_	_	0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See **13.2 "CLR, SET, and INV Registers"** for more Note 1: information.

This bit is not available on general purpose devices. 2:

NOTES:

TABLE 25-2: ADC REGISTER MAP (CONTINUED)

6		θ								Bit	5								ş
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7840	ADCDATA36 ⁽¹⁾	31:16			•	•				DATA<3	1:16>		•	•					000
		15:0								DATA<	15:0>								000
7850	ADCDATA37 ⁽¹⁾	31:16		DATA<31:16> 00											000				
		15:0								DATA<	15:0>								000
7860	ADCDATA38 ⁽¹⁾	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7870	ADCDATA39 ⁽¹⁾	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7880	ADCDATA40 ⁽¹⁾	31:16		DATA<31:16> 0000															
		15:0								DATA<	15:0>								000
7890	ADCDATA41 ⁽¹⁾	31:16								DATA<3	1:16>								000
		15:0		DATA<15:0> 00								000							
78D0	ADCDATA45 ⁽¹⁾	31:16		DATA<31:16> 000															
		15:0		DATA<15:0> 000															
78E0	ADCDATA46 ⁽¹⁾	31:16	DATA<31:16> 0.00									000							
		15:0	DATA<15:0> 00									000							
78F0	ADCDATA47 ⁽¹⁾	31:16	DATA<31:16> 00										000						
		15:0		DATA<15:0> 00										000					
7900	ADCDATA48	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7910	ADCDATA49	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7920	ADCDATA50 ⁽²⁾	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7940	ADCDATA52 ⁽²⁾	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7950	ADCDATA53 ⁽²⁾	31:16								DATA<3	1:16>								000
		15:0								DATA<	15:0>								000
7E00	ADCSYSCFG0	31:16		-	-	-	AN27	AN26	AN25	AN24	AN23 ⁽¹⁾	AN22 ⁽¹⁾	AN21 ⁽¹⁾	AN20 ⁽¹⁾	AN19	AN18	AN17	AN16	0Fx
		15:0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	FFF
7E10	ADCSYSCFG1	31:16	_	_	_	_	-	-	_	_	-	-	AN53 ⁽¹⁾	AN52 ⁽¹⁾	_	AN50 ⁽¹⁾	AN49	AN48	00x
		15:0	AN47 ⁽¹⁾	AN46 ⁽¹⁾	AN45 ⁽¹⁾	_	_	—	AN41 ⁽¹⁾	AN40 ⁽¹⁾	AN39 ⁽¹⁾	AN38 ⁽¹⁾	AN37 ⁽¹⁾	AN36 ⁽¹⁾	AN35 ⁽¹⁾	AN34 ⁽¹⁾	AN33 ⁽¹⁾	_	xxx
7D00	ADC0CFG ⁽³⁾	31:16		ADCCFG<31:16> 0000															
		15:0								ADCCFG	<15:0>								000

PIC32MK GP/MC Family

1: 2: 3: Note

This bit or register is not available on 64-pin devices. This register is for internal ADC input sources (i.e., VBAT, and CTMU Temperature Sensor. Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory programmed DEVADCx Flash locations starting at 0xBFC45000 into the ADCxCFG registers starting at 0xBF887D00, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0							
31.24	—	—	_	—	_	_	_	—
23:16	U-0	U-0	R-0, HS, HC					
23.10	—	—	EIRDY53	EIRDY52	EIRDY51	EIRDY50	EIRDY49	EIRDY48
45.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
15:8	EIRDY47 ⁽¹⁾	EIRDY46 ⁽¹⁾	EIRDY45 ⁽¹⁾	_	_	_	EIRDY41 ⁽¹⁾	EIRDY40 ⁽¹⁾
7:0	R-0, HS, HC	U-0						
7:0	EIRDY39 ⁽¹⁾	EIRDY38 ⁽¹⁾	EIRDY37 ⁽¹⁾	EIRDY36 ⁽¹⁾	EIRDY35 ⁽¹⁾	EIRDY34 ⁽¹⁾	EIRDY33 ⁽¹⁾	—

REGISTER 25-37: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Cleared by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21-13 EIRDY53:EIRDY45: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled
- bit 12-10 Unimplemented: Read as '0'
- bit 9-1 EIRDY41:EIRDY33: Early Interrupt for Corresponding Analog Input Ready bits
 - 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCIS<2:0> bits in the ADCCON2 register.
 - 0 = Interrupts are disabled
- bit 0 Unimplemented: Read as '0'
- Note 1: This bit is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31.24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE		—	—
22:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16					MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF		—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	MODIF	CTMRIF	RBIF	TBIF

REGISTER 26-3: CxINT: CAN INTERRUPT REGISTER ('x' = 1-4)

