

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Obsolete
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, IrDA, LINbus, PMP, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, Motor Control PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 42x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk1024mcf100-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer							
	to the Documentation > Reference							
	Manuals section of the Microchip PIC32							
	web site: http://www.microchip.com/pic32.							

- Section 1. "Introduction" (DS60001127)
- Section 4. "Prefetch Cache Module" (DS60001119)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 22. "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" (DS60001344)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)
- Section 39. "Op amp/Comparator" (DS60001178)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 43. "Quadrature Encoder Interface (QEI)" (DS60001346)
- Section 44. "Motor Control PWM (MCPWM) (DS60001393)
- Section 45. "Control Digital-to-Analog Converter (CDAC)" (DS60001327)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)
- Section 58. "Data EEPROM" (DS60001341)

	Pin N	umber								
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description					
					JTAG					
TCK	3	1	I	ST	JTAG Test Clock Input Pin					
TDI	49	31	I	ST	JTAG Test Data Input Pin					
TDO	100	64	0	_	JTAG Test Data Output Pin					
TMS	76	49	I	ST	JTAG Test Mode Select Pin					
					Trace					
TRCLK	91	50	0	CMOS	Trace Clock					
TRD0	97	54	0	CMOS	Trace Data bits 0-3					
TRD1	96	53	0	CMOS	Trace support is available through the MPLAB [®] REAL ICE™ In-circuit					
TRD2	95	52	0	CMOS	Emulator.					
TRD3	92	51	0	CMOS						
				Pro	gramming/Debugging					
PGED1	27	18	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1					
PGEC1	26	17	I	ST	Clock input pin for Programming/Debugging Communication Channel 1					
PGED2	69	43	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2					
PGEC2	70	44	I	ST	Clock input pin for Programming/Debugging Communication Channel 2					
PGED3	24	15	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 3					
PGEC3	25	16	I	ST	Clock input pin for Programming/Debugging Communication Channel 3					
MCLR	13	7	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
Legend:	CMOS = CM	MOS-comp	atible inpu	ut or output	Analog = Analog input P = Power					

TABLE 1-21: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select

I = Input

© 2016-2018 Microchip Technology Inc.

3.6 MIPS32[®] microAptiv[™] MCU Core Configuration

Register 3-1 through Register 3-5 show the default configuration of the MIPS32 microAptiv MCU core, which is included on the PIC32MK GP/MC family of devices.

							, •==••	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31:24	—	—	—	—	—	-	—	ISP
00.40	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
23:16	DSP	UDI	SB	SB MDU — MM				BM
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-1
15:8	BE	AT<	1:0>		AR<2:0>		U-0	U-0
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	—	_
7.0	—	—	_	—		K0<2:0>		

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.	
--------	--	--

	······································
bit 30-25	Unimplemented: Read as '0'
bit 24	ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented
bit 23	DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented
bit 22	UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented
bit 21	SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU
bit 19	Unimplemented: Read as '0'
bit 18-17	MM<1:0>: Merge Mode bits 10 = Merging is allowed
bit 16	BM: Burst Mode bit 0 = Burst order is sequential
bit 15	BE: Endian Mode bit 0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits 00 = MIPS32
bit 12-10	AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2
bit 9-3	Unimplemented: Read as '0'

TABLE 4-9: SYSTEM BUS TARGET 1 REGISTER MAP (CONTINUED)

ess	Register Name										Bits								
Virtual Address (BF8F_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
84E0	SBT1REG5	31:16 BASE<21:6>											xxxx						
04LU		15:0	BASE<5:0>						PRI	—			SIZE<4:0	>		—	—	—	xxxx
84F0	SBT1RD5	31:16	—		—	—	—	_	—	—	_	—	—	—	—	—	—	—	xxxx
04FU	SBLIKDS	15:0	—		_	_	_	_	—	—	_	—	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
84F8		31:16	—	—	—		—	_	_	—	—	—	—	_	—	_	—	_	xxxx
0400	SBT1WR5	15:0	_	_	_	—	—	_		-	_		—	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	PWPULOCK	_	_	_	_	—	_	_			
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				PWP<2	3:16>						
15:8	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	PWP<15:8>										
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			

REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 **Unimplemented:** Read as '0'

bit 23-0 **PWP<23:0>:** Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

TABLE 8-4: INTERRUPT REGISTER MAP (CONTINUED)

ress)	20	е								В	lits								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OFF121	31:16	_		—	—		_	_		—	—		—	—	—	VOFF<	17:16>	0000
0724	UFF121	15:0								VOFF<15:1	>								0000
0728	OFF122	31:16	—	—	—	—	-	—	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0720	0FF122	15:0								VOFF<15:1	>								0000
0720	OFF123	31:16	—	_	—	—	_	_	—	_	—	—	_	—	_	—	VOFF<	17:16>	0000
0720	011 120	15:0								VOFF<15:1	>			-		-	-	_	0000
0730	OFF124	31:16	_	_	—	—	_		_	_	_		_	—	—	—	VOFF<	17:16>	0000
0700	011124	15:0								VOFF<15:1	>			-		-	-	_	0000
0734	OFF125	31:16	—	—	—	—	_	—	_	—		—	_	—	—	—	VOFF<	17:16>	0000
0/01	011 120	15:0								VOFF<15:1	>							_	0000
0738	OFF126	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	VOFF<	17:16>	0000
0750	011 120	15:0								VOFF<15:1	>							_	0000
073C	OFF127	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	VOFF<	17:16>	0000
0,00	011127	15:0								VOFF<15:1	>							—	0000
0740	OFF128	31:16	—	—	—	—	—	—	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
01.10	0	15:0								VOFF<15:1	>						-	—	0000
0744	OFF129	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1	>						-	—	0000
0748	OFF130	31:16	—	—	—	—	—	—	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1	>						1	_	0000
074C	OFF131	31:16	_	—	—	—	_	_	_			—	_	—	—	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1	>						I	—	0000
0750	OFF132	31:16	—	_	—	—	_		_	_		—	—	—	_	—	VOFF<	17:16>	0000
		15:0								VOFF<15:1	>						I	—	0000
0754	OFF133	31:16	_	—	—	—	—	—	_	—	—	—	—	—	—	—	VOFF<	17:16>	0000
5.01	5	15:0								VOFF<15:1	>						1	—	0000
076C	OFF139	31:16	—	—	—	—	_	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
0,00	511100	15:0								VOFF<15:1	>							-	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See 13.2 "CLR, SET, and Note 1: INV Registers" for more information.

This bit is not available on 64-pin devices. 2:

3: This bit is not available on devices without a CAN module.

4: This bit is not available on 100-pin devices.

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 22 is not available on 64-pin devices.

7: The IFSx bits, as with all interrupt flag status register bits, are set as long as the peripheral is enabled and an interrupt condition event occurs. Interrupts do not have to be enabled for the IFSx bits to be set. If the user application does not want to use an interrupt, it can poll the corresponding peripheral IFSx bit to see whether an interrupt condition has occurred. The IFSx bits are persistent, they must be cleared if they are set by user software after an IFSx user bit interrogation.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
01.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	_	_	—	_	_	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	_	_	-	—	-		_				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0				
15:8	—	_	_	_	—	-		UPLLRDY				
7.0	R-0	U-0	R-0	R-0	U-0	R-0	U-0	R-0				
7:0	SPLLRDY	_	LPRCRDY	SOSCRDY	—	POSCRDY		FRCRDY				

REGISTER 9-9: CLKSTAT: OSCILLATOR CLOCK STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-9	Unimplemented: Read as '	'0'
----------	--------------------------	-----

bit 8	UPLLRDY: USB PLL (UPLL) Ready Status bit 1 = UPLL is ready 0 = UPLL is not ready
bit 7	SPLLRDY: System PLL (SPLL) Ready Status bit
	1 = SPLL is ready
	0 = SPLL is not ready
bit 5	LPRCRDY: Low-Power RC (LPRC) Oscillator Ready Status bit
	1 = LPRC is stable and ready
	0 = LPRC is disabled or not operating
bit 4	SOSCRDY: Secondary Oscillator (Sosc) Ready Status bit
	1 = Sosc is stable and ready
	0 = Sosc is disabled or not operating
bit 3	Unimplemented: Read as '0'
bit 2	POSCRDY: Primary Oscillator (Posc) Ready Status bit
	1 = Posc is stable and ready
	0 = Posc is disabled or not operating
bit 1	Unimplemented: Read as '0'
bit 0	FRCRDY: Fast RC (FRC) Oscillator Ready Status bit
	1 = FRC is stable and ready
	0 = FRC is disabled for not operating

REGISTER 11-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5CHDDIF: Channel Destination Done Interrupt Flag bit1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)0 = No interrupt is pendingbit 4CHDHIF: Channel Destination Half Full Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
 0 = No interrupt is pending

bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit

- 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
- 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending

bit 0 CHERIF: Channel Address Error Interrupt Flag bit

- 1 = A channel address error has been detected
 - Either the source or the destination address is invalid.
- 0 = No interrupt is pending

