

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, IrDA, LINbus, PMP, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, Motor Control PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 42x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mk1024mcf100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-14: **USB1 AND USB2 PINOUT I/O DESCRIPTIONS**

	Pin N	umber				
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description	
VUSB3V3	55	35	Р	—	USB internal transceiver supply. This pin	should be connected to VDD.
VBUS1	54	34	I	Analog	USB1 Bus Power Monitor	
VBUSON1	4	2	0	CMOS	USB1 VBUS Power Control Output	
VBUSON2	10	_	0	CMOS	USB2 VBUS Power Control Output	
D1+	57	37	I/O	Analog	USB1 D+	
D1-	56	36	I/O	Analog	USB1 D-	
USBID1	69	43	I	ST	USB1 OTG ID Detect	
VBUS2	58	_	I	Analog	USB2 Bus Power Monitor	
D2+	60		I/O	Analog	USB2 D+	
D2-	59		I/O	Analog	USB2 D-	
USBID2	77	_	I	ST	USB2 OTG ID detect	
Legend:	CMOS = CM ST = Schmi	•	•	•	a b 1	P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

TABLE 1-15: CTMU PINOUT I/O DESCRIPTIONS

	Pin Num							
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description			
CTED1	25	16	I	ST	CTMU External Edge Input 1			
CTED2	24	15	I	ST	CTMU External Edge Input 2			
CTCMP	27	18	I	Analog	CTMU external capacitor input for pulse	e generation		
CTPLS	PPS	PPS	0	CMOS	CTMU Pulse Generator Output			
Legend:	CMOS = CM	NOS-comp	atible inpu	ut or output	Analog = Analog input	P = Power		
	ST = Schmi	tt Trigger in	put with (CMOS level	ls O = Output	I = Input		

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-16: CDAC1 THROUGH CDAC3 PINOUT I/O DESCRIPTIONS

	Pin Nu	umber				
Pin Name	100-pin TQFP	64-pin QFN/ TQFP	Pin Type	Buffer Type	Description	
CDAC1	51	33	0	Analog	12-bit CDAC1 output	
CDAC2	71	45	0	Analog	12-bit CDAC2 output	
CDAC3	49	31	0	Analog	12-bit CDAC3 output	

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power

I = Input

REGISTER 8-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER 'x' ('x' = 0-63) (CONTINUED)

bit 12-10 IP1<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 . 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 **IS1<1:0>:** Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Note: This register represents a generic definition of the IPCx register. Refer to Table 8-3 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
31.24	—	—	UPOSCEN	—	—	PLLODIV<2:0>					
23:16	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	—	PLLMULT<6:0>									
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15.0	—					I	PLLIDIV<2:0>	•			
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
7.0						PL	LRANGE<2:	0>			

REGISTER 9-4: UPLLCON: USB PLL CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-30 Unimplemented: Read as '0'

- bit 29 **UPOSCEN:** Output Enable bit 1 = USB input clock is Posc
 - 0 = USB input clock is UPLL

bit 28-27 Unimplemented: Read as '0'

- bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits
 - 111 = Reserved 110 = Reserved 101 = PLL Divide by 32 100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 33-5 in **33.0** "**Special Features**" for information.

bit 23 Unimplemented: Read as '0'

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

2: Writes to this register are not allowed if the UPLL is selected as a clock source (COSC<2:0> = 001).

3: While the PLL is active, and if updating the PLL bits in the OSCCON register at run-time, the user application must remain within the following limits at all times for all nodes in the PLL clock tree. Therefore, the order in which the PLL values may be modified, (i.e., PLLODIV, PLLMULT, PLLODIV) becomes important. Failure to maintain PLL nodes within min/max ranges may result in unstable PLL and system behavior.