IVRIE: Invalid Message Received Interrupt Enable bit

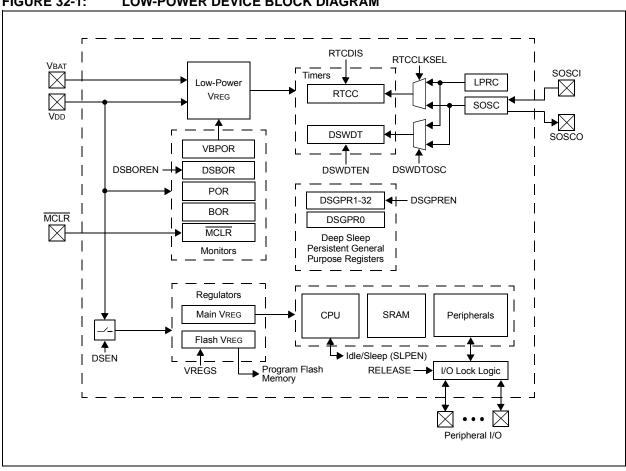
Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CxCON<15>).

REGISTER 31-12: IOCONX: PWMX I/O CONTROL REGISTER 'x' ('x' = 1 THROUGH 12) (CONTINUED)


bit 7-6	OVRDAT<1:0>: State ⁽³⁾ for PWMxH, PWMxL Pins if Override is Enabled bits
	If OVRENH = 1, OVRDAT<1> provides data for PWMxH
	If OVRENL = 1, OVRDAT<0> provides data for PWMxL

- bit 5-4 **FLTDAT<1:0>:** State⁽³⁾ for PWMxH and PWMxL Pins if FLTMOD is Enabled bits⁽²⁾ If FLTMOD<1:0> (IOCONx<17:16>) = 00 or 01, one of the following Fault modes is enabled: If fault is active, FLTDAT<1> provides the state for PWMxH If fault is active, FLTDAT<0> provides the state for PWMxL If fault is inactive, FLTDAT<1:0> bits are ignored
- bit 3-2 **CLDAT<1:0>:** State for PWMxH and PWMxL Pins if CLMOD is Enabled bits⁽³⁾ If CLMOD (IOCONx<24>) = 1, Current-Limit mode is enabled, as follows: If current limit is active, CLTDAT<1> provides the state for PWMxH If current limit is active, CLTDAT<0> provides the state for PWMxL If current limit is inactive, CLTDAT<1:0> bits are ignored

bit 1 **SWAP:** SWAP PWMxH and PWMxL Pins bit 1 = PWMxH output signal is connected to PWMxL pin; PWMxL output signal is connected to PWMxH pin 0 = PWMxH and PWMxL output signals pins are mapped to their respective pins

- **Note 1:** During PWM initialization, if the PWMLOCK fuse bit is 'enabled' (logic '0'), the control on the state of the PWMxL/PWMxH output pins rests solely with the PENH and PENL bits. However, these bits are at '0', which leaves the pin control with the I/O module. Care must be taken to not inadvertently set the TRIS bits to output, which could impose an incorrect output on the PWMxH/PWMxL pins even if there are external pull-up and pull-down resistors. The data direction for the pins must be set to input if tri-state behavior is desired or be driven to the appropriate logic states. The PENH and PENL bits must always be initialized prior to enabling the MCPWM module (PTEN bit = 1).
 - 2: These bits must not be changed after the MCPWM module is enabled (PTEN bit = 1).
 - 3: State represents Active/Inactive state of the PWM, depending on the POLH and POLL bits. For example, if FLTDAT<1> is set to '1' and POLH is set to '1', the PWMxH pin will be at logic level 0 (active level) when a Fault occurs.
 - 4: If (PWMLOCK = 0), these bits are writable only after the proper sequence is written to the PWMKEY register. If (PWMLOCK = 1), these bits are writable at all times. The user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation for the IOCONx register if PWMLOCK = 1. Write access to a IOCONx register must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. This is not an atomic operation, and therefore, any CPU interrupts that occur during or immediately after an unlock sequence may cause the IOCONx SFR write access to fail.