REGISTER 12-11: UxCON: USB CONTROL REGISTER ('x' = 1 AND 2) (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
 - 0 = Even/Odd buffer pointers not being Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit⁽⁵⁾

- 1 = SOF token sent every 1 ms
- 0 = SOF token disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the UxTOK register (see Register 12-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
51.24	—	—	—	—		—	-	_	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	-	—	—	_	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	—	—	—	—	-	—	
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
7:0	UTEYE	UOEMON	_	USBSIDL	LSDEV			UASUSPND	

REGISTER 12-20: UxCNFG1: USB CONFIGURATION 1 REGISTER ('x' = 1 AND 2)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB <u>OE</u> Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
 0 = OE signal is inactive

bit 5 Unimplemented: Read as '0'

bit 4 USBSIDL: Stop in Idle Mode bit

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode

bit 3 **LSDEV:** Low-Speed Device Enable bit

- 1 = USB module to operate in Low-Speed Device mode
- 0 = USB module to operate in OTG, Host, or Full-Speed Device mode

bit 2-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (UxPWRC<1>) in Register 12-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (UxPWRC<1>) to suspend the module, including the USB 48 MHz clock

TABLE 13-15: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

SS										B	lits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1500	IC12R	31:16	_	—	—	—	—	—	—	_		—	—	_		—	—	_	0000
1500	IC IZR	15:0	—	—	_	_	—	_	—	_	—	_	_	_		IC12F	<3:0>		0000
1504	IC13R	31:16		_	_	_	_	—	_	_		_	_			—	—	—	0000
1504	1013K	15:0		—	—	—	—	—	_	_		—	—			IC13F	R<3:0>	-	0000
1508	IC14R	31:16		—	—	—	—	—	_	_		—	—			_	—	—	0000
1508		15:0		—	—	—	—	—	_	_		—	—			IC14F	R<3:0>		0000
150C	IC15R	31:16		_	_	_	_	—	_	_		_	_			—	—	—	0000
1500	IC ISK	15:0		—	—	—	—	—	_	_		—	—			IC15F	R<3:0>	-	0000
1510	IC16R	31:16		—	—	—	—	—	_	_		—	—			—	—	—	0000
1510	ICIOR	15:0	-	—	_	_	—	_	_	_	_	—	_	_		IC16F	R<3:0>		0000
1514	SCK5R	31:16		—	—	—	—	—	_	_		—	—			_	—	—	
1514	SONON	15:0		—	—	—	—	—	_	_		—	—			SCK5	R<3:0>		
1518	SDI5R	31:16	-	—	_	_	—	_	_	_	_	—	_	_	_	—	_	—	0000
1310	SDISK	15:0		—	—	—	—	—	_	_		—	—			SDI5F	R<3:0>	-	0000
151C	SS5R	31:16		—	—	—	—	—	_	_		—	_			—	—	—	0000
1310	3337	15:0		_	_	_	_	—	_	_		_	_			SS5R	<3:0>		0000
1520	SCK6R	31:16	_	—	—	—	—	_	_	—	_	—	—	—	-	—	—	—	
1520	SCROK	15:0		—	—	—	—	—	_	_		—	—			SCK6	R<3:0>		
1524	SDI6R	31:16		—	—	—	—	—	_	_		—	_			—	—	—	0000
1524	SDIOK	15:0		_	_	_	_	—	_	_		_	_			SDI6F	R<3:0>		0000
1528	SS6R	31:16	_	—	—	—	—	—	—	—	-	—	—	—		—		—	0000
1520	0001	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SS6R	<3:0>		0000
152C	C3RXR ⁽³⁾	31:16	_	_	—	—	_	—	—	—		_	—	—		—	—	—	0000
1520	CJKK	15:0	_	_	—	—	_	—	—	—	-	_	—	—		C3RX	R<3:0>		0000
1530	C4RXR ⁽³⁾	31:16	_	—	—	—	—	—	—	_		_	—	_		—	—	—	0000
1550	0 4 NAN*7	15:0	-	—	—	_	—	—	—	-	-	_	_	—		C4RX	R<3:0>		0000
1534	QEA3R	31:16		_	—	_		_	_	—		_	_	-		—	_	—	0000
1004	QLAUN	15:0	_		_	—		—	_	_			_			QEA3	R<3:0>		0000
1538	QEB3R	31:16		—	—	—	—	—	_	_		—	—	—	ļ	-	—	—	0000
1000	QLDJK	15:0	_	—	—	—	—	—	_			—	—	-		QEB3	R<3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is not available on devices without a CAN module.