- Output and input to PLLIDIV block (i.e., FPLLI) 5 MHz to 64 MHz (min/max at all times)
- VCO output, (i.e., FVCO) 350 MHz to 700 MHz (min/max at all times)
- Output of PLLODIV, (i.e., FPLL) 10 MHz to 120 MHz (min/max at all times)

REGISTER 9-5: REFOXCON: REFERENCE OSCILLATOR CONTROL REGISTER ('x' = 1-4)

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽³⁾ 1111 = Reserved
 - •

.

- 1001 = Reserved 1000 = REFCLKI 0111 = SPLL 0110 = UPLL 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK1 0000 = SYSCLK
- Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

10.2 Prefetch Control Registers

TABLE 10-1: PREFETCH REGISTER MAP

ess		ē					Bits							s					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000		31:16	Ι		_	_	_	PERCHEEN	DCHEEN	ICHEEN		PERCHEINV	DCHEINV	ICHEINV	_	PERCHECOH	DCHECOH	ICHECOF	1 0700
0800	CHECON	15:0	_	_	_	CHEPERFEN	_	_	—	PFMAWSEN	_	_	PREFE	N<1:0>	_	PF	MWS<2:0>		0107
0000	CHEHIT	31:16								CHEHI	T<31:16>	`							0000
0820	CHEHII	15:0		CHEHIT<15:0> 000									0000						
0020		31:16		CHEMIS<31:16> 00								0000							
0830	CHEMIS	15:0								CHEM	IS<15:0>								0000

PIC32MK GP/MC Family

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section13.2 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	-	_	—	—	_	_	—		
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16				CHAIRQ	<7:0>(1)					
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
15:8	CHSIRQ<7:0> ⁽¹⁾									
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_		_		

DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER REGISTER 11-8:

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

bit

bit

bit

bit

bit

bit

bit

Read	able bit	vv = vvritable bit	U = Unimplemented bit, read as 'U				
= Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
31-24	Unimplemented: Read as	'0'					
23-16	CHAIRQ<7:0>: Channel Tr	ansfer Abort IRQ bits ⁽¹⁾					
	11111111 = Interrupt 255	will abort any transfers in p	rogress and set CHAIF flag	g			
	•						
	•						
	• 00000001 = Interrupt 1 wil	l abort any transfers in prov	aress and set CHAIE flag				
	00000000 = Interrupt 0 wil	, , ,					
15-8	CHSIRQ<7:0>: Channel Tr		je e e and e e e and hag				
	11111111 = Interrupt 255						
	•						
	•						
	•						
	00000001 = Interrupt 1 wil						
	00000000 = Interrupt 0 wil						
		s not support I ² C, Change any of these DMA trigger tr					
7	CFORCE: DMA Forced Tra	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·			
	1 = A DMA transfer is force	ed to begin when this bit is	written to a '1'				
	0 = This bit always reads '	0'					
6	CABORT: DMA Abort Trans	sfer bit					
	1 = A DMA transfer is abor		to a '1'				
	0 = This bit always reads '						
5	PATEN: Channel Pattern N						
	1 = Abort transfer and clea	•					
4	0 = Pattern match is disable SIRQEN: Channel Start IR						
4							
	 1 = Start channel cell trans 0 = Interrupt number CHSI 						
3	AIRQEN: Channel Abort IR	•					
0	1 = Channel transfer is abo		a CHAIRO occurs				
		sites in an interrupt materin					

- 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'

Note 1: See Table 8-3: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_			_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	-	_			-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	-	_	—
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 12-21: UxEP0-UxEP15: USB ENDPOINT CONTROL REGISTER ('x' = 1 AND 2)

Legend:

_ogonai					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and UxEP0 only)
 - 1 = Direct connection to a low-speed device is enabled
 - 0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and UxEP0 only)
 - 1 = Retry NAKed transactions is disabled
 - 0 = Retry NAKed transactions is enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				DATA<3	ATA<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				DATA<	15:8>		R/W-0 R/W-				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				DATA<	7:0>						

REGISTER 20-4: SPIxBUF: SPIx BUFFER REGISTER ('x' = 1-6)

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 DATA<31:0> FIFO Data bits

When MODE32 or MODE16 selects 32-bit data, the SPI uses DATA<31:0>. When MODE32 or MODE16 selects 24-bit data, the SPI only uses DATA<24:0>. When MODE32 or MODE16 selects 16-bit data, the SPI only uses DATA<15:0>. When MODE32 or MODE16 selects 8-bit data, the SPI only uses DATA<7:0>.

REGISTER 20-5: SPIxBRG: SPIx BAUD RATE GENERATOR REGISTER ('x' = 1-6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	-	—	-	-	—
00.10	U-0	U-0						
23:16	_	—	_	_	_	—		_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—			BRG<12:8>	25/17/9/1 U-0 U-0 U-0 R/W-0	
7:0	R/W-0	R/W-0						
7:0				BRG<	7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

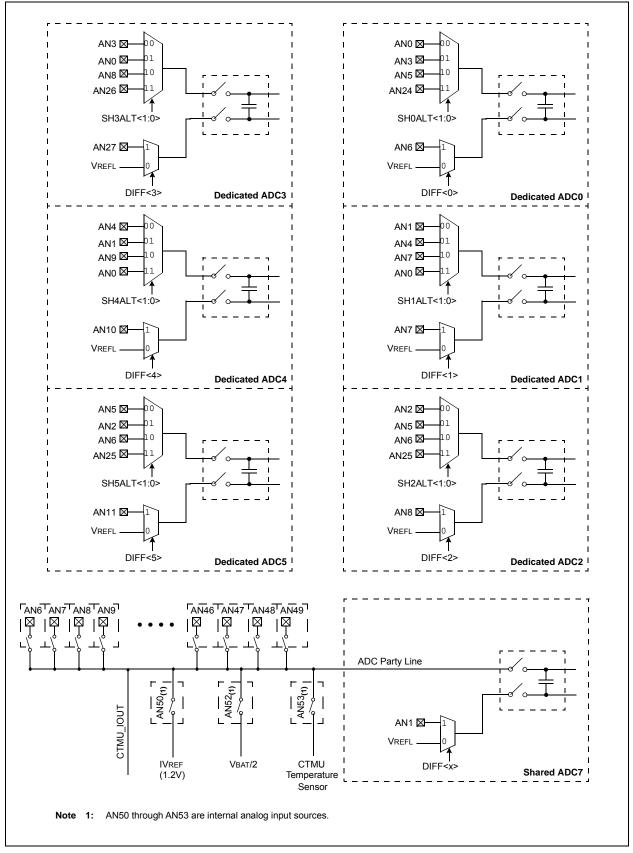
bit 12-0 **BRG<12:0>** Baud Rate Generator Divisor bits Baud Rate = FPBCLKx / (2 * (SPIxBRG + 1)), where x = 2 and 3, (FPBCLK2 for SPI1-SPI2, FPBCLK3 for SPI3-SPI6.) Therefore, the maximum baud rate possible is FPBCLKx / 2 (SPIXBRG = 0) and the minimum baud rate possible is FPBCLKx / 16384.

Note: Changing the BRG value when the ON bit is equal to '1' causes undefined behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	_	_	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CS2a	CS1a		WADDR<21:16>							
	WADDR23	WADDR22	VVADUR<21.102								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	WCS2	WCS1				R<13:8>					
	WADDR15	WADDR14			WADDF	<10.02					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WADDR<7:0>										

REGISTER 23-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 31-24 Unimplemented: Read as '0'

bit 23	CS2a: Chip Select 2a bit
	This bit is only valid when the CSF<1:0> bits = 10 or 01.
	1 = Chip Select 2a is active
	0 = Chip Select 2a is inactive
bit 23	WADDR<23>: Target Address bit 23
	This bit is only valid when the CSF<1:0> bits = 00 and the EXADR bit = 1 and the DUALBUF bit = 1.
bit 22	CS1a: Chip Select 1a bit
	This bit is only valid when the CSF<1:0> bits = 10.
	1 = Chip Select 1a is active
	0 = Chip Select 1a is inactive
bit 22	WADDR<22>: Target Address bit 22
	This bit is only valid when the CSF<1:0> bits = 00 and the EXADR bit = 1 and the DUALBUF bit = 1 .
bit 21-16	WADDR<21:16>: Address bits
	This bit is only valid when the EXADR bit = 1 and the DUALBUF bit = 1.
bit 15	WCS2: Chip Select 2 bit
	This bit is only valid when the CSF<1:0> bits = 10 or 01.
	1 = Chip Select 2 is active
	0 = Chip Select 2 is inactive
bit 15	WADDR<15>: Target Address bit 15
	This bit is only valid when the CSF<1:0> bits = 00 .
bit 14	WCS1: Chip Select 1 bit
	This bit is only valid when the CSF<1:0> bits = 10.
	1 = Chip Select 1 is active
	0 = Chip Select 1 is inactive
bit 14	WADDR<14>: Target Address bit 14
	This bit is only valid when the CSF<1:0> bits = 00 or 01.
bit 13-0	WADDR<13:0>: Address bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

PIC32MK GP/MC Family

REGISTER 25-21: ADCTRG4: ADC TRIGGER SOURCE 4 REGISTER

- bit 20-16 **TRGSRC14<4:0>:** Trigger Source for Conversion of Analog Input AN14 Select bits See bits 28-24 for bit value definitions.
- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 **TRGSRC13<4:0>:** Trigger Source for Conversion of Analog Input AN13 Select bits See bits 28-24 for bit value definitions.
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **TRGSRC12<4:0>:** Trigger Source for Conversion of Analog Input AN12 Select bits See bits 28-24 for bit value definitions.

REGISTER 25-38: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- bit 7 ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 6 Unimplemented: Read as '0'
- bit 5-0 **ANEN5:ANEN0:** ADC5-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

-	LE 26-1:				-/ 11 - F I	0.01			,	,									T
ess		æ								Bits	5								Ś
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4070	C3TMR	31:16								CANTS<	15:0>								0000
4070	CSTIVIR	15:0							CA	NTSPRE<15:	0>								0000
4080	C3RXM0	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
4000	CJKANO	15:0		EID<15:0> xxxx															
4090	C3RXM1	31:16						SID<10:0>							MIDE	_	EID<1	7:16>	xxxx
4090	CORAIVIT	15:0								EID<15	5:0>								xxxx
4040	C3RXM2	31:16						SID<10:0>							MIDE		EID<1	7:16>	xxxx
40A0	C3RAMZ	15:0		EID<15:0> xxxx															
1000	0000	31:16						SID<10:0>							MIDE	—	EID<1	7:16>	xxxx
40B0	C3RXM3	15:0		EID<15:0> xxxx															
40.00		31:16	FLTEN3							SEL2<4:0>			0000						
40C0	C3FLTCON0	15:0	FLTEN1	MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL					0<1:0>				0000						
40.00	C3FLTCON1	31:16	31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL					6<1:0>		F	SEL6<4:0>			0000					
40D0	C3FLICONT	15:0	FLTEN5	MSEL	5<1:0>		FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0>							0000					
40E0	C3FLTCON2	31:16	FLTEN11	MSEL1	1<1:0>			FSEL11<4:0)>		FLTEN10	MSEL1	0<1:0>		F	SEL10<4:0>	>		0000
40E0	COFLICONZ	15:0	FLTEN9	MSEL	9<1:0>			FSEL9<4:0:	>		FLTEN8	MSEL	8<1:0>		F	SEL8<4:0>			0000
40F0	C3FLTCON3	31:16	FLTEN15	MSEL1	5<1:0>			FSEL15<4:0)>		FLTEN14	MSEL1	4<1:0>		F	SEL14<4:0	>		0000
401.0		15:0	FLTEN13	MSEL1	3<1:0>			FSEL13<4:0)>		FLTEN12	MSEL1	2<1:0>		F	SEL12<4:0	>		0000
4140	C3RXFn	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx
4140	(n = 0-15)	15:0								EID<15	5:0>								xxxx
4340	C3FIFOBA	31:16								C3FIFOBA	<31.0>								0000
4340	CSFIFUBA	15:0								CJFIFUBA	1~31.0~								0000
4350	C3FIFOCONr	31:16	-	-	-	—	—	_	—	_	—	-			ŀ	FSIZE<4:0>			0000
4000	(n = 0-15)	15:0	_	FRESET	UINC	DONLY		—		—	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI		0000
4360	C3FIFOINTn	31:16	_	_	_	—	—	TXNFULLIE	TXHALFIE	TXEMPTYIE	—	_	_	—	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000
1000	(n = 0-15)	15:0	_	—	—	—	—	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	—	_	—	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000
4370	C3FIFOUAn (n = 0-15)	31:16 15:0								C1FIFOUA	<31:0>								0000
4380	C3FIFOCIn	31:16	—	_	—	—	-	_	—	_	_	—	_	—	-	_	_	—	0000
4380	(n = 0-15)	15:0	—	_	_	—	—	_	—	_	_	—	_		C3	SFIFOCI<4:)>		0000
5000	04001	31:16	_	—	—	_	ABAT		REQOP<2:0	>	(PMOD<2:0	>	CANCAP	—	_	_	—	0480
5000	C4CON	15:0	ON	—	SIDLE	_	CANBUSY	_	_	_	_	—	—		C	NCNT<4:0>	>		0000
5040	04050	31:16	_	_	—	—	—	_	_	_	_	WAKFIL	_	_	—	S	EG2PH<2:0	>	0000
5010	C4CFG	15:0	SEG2PHTS	SAM	S	EG1PH<2:0)>		PRSEG<2:0	>	SJW	<1:0>			BRP<	:5:0>			0000
Legen	ala an com	known	vn value on Reset: — = unimplemented read as '0' Reset values are shown in hexadecimal																

TABLE 26-1: CAN1 THROUGH CAN4 REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section13.2 "CLR, SET, and INV Registers" for more information. Note 1:

PIC32MK GP/MC Family

REGISTI	ER 28-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
bit 12	TGEN: Time Generation Enable bit ⁽¹⁾
	1 = Enables edge delay generation
	0 = Disables edge delay generation
bit 11	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	0 = Edges are blocked
bit 10	EDGSEQEN: Edge Sequence Enable bit
	1 = Edge 1 must occur before Edge 2 can occur
	0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾
	1 = Analog current source output is grounded
1.11.0	0 = Analog current source output is not grounded
bit 8	CTTRIG: Trigger Control bit
	1 = Trigger output is enabled 0 = Trigger output is disabled
bit 7-2	ITRIM<5:0>: Current Source Trim bits
	011111 = Maximum positive change from nominal current 011110
	•
	•
	• 000001 = Minimum positive change from nominal current
	000000 = Nominal current output specified by IRNG<1:0>
	111111 = Minimum negative change from nominal current
	•
	100010
	100001 = Maximum negative change from nominal current
bit 1-0	IRNG<1:0>: Current Range Select bits ⁽³⁾
	11 = 100 times base current (i.e., 55 μA Typical ⁽⁶⁾)
	10 = 10 times base current (i.e., 5.5 μ A Typical ⁽⁵⁾)
	01 = Base current level (i.e., 0.55 μ A Typical ⁽⁴⁾)
	00 = 1000 times base current (i.e., 550 μA Typical ⁽⁴⁾)
Note 1:	When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1101' to select
	C1OUT.
2:	The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion
	cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor
	before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC
	module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
3:	Refer to the CTMU Current Source Specifications (Table 36-43) in Section 36.0 "Electrical
5.	Characteristics" for current values.
4.	This hit setting is not available for the CTMU temperature diode

- 4: This bit setting is not available for the CTMU temperature diode.
- 5: For CTMU temperature measurements on this range, ADC sampling time \geq 1.6 $\mu s.$
- 6: For CTMU temperature measurements on this range, ADC sampling time \geq 300 ns.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	INDxCNT<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	INDxCNT<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				INDxCN	T<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				INDxCN	NT<7:0>						

REGISTER 30-8: INDxCNT: INDEX COUNTER REGISTER

Legend:

•				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **IDXCNT<31:0>:** 32-bit Position Counter bits

REGISTER 30-9: INTXTMR: INTERVAL TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	INTTMR<31:24>										
22.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	INTTMR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				INTTMF	R<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				INTTM	R<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 INTTMR<31:0>: 32-bit Interval Timer Counter bits

The INTxTMR register provides a means to measure the time between each decoded quadrature count pulse to yield improved velocity information. The interval timer should be set to run at a frequency chosen such that the counter does not overflow at the expected minimum operating speed of the motor. The interval timer is automatically cleared when a count pulse is detected. The timer then counts at the specified rate based on the setting of the INTDIV bit in the QEIxCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R	R	R	R	R	R	R	R				
51.24	SN<31:24>											
23:16	R	R	R	R	R	R	R	R				
23.10	SN<23:16>											
15:8	R	R	R	R	R	R	R	R				
15.0	SN<15:8>											
7:0	R	R	R	R	R	R	R	R				
7.0		SN<7:0>										

REGISTER 33-12: DEVSNx: DEVICE SERIAL NUMBER REGISTER 'x' ('x' = 0-3)

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 SN<31:0>: Device Unique Serial Number bits

These registers contain a value, programmed during factory production test, that is unique to each unit and are user read only. These values are persistent and not erased even when a new application code is programmed into the device. These values can be used if desired as an encryption key in combination with the Microchip encryption library.

TABLE 36-4:	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	ARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Conditions					
Operating Voltage								
DC10	Vdd	Supply Voltage (Note 1)	2.2		3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage (Note 2)	1.75	_	—	V	_	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal (Note 3)	—		Vss + 0.3V	V	_	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.000011		1.1	V/µs	300 ms to 3µs	
DC18	VBAT	Battery Supply Voltage	2.1	_	3.6	V	—	
DC19	VBATSW	Vdd to Vbat Switch Voltage	_	1.4		V	—	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 36-5 for BOR values.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 36-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10a	VBOR	BOR Event on VDD transition high-to-low (Note 2)	2.735	_	2.880	V	If any OPAxMD bit (PMD2) = 0 (OPAMPx Enb)
			2.010	_	2.129	V	If all OPAxMD bits (PMD2) = 1 (by default, all Op amps are disabled on any reset)
BO10b	VBAT	BOR Event on VBAT	1.35	_	2.0	V	—

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
					$40^{\circ}C \le TA \le$	≤ +125°	C for Extended	
Param. No.	Sympol Characteristics Min Ivn			Тур. ⁽¹⁾	Max.	Units	Conditions	
	VIL	Input Low Voltage						
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V		
		I/O Pins	Vss	—	0.2 VDD	V		
	Vih	Input High Voltage						
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)	
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)	
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65* VDD	—	5.5	V		
DI30	ICNPU	Change Notification Pull-up Current	-450	_	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)	
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	50	_	450	μA	VDD = 3.3V, VPIN = VDD	
	lil	Input Leakage Current (Note 3)						
DI50		I/O Ports	—	—	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance	
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance	
DI55		MCLR ⁽²⁾	_	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} VSS &\leq V PIN \leq V DD, \\ HS \ mode \end{split}$	

TABLE 36-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 3 and Table 5) for the 5V-tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

AC CHA	ARACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Sym.	Characteristics ⁽¹⁾	Min.	Max.	Comments			
DE10	Ep	Effective Write/Erase Cell Endurance	160K	—	Cycles	Specified at TA = +125° C		
DE11	TRETD	Characteristic Retention	20	—	Year	_		
DE12	TACC	Read Access Time	—	176 / PBCLK2 Frequency	ns	PBCLK2 = (FSYSCLK / PB2DIV <pbdiv>)</pbdiv>		
DE13	Tdpd	Wake-up Time From Deep Power-down to Any Operation	10	—	μs	_		
DE14	TPROG	Program Time	20	53	μs	—		
DE15	TRCV	Program Recovery Time	5	—	μs	—		
		Page Erase Recovery Time	50	—	μs	—		
DE16	TERASE	Page Erase Time	—	20	ms	—		
DE17	TSCE	Bulk Erase Time	_	20	ms			
DE18	Trw	Latency to Next Operation After Program/Erase	2	—	μs			
DE19	TPUWRITE	Power-up to Read/Program/ Erase Operation	12		μs	_		

TABLE 36-19: DATA EEPROM MEMORY

Note 1: Timings are for reference only and are not user-configurable. All timing is enforced by hardware.

TABLE 36-20: DATA EEPROM WAIT STATES

DATA EE Wait States EEWS<7:0> (CFGCON2<7:0>) bits are Equal to:	PBCLK2<6:0> = (FSYSCLK / PB2DIV<6:0>)
0	0-39 MHz
1	40-59 MHz
2	60-79 MHz
3	80-97 MHz
4	98-117 MHz
5	118-120 MHz

TABLE 36-29: OP AMP SPECIFICATIONS

AC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (Note 2): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Comments		
OA1	VCMR	Common Mode Input Voltage Range	AVss	-	AVDD	V	_		
OA2	Cmrr	Common Mode Rejection Ratio	—	70	—	dB	VCM = AVDD/2		
OA3	VOFFSET	Op amp Offset Voltage	-5	—	5	mV	—		
OA4	VGAINCL	Closed Loop Voltage Gain	8	—	—	V	Non-inverting configuration, $RF/RI \ge 8$		
OA5	Ilkg	Input leakage current	—	—	See lı∟ in Table 36-9	nA	—		
OA6	Psrr	Power Supply Rejection Ratio	—	-75	_	dB	_		
OA7	Vgain	Open Loop Voltage Gain	_	90	—	dB	—		
OA8	Vон	Amplifier Output Voltage High	_	AVDD - 0.077	—	V	ISOURCE \leq 500 µA		
				AVDD - 0.037	_	V	ISOURCE ≤ 200 µA		
				AVDD - 0.018	_	V	ISOURCE ≤ 100 µA		
OA9	Vol	Amplifier Output Voltage Low	—	AVss + 0.077	—	V	Isinκ ≤ 500 μA		
			_	AVss + 0.037	—	V	Isinκ ≤ 200 μA		
			_	AVss + 0.018	—	V	Isink ≤ 100 µA		
OA10	TON	Enable to Valid Output	_	10	_	μs	—		
OA11	TOFF	Disable to Outputs Dis- abled	—	100	_	ns	—		
OA11	los	Input Offset Current	—	See lı∟ in Table 36-9	—	—	_		
OA13	Ів	Input Bias Current		See lı∟ in Table 36-9	—		_		
OA14	SR	Slew Rate	7.0	9.0		V/µs	Measured with a 0.5V to 2.5V step change		
OA15	Gвw	Gain Bandwidth	10.0	—	—	MHz	—		
OA16	Av	Gain	8.0	—	—	V/V	Minimum op-amp stable gain		
OA17	Рм	Phase Margin	43	65		Degrees	_		

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, Op amp/Comparator, and Comparator voltage reference, will have degraded performance. Refer to parameter BO10 in Table 36-5 for the minimum and maximum BOR values.