Note:	e: Dead Time Compensation, Current-Limit, and Faults share common inputs on the FLT and 15). Therefore, it is not recommended that a user application assign these multiple same Fault FLTx pin. In addition, DTCMP functions are fixed to specific FLTx inputs, wh (CLSRC<3:0> bits) and Faults (FLTSRC<3:0> bits) can be assigned to any one of 15 un inputs. For example, if a user application was required to assign multiple simultaneous FaultCMP to a single PWM1. Refer to the following examples for both desirable and under the following examples for both desirable examples for both desirables for both des	e functions on the lere Current-Limit, ique and separate ault, Current-Limit,							
	Desirable Example PWM1: (DTCMP1 = FLT3 pin, Current Limit = FLT7 pin, Fault = FLT8 pin) PWMCONIbits.DTC = 0bl1; //Enable DTCMP1 input on FLT3 function pin IOCONIbits.CLSRC = 1; //Enable PWM1 Current-Limit mode IOCONIbits.FLTMOD = 1; //Enable current limit for PWM1 on FLT7 pin IOCONIbits.FLTMOD = 1; //Enable PWM1 Fault mode IOCONIbits.FLTSRC = 0b0111; //Enable Fault for PWM1 on FLT8 pin								
	Undesirable Example: PWM1: (DTCMP1 = Current Limit = Fault = FLT3 pin) <pre>PWMCON1bits.DTC = 0b11; //Enable DTCMP1 input on FLT3 function IOCON1bits.CLMOD = 1; //Enable PWM1 Current-Limit mode IOCON1bits.FLTMOD = 1; //Enable Current limit for PWM1 on FLT3 IOCON1bits.FLTSRC = 0b0010; //Enable Fault for PWM1 on FLT3 pin</pre>	-							

FIGURE 32-1: LOW-POWER DEVICE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		_	—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	-	—	_	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
15:8	_	_	_	—	—	-	-	DSINT0
7.0	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0
7:0	DSFLT	_	_	DSWDT	DSRTC	DSMCLR	_	_

DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER⁽³⁾ REGISTER 32-2:

Legend:		HS = Hardware Set	HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

b

bit 31-9	Unimplemented: Read as '0'
bit 8	DSINT0: Interrupt-on-Change bit
	 1 = Interrupt-on-change was asserted during Deep Sleep 0 = Interrupt-on-change was not asserted during Deep Sleep
bit 7	DSFLT: Deep Sleep Fault Detected bit
	1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been corrupted
	0 = No Fault was detected during Deep Sleep
bit 6-5	Unimplemented: Read as '0'
bit 4	DSWDT: Deep Sleep Watchdog Timer Time-out bit
	 1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep 0 = The Deep Sleep Watchdog Timer did not time-out during Deep Sleep
bit 3	DSRTC: Real-Time Clock and Calendar Alarm bit
	 1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep 0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep
bit 2	DSMCLR: MCLR Event bit
	1 = The $\overline{\text{MCLR}}$ pin was active and was asserted during Deep Sleep 0 = The MCLR pin was not active, or was active, but not asserted during Deep Sleep
bit 1-0	Unimplemented: Read as '0'
Note 1	: All bits in this register are cleared when the DSEN bit (DSCON<15>) is set.
2	: To ensure a successful write, this register must be written twice consecutively, back-to-back with the same

- To ensure a successful write, this register must be written twice consecutively, back-to-back with the same 2: value, and no interrupts in between the writes.
- 3: After waking from deep sleep, writes to the DSWAKE register are ignored until the RELEASE bit (DSCON<0>) is cleared.

TABLE 32-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

Bits																			
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets ⁽¹⁾
0040	PMD1 ⁽²⁾	31:16	_	—	_	_	—	—		_		—	-	_	_	—	_	—	0000
0010		15:0	—	—	_	_			EEMD	CTMUMD	_	DAC3MD	DAC2MD	DAC1MD		—	—	ADCMD	0000
0050	PMD2 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	OPA5MD	—	OPA3MD	OPA2MD	OPA1MD	0000
0050	FIVIDZ	15:0	_	_		-	_	_	-	-	-	_	-	CMP5MD	C4MPMD	C3MPMD	CMP2MD	CMP1MD	0000
0060	PMD3 ⁽²⁾	31:16	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
0000	PINIDS	15:0	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
0070	PMD4 ⁽²⁾	31:16	_	_		_	PWM12MD	PWM11MD	PWM10MD	PWM9MD	PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	0000
0070	PIVID4' /	15:0	_	—		_	_	_		T9MD	T8MD	T7MD	T6MD	T5MD	T4MD	T3MD	T2MD	T1MD	0000
0080	PMD5 ^(1,2)	31:16	CAN4MD	CAN3MD	CAN2MD	CAN1MD	_	_	USB2MD	USB1MD	_	_	_	_	_	_	—	_	0000
0080		15:0	_	—	SPI6MD	SPI5MD	SPI4MD	SPI3MD	SPI2MD	SPI1MD	_	_	U6MD	U5MD	U4MD	U3MD	U2MD	U1MD	0000
0090	PMD6 ⁽²⁾	31:16	_	_	_	_	QEI4MD	QEI3MD	QEI2MD	QEI1MD				_	QEI6MD	QEI5MD	—	PMPMD	0000
		15:0	_	_	_	_	REFO4MD	REFO3MD	REFO2MD	REFO1MD	_	_	_	_	_	_			0000
0040	PMD7 ⁽²⁾	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
00A0 F	PIND//-/	15:0	_	_	_		_	_		-		_		DMAMD	_	_	_	_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

2: For any associated PMDx bit, '0' = clocks enabled to the peripheral; '1' = For associated peripheral, clocks are disabled, SFRs are reset, and CPU read/write is invalid.