3: This register is only available on PIC32MKXXXGPEXXX devices.

DS60001402E-page 268

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	-	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	_	—	—	_	_		_	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_		OB3E	OB2E	OB1E	OB0E

REGISTER 23-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Hardware Set	SC = Software Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 0 = No overflow occurred
- bit 13-12 **Unimplemented:** Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 OBE: Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
- 0 = No underflow occurredbit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

REGISTER 24-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED) bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾ 1111111 = Alarm will trigger 256 times .</

REGISTER 25-24: ADCTRG7: ADC TRIGGER SOURCE 7 REGISTER

- bit 23-21 **Unimplemented:** Read as '0'
- bit 20-16 **TRGSRC26<4:0>:** Trigger Source for Conversion of Analog Input AN26 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 **Unimplemented:** Read as '0'
- bit 12-8 **TRGSRC25<4:0>:** Trigger Source for Conversion of Analog Input AN25 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC24<4:0>:** Trigger Source for Conversion of Analog Input AN24 Select bits See bits 28-24 for bit value definitions.

Note: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN3	MSEL:	3<1:0>		FSEL3<4:0>					
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN2	MSEL	2<1:0>	FSEL2<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN1	MSEL	1<1:0>		F	SEL1<4:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN0	MSEL	0<1:0>	FSEL0<4:0>						

REGISTER 26-10: CxFLTCON0: CAN FILTER CONTROL REGISTER 0 ('x' = 1-4)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN3: Filter 3 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL3<1:0>: Filter 3 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected 00 = Acceptance Mask 0 is selected
bit 28-24	FSEL3<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	:
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN2: Filter 2 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL2<1:0>: Filter 2 Mask Select bits
	11 = Reserved
	10 = Acceptance Mask 2 is selected
	01 = Acceptance Mask 1 is selected 00 = Acceptance Mask 0 is selected
bit 20-16	FSEL2<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	:
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 26-16: CxFIFOCONn: CAN FIFO CONTROL REGISTER 'n' ('x' = 1-4;'n' = 0 THROUGH 15) (CONTINUED)

- bit 7 TXEN: TX/RX Buffer Selection bit 1 = FIFO is a Transmit FIFO 0 = FIFO is a Receive FIFO TXABAT: Message Aborted bit⁽²⁾ bit 6 1 = Message was aborted 0 = Message completed successfully TXLARB: Message Lost Arbitration bit⁽³⁾ bit 5 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent. Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest message priority
 - 10 = High intermediate message priority
 - 01 = Low intermediate message priority
 - 00 = Lowest message priority
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CxCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24			_	_	—		-	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_		_	—	—	_	_		
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	QEIEN	_	QEISIDL		PIMOD<2:0>(1)		IMV<1	IMV<1:0> ⁽²⁾		
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	11	NTDIV<2:0>(3	3)	CNTPOL	GATEN	CCM	<1:0>		

REGISTER 30-1: QEIxCON: QEIx CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **QEIEN:** Quadrature Encoder Interface Module Counter Enable bit
 - 1 = Module counters are enabled
 - 0 = Module counters are disabled, but SFRs can be read or written
- bit 14 Unimplemented: Read as '0'
- bit 13 **QEISIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾

- 111 = Modulo Count mode for position counter and every index event resets the position counter
- 110 = Modulo Count mode for position counter
- 101 = Resets the position counter when the position counter equals QEIxICCH register
- 100 = Second index event after home event initializes position counter with contents of QEIxICCH register
- 011 = First index event after home event initializes position counter with contents of QEIxICCH register
- 010 = Next index input event initializes the position counter with contents of QEIxICCH register
- 001 = Every Index input event resets the position counter
- 000 = Index input event does not affect position counter
- bit 9-8 IMV<1:0>: Index Match Value bits⁽²⁾
 - 11 = Index match occurs when QEB = 1 and QEA = 1
 - 10 = Index match occurs when QEB = 1 and QEA = 0
 - 01 = Index match occurs when QEB = 0 and QEA = 1
 - 00 = Index match occurs when QEB = 0 and QEA = 0
- bit 7 Unimplemented: Read as '0'
- **Note 1:** When CCM equals modes '01', '10', and '11', all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
 - 2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSxCNTH and POSxCNTL registers are reset.
 - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

TABLE 31-1: MCPWM REGISTER MAP (CONTINUED)

sse			Bits								Bits									
Virtual Address (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
	PTMR10	31:16	_	_	—	—	_	_		_			_				_		0000	
		15:0								TMR<15	5:0>								0000	
AAC0	PWMCON11	31:16	FLTIF	CLIF	TRGIF	PWMLIF	PWMHIF	_	-	—	FLTIEN	CLIEN	TRGIEN	PWMLIEN	PWMHIEN	-	—	—	0000	
		15:0	FLTSTAT	CLTSTAT	_	—	ECAM	<1:0>	ITB	—	DTC	<1:0>	DTCP	PTDIR	MTBS	_	XPRES	_	0000	
AAD0	IOCON11	31:16	—	—		CLSR	C<3:0>		CLPOL	CLMOD			FLTS	RC<3:0>		FLTPOL	FLTMO	D<1:0>	0078	
		15:0	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	\T<1:0>	FLTDA	AT<1:0>	CLDAT	<1:0>	SWAP	OSYNC	0000	
AAE0	PDC11	31:16	_	—	—	—	—	—	_	—	-	—	—	_	_	_	—	—	0000	
		15:0								PDC<15	5:0>								0000	
AAF0	SDC11	31:16	—	—	—	—	—	_	-	—	-	—	—	-	—	_	—	—	0000	
		15:0								SDC<15	5:0>								0000	
AB00	PHASE11	31:16	—	—	—	—	—	_	-	—	-	—	—	-	—	-	—	—	0000	
		15:0			-	-				PHASE<1	15:0>								0000	
AB10	DTR11	31:16	—	—	—	—	—	_	-	—	-	—	—	-	—	-	—	—	0000	
		15:0								DTR<15	5:0>								0000	
AB20	ALTDTR11	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0			-	-				ALTDTR<	15:0>								0000	
AB30	DTCOMP11	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000	
		15:0	—	—							COMP	<13:0>							0000	
AB40	TRIG11	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—		0000	
		15:0			-	-				TRGCMP<	:15:0>								0000	
AB50	TRGCON11	31:16	—	—		—	—	—	—	—		—	—	_	_	_	—		0000	
		15:0		TRGDIV	/<3:0>		TRGSE	L<1:0>	STRGS	EL<1:0>	DTM	STRGIS	—	_	_	_	—		0000	
AB60	STRIG11	31:16	_	—		—	_	_	—	—	—	—	—	_	_	—	—	—	0000	
		15:0							Ś	STRGCMP	<15:0>								0000	
AB70	CAP11	31:16	—	—		—	—	—	—	—	—	—	—	—	—	—	—		0000	
		15:0								CAP<15	:0>								0000	
AB80	LEBCON11	31:16	—	—		—	—	—	—	—	—	—	—	_	_	_	—		0000	
		15:0	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	—	_	_	_	—		0000	
AB90	LEBDLY11	31:16	_	—		—	_	_	—	—	—	—	—	_	_	—	—	—	0000	
		15:0	—	—	—	—						LEB	<11:0>						0000	
ABA0	AUXCON11	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000	
		15:0	—	—	—	—	—	—	—	—	—	—		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	10000	
ABB0	PTMR11	31:16	_	—		—	—		_	—	_	—	—	—	_	_	—	—	0000	
		15:0								TMR<15	5:0>								0000	

REGISTER 31-19: TRIGx: PWM PRIMARY TRIGGER COMPARE VALUE REGISTER 'x' ('x' = 1 THROUGH 12)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—	—	—	—	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10		—	—	—	—	—	—	—			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	TRGCMP<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	TRGCMP<7:0>										

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 TRGCMP<15:0>: Trigger Compare Value bits

These bits specify the value to match against the local time base register PTMRx to generate a trigger to the ADC module, and an interrupt if the TRGIEN bit (PWMCONx<21>) is set.

Note: To generate a trigger at the PWM period boundary, set the compare value = 0.

TABLE 36-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.			Units	Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)									
DC30a	3	13	mA	4 MHz (Note 3)					
DC31a	4	15	mA	10 MHz					
DC32a	13	23	mA	60 MHz (Note 3)					
DC33a	25	35	mA	120 MHz (Note 3)					

Note 1: The test conditions for IIDLE current measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

- · OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled, VUSB3V3 is connected to VDD
- PBCLKx divisor = 1:2 ('x' =/= 1,6,7), PBCLK6 = 1:4, PBCLK1 and PBCLK7 = 1:1
- CPU is in Idle mode (CPU core Halted)
- · Prefetch module is disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is '0' (i.e., clocks enabled)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- IOANCPEN (CFGCON<7>) = 0, I/O Analog Charge Pump disabled
- AICPMPEN (ADCCON1><12>) = 0, ADC Input Charge Pump disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.