REGISTER 33-3: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 14-12 DBGPER<2:0>: Debug Mode CPU Access Permission bits
 - 1xx = Allow CPU access to Permission Group 2 permission regions
 - ${\tt x1x}$ = Allow CPU access to Permission Group 1 permission regions
 - xx1 = Allow CPU access to Permission Group 0 permission regions
 - 0xx = Deny CPU access to Permission Group 2 permission regions
 - x_0x = Deny CPU access to Permission Group 1 permission regions
 - xx0 = Deny CPU access to Permission Group 0 permission regions
 - **Note:** When the CPU is in Debug mode and the CPU1PG<1:0> bits (CFGPG<1:0>) are set to a denied permission group as defined by DBGPER<2:0>, the transaction request is assigned Group 3 permissions.
- bit 11 **Reserved:** This bit is controlled by debugger/emulator development tools and should not be modified by the user.
- bit 10 FSLEEP: Flash Sleep Mode bit
 - 1 = Flash is powered down when the device is in Sleep mode
 - 0 = Flash power down is controlled by the VREGS bit (PWRCON<0>)
- bit 9-7 Reserved: Write as '1'
- bit 6 BOOTISA: Boot ISA Selection bit
 - 1 = Boot code and Exception code is MIPS32
 - (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS
 - (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)
- bit 5 TRCEN: Trace Enable bit
 - 1 = Trace features in the CPU are enabled
 - 0 = Trace features in the CPU are disabled
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit⁽¹⁾
 - 1 = JTAG is enabled
 - 0 = JTAG is disabled
 - **Note:** On Reset, this Configuration bit is copied into JTAGEN (CFGCON<3>). If JTAGEN (DEVCFG0<2>) = 0, the JTAGEN bit cannot be set to '1' by the user application at run-time, as JTAG is always disabled. However, if JTAGEN (DEVCFG0<2>) = 1, the user application may enable/disable JTAG at run-time as by simply writing JTAGEN (CFGCON<3> as required.
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Disabled
 - 10 = 4-wire JTAG Enabled PGECx/PGEDx Disabled ICD module Enabled
 - 01 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Disabled
 - 00 = PGECx/PGEDx Enabled 4-wire JTAG I/F Disabled ICD module Enabled
 - **Note:** When the FJTAGEN or JTAGEN bits are equal to '0', this prevents 4-wire JTAG debugging, but not PGECx/PGEDx debugging.
- **Note 1:** This bit sets the value of the JTAGEN bit in the CFGCON register.

35.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

35.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 36-34:SPIX MODULE SLAVE MODE (CKE = 0, SMP = 1) TIMING
REQUIREMENTS (CONTINUED) (CONTINUED)

AC CHA	ARACTERIS	TICS	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP9b	Тзск	SCKx Period	22			ns	$(VDD \ge 3.0V \text{ and the SMP bit}$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin), SRCON0x.y = 0, SRCON1x.y = 0 All other remappable SPI pins not contained in conditions for parameter SP9a.			
			41		_	ns	$(V_{DD} \ge 3.0V \text{ and the SMP bit}$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin), SRCON0x.y = 1, SRCON1x.y = 0 All other remappable SPI pins not contained in conditions for parameter SP9a.			
			59			ns	$(VDD \ge 3.0V \text{ and the SMP bit}$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin), SRCON0x.y = 0, SRCON1x.y = 1 All other remappable SPI pins not contained in conditions for parameter SP9a.			
			74	_	_	ns	$(VDD \ge 3.0V \text{ and the SMP bit}$ (SPIxCON<9> = 1), I/O Pin Slew Rate Control (x = A-F, y = port pin), SRCON0x.y = 1, SRCON1x.y = 1 All other remappable SPI pins not contained in conditions for parameter SP9a.			
SP70	TscL	SCKx Input Low Time	Tsck/2	_	_	ns	_			
SP71	TscH	SCKx Input High Time	Tsck/2	_	_	ns				
SP72	TscF	SCKx Input Fall Time	<u> </u>	—	—	ns	See parameter DO32			
SP73	TSCR	SCKx Input Rise Time	<u> </u>	—		ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time (Note 3)		—	_	ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 3)	-	—		ns	See parameter DO31			
SP35	TSCH2DOV,	SDOx Data Output Valid		—	7	ns	VDD > 2.7V			
		after SCKx Edge	<u> </u>	—	10	ns	VDD < 2.7V			
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	5	—	_	ns	-			
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	—	_	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Assumes 10 pF load on all SPIx pins.

NOTES: