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4.5.10.5 Flash Status Register (FSTAT)

0x1B 0x2800–0xFFFF 54K 72

0x1A 0x2200–0xFFFF 55.5K 74

0x19 0x1C00–0xFFFF 57K 76

0x18–0x00 0x0000–0xFFFF 64K 86

7 6 5 4 3 2 1 0

R
FCBEF

FCCF
FPVIOL FACCERR

0 FBLANK 0 0

W

Reset 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-9. Flash Status Register (FSTAT)

Table 4-14. FSTAT Register Field Descriptions

Field Description

7
FCBEF

Command Buffer Empty Flag — The FCBEF bit is used to launch commands. It also indicates that the
command buffer is empty so that a new command sequence can be executed when performing burst
programming. The FCBEF bit is cleared by writing a 1 to it or when a burst program command is transferred to
the array for programming. Only burst program commands can be buffered.
0 Command buffer is full (not ready for additional commands).
1 A new burst program command can be written to the command buffer.

6
FCCF

Command Complete Flag — FCCF is set automatically when the command buffer is empty and no command
is being processed. FCCF is cleared automatically when a new command is started (by writing 1 to FCBEF to
register a command). Writing to FCCF has no meaning or effect.
0 Command in progress
1 All commands complete

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when a command that attempts to erase or program
a location in a protected block is launched (the erroneous command is ignored). FPVIOL is cleared by writing a
1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

Table 4-13. Flash Block Protection (continued)

FPS Address Area Protected Memory Size Protected (bytes) Number of Sectors Protected
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5.8.2 System Reset Status Register (SRS)

This high page register includes read-only status flags to indicate the source of the most recent reset. When
a debug host forces reset by writing 1 to BDFR in the SBDFR register, none of the status bits in SRS will
be set. Writing any value to this register address causes a COP reset when the COP is enabled except the
values 0x55 and 0xAA. Writing a 0x55-0xAA sequence to this address clears the COP watchdog timer
without affecting the contents of this register. The reset state of these bits depends on what caused the
MCU to reset.

Figure 5-3. System Reset Status (SRS)

7 6 5 4 3 2 1 0

R POR PIN COP ILOP ILAD LOC LVD 0

W Writing 0x55, 0xAA to SRS address clears COP watchdog timer.

POR: 1 0 0 0 0 0 1 0

LVD: u 0 0 0 0 0 1 0

Any other
reset:

0 Note(1)

1 Any of these reset sources that are active at the time of reset entry will cause the corresponding bit(s) to be set; bits
corresponding to sources that are not active at the time of reset entry will be cleared.

Note(1) Note(1) Note(1) 0 0 0

Table 5-3. SRS Register Field Descriptions

Field Description

7
POR

Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was
ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while
the internal supply was below the LVD threshold.
0 Reset not caused by POR.
1 POR caused reset.

6
PIN

External Reset Pin — Reset was caused by an active-low level on the external reset pin.
0 Reset not caused by external reset pin.
1 Reset came from external reset pin.

5
COP

Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out.
This reset source can be blocked by COPE = 0.
0 Reset not caused by COP timeout.
1 Reset caused by COP timeout.

4
ILOP

Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP
instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT register. The BGND instruction is
considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register.
0 Reset not caused by an illegal opcode.
1 Reset caused by an illegal opcode.

3
ILAD

Illegal Address — Reset was caused by an attempt to access either data or an instruction at an unimplemented
memory address.
0 Reset not caused by an illegal address.
1 Reset caused by an illegal address.
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An output pin can be selected to have high output drive strength by setting the corresponding bit in the
drive strength select register (PTxDSn). When high drive is selected, a pin is capable of sourcing and
sinking greater current. Even though every I/O pin can be selected as high drive, the user must ensure that
the total current source and sink limits for the MCU are not exceeded. Drive strength selection is intended
to affect the DC behavior of I/O pins. However, the AC behavior is also affected. High drive allows a pin
to drive a greater load with the same switching speed as a low drive enabled pin into a smaller load.
Because of this, the EMC emissions may be affected by enabling pins as high drive.

6.3 Pin Interrupts
Port A, port B, and port D pins can be configured as external interrupt inputs and as an external means of
waking the MCU from stop or wait low-power modes.

The block diagram for each port interrupt logic is shown Figure 6-2.

Figure 6-2. Port Interrupt Block Diagram

Writing to the PTxPSn bits in the port interrupt pin select register (PTxPS) independently enables or
disables each port pin. Each port can be configured as edge sensitive or edge and level sensitive based on
the PTxMOD bit in the port interrupt status and control register (PTxSC). Edge sensitivity can be software
programmed to be either falling or rising; the level can be either low or high. The polarity of the edge or
edge and level sensitivity is selected using the PTxESn bits in the port interrupt edge select register
(PTxES).

Synchronous logic is used to detect edges. Prior to detecting an edge, enabled port inputs must be at the
deasserted logic level. A falling edge is detected when an enabled port input signal is seen as a logic 1 (the
deasserted level) during one bus cycle and then a logic 0 (the asserted level) during the next cycle. A rising
edge is detected when the input signal is seen as a logic 0 during one bus cycle and then a logic 1 during
the next cycle.

6.3.1 Edge Only Sensitivity

A valid edge on an enabled port pin will set PTxIF in PTxSC. If PTxIE in PTxSC is set, an interrupt request
will be presented to the CPU. Clearing of PTxIF is accomplished by writing a 1 to PTxACK in PTxSC.
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RSP
Reset Stack Pointer (Low Byte)
SPL ← $FF
(High Byte Not Affected)

INH 9C 1 p – 1 1 – – – – –

RTI

Return from Interrupt
SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)
SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

INH 80 9 uuuuufppp ↕ 1 1 ↕ ↕ ↕  ↕  ↕

RTS
Return from Subroutine
SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL)

INH 81 5 ufppp – 1 1 – – – – –

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC  ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry
A ← (A) – (M) – (C)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9E D2
9E E2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

↕ 1 1 – – ↕  ↕  ↕

SEC
Set Carry Bit
(C ← 1)

INH 99 1 p – 1 1 – – – – 1

SEI
Set Interrupt Mask Bit
(I ← 1)

INH 9B 1 p – 1 1 – 1 – – –

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA  ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in Memory
M ← (A)

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9E D7
9E E7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

wpp
pwpp
pwpp
wpp
wp
ppwpp
pwpp

0 1 1 – – ↕  ↕ –

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.)
(M:M + $0001) ← (H:X)

DIR
EXT
SP1

35
96

9E FF

dd
hh ll
ff

4
5
5

wwpp
pwwpp
pwwpp

0 1 1 – – ↕  ↕ –

STOP
Enable Interrupts: Stop Processing
Refer to MCU Documentation
I bit ← 0; Stop Processing

INH 8E 2 fp... – 1 1 – 0 – – –

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX  ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of Index Register)
in Memory
M ← (X)

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9E DF
9E EF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

wpp
pwpp
pwpp
wpp
wp
ppwpp
pwpp

0 1 1 – – ↕  ↕ –

Table 7-2. Instruction Set Summary (Sheet 7 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc
Details

Affect
on CCR

V 1 1 H I N Z C
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Bit-Manipulation Branch Read-Modify-Write Control Register/Memory
9E60 6

NEG
3 SP1

9ED0 5
SUB

4 SP2

9EE0 4
SUB

3 SP1
9E61 6

CBEQ
4 SP1

9ED1 5
CMP

4 SP2

9EE1 4
CMP

3 SP1
9ED2 5

SBC
4 SP2

9EE2 4
SBC

3 SP1
9E63 6

COM
3 SP1

9ED3 5
CPX

4 SP2

9EE3 4
CPX

3 SP1

9EF3 6
CPHX

3 SP1
9E64 6

LSR
3 SP1

9ED4 5
AND

4 SP2

9EE4 4
AND

3 SP1
9ED5 5

BIT
4 SP2

9EE5 4
BIT

3 SP1
9E66 6

ROR
3 SP1

9ED6 5
LDA

4 SP2

9EE6 4
LDA

3 SP1
9E67 6

ASR
3 SP1

9ED7 5
STA

4 SP2

9EE7 4
STA

3 SP1
9E68 6

LSL
3 SP1

9ED8 5
EOR

4 SP2

9EE8 4
EOR

3 SP1
9E69 6

ROL
3 SP1

9ED9 5
ADC

4 SP2

9EE9 4
ADC

3 SP1
9E6A 6

DEC
3 SP1

9EDA 5
ORA

4 SP2

9EEA 4
ORA

3 SP1
9E6B 8

DBNZ
4 SP1

9EDB 5
ADD

4 SP2

9EEB 4
ADD

3 SP1
9E6C 6

INC
3 SP1
9E6D 5

TST
3 SP1

9EAE 5
LDHX

2 IX

9EBE 6
LDHX

4 IX2

9ECE 5
LDHX

3 IX1

9EDE 5
LDX

4 SP2

9EEE 4
LDX

3 SP1

9EFE 5
LDHX

3 SP1
9E6F 6

CLR
3 SP1

9EDF 5
STX

4 SP2

9EEF 4
STX

3 SP1

9EFF 5
STHX

3 SP1

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E) Prebyte (9E) and Opcode in
Hexadecimal

Number of Bytes

9E60 6
NEG

3 SP1

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

Table 7-3. Opcode Map (Sheet 2 of 2)
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10.2.1 Analog Power (VDDAD)

The ADC analog portion uses VDDAD as its power connection. In some packages, VDDAD is connected
internally to VDD. If externally available, connect the VDDAD pin to the same voltage potential as VDD.
External filtering may be necessary to ensure clean VDDAD for good results.

10.2.2 Analog Ground (VSSAD)

The ADC analog portion uses VSSAD as its ground connection. In some packages, VSSAD is connected
internally to VSS. If externally available, connect the VSSAD pin to the same voltage potential as VSS.

10.2.3 Voltage Reference High (VREFH)

VREFH is the high reference voltage for the converter. In some packages, VREFH is connected internally to
VDDAD. If externally available, VREFH may be connected to the same potential as VDDAD or may be driven
by an external source between the minimum VDDAD spec and the VDDAD potential (VREFH must never
exceed VDDAD).

10.2.4 Voltage Reference Low (VREFL)

VREFL is the low-reference voltage for the converter. In some packages, VREFL is connected internally to
VSSAD. If externally available, connect the VREFL pin to the same voltage potential as VSSAD.

10.2.5 Analog Channel Inputs (ADx)

The ADC module supports up to 28 separate analog inputs. An input is selected for conversion through the
ADCH channel select bits.

10.3 Register Definition

These memory-mapped registers control and monitor operation of the ADC:

• Status and control register, ADCSC1

• Status and control register, ADCSC2

• Data result registers, ADCRH and ADCRL

• Compare value registers, ADCCVH and ADCCVL

• Configuration register, ADCCFG

• Pin control registers, APCTL1, APCTL2, APCTL3

10.3.1 Status and Control Register 1 (ADCSC1)

This section describes the function of the ADC status and control register (ADCSC1). Writing ADCSC1
aborts the current conversion and initiates a new conversion (if the ADCH bits are equal to a value other
than all 1s).
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10.5 Initialization Information
This section gives an example that provides some basic direction on how to initialize and configure the
ADC module. You can configure the module for 8-, 10-, or 12-bit resolution, single or continuous
conversion, and a polled or interrupt approach, among many other options. Refer to Table 10-7,
Table 10-8, and Table 10-9 for information used in this example.

NOTE
Hexadecimal values designated by a preceding 0x, binary values designated
by a preceding %, and decimal values have no preceding character.

10.5.1 ADC Module Initialization Example

10.5.1.1 Initialization Sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be
performed. A typical sequence is as follows:

1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio
used to generate the internal clock, ADCK. This register is also used for selecting sample time and
low-power configuration.

2. Update status and control register 2 (ADCSC2) to select the conversion trigger (hardware or
software) and compare function options, if enabled.

3. Update status and control register 1 (ADCSC1) to select whether conversions will be continuous
or completed only once, and to enable or disable conversion complete interrupts. The input channel
on which conversions will be performed is also selected here.

10.5.1.2 Pseudo-Code Example

In this example, the ADC module is set up with interrupts enabled to perform a single 10-bit conversion
at low power with a long sample time on input channel 1, where the internal ADCK clock is derived from
the bus clock divided by 1.

ADCCFG = 0x98 (%10011000)
Bit 7 ADLPC 1 Configures for low power (lowers maximum clock speed)
Bit 6:5 ADIV 00 Sets the ADCK to the input clock ÷ 1
Bit 4 ADLSMP 1 Configures for long sample time
Bit 3:2 MODE 10 Sets mode at 10-bit conversions
Bit 1:0 ADICLK 00 Selects bus clock as input clock source

ADCSC2 = 0x00 (%00000000)
Bit 7 ADACT 0 Flag indicates if a conversion is in progress
Bit 6 ADTRG 0 Software trigger selected
Bit 5 ACFE 0 Compare function disabled
Bit 4 ACFGT 0 Not used in this example
Bit 3:2 00 Reserved, always reads zero
Bit 1:0 00 Reserved for Freescale’s internal use; always write zero
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1
SLPRQ5

Sleep Mode Request — This bit requests the MSCAN to enter sleep mode, which is an internal power saving
mode (see Section 12.5.5.4, “MSCAN Sleep Mode”). The sleep mode request is serviced when the CAN bus is
idle, i.e., the module is not receiving a message and all transmit buffers are empty. The module indicates entry
to sleep mode by setting SLPAK = 1 (see Section 12.3.2, “MSCAN Control Register 1 (CANCTL1)”). SLPRQ
cannot be set while the WUPIF flag is set (see Section 12.3.4.1, “MSCAN Receiver Flag Register (CANRFLG)”).
Sleep mode will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE, the MSCAN
detects activity on the CAN bus and clears SLPRQ itself.
0 Running — The MSCAN functions normally
1 Sleep mode request — The MSCAN enters sleep mode when CAN bus idle

0
INITRQ6,7

Initialization Mode Request — When this bit is set by the CPU, the MSCAN skips to initialization mode (see
Section 12.5.5.5, “MSCAN Initialization Mode”). Any ongoing transmission or reception is aborted and
synchronization to the CAN bus is lost. The module indicates entry to initialization mode by setting INITAK = 1
(Section 12.3.2, “MSCAN Control Register 1 (CANCTL1)”).
The following registers enter their hard reset state and restore their default values: CANCTL08, CANRFLG9,
CANRIER10, CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL.
The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, and CANIDMR0-7 can only be
written by the CPU when the MSCAN is in initialization mode (INITRQ = 1 and INITAK = 1). The values of the
error counters are not affected by initialization mode.
When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN bus. If the
MSCAN is not in bus-off state, it synchronizes after 11 consecutive recessive bits on the CAN bus; if the MSCAN
is in bus-off state, it continues to wait for 128 occurrences of 11 consecutive recessive bits.
Writing to other bits in CANCTL0, CANRFLG, CANRIER, CANTFLG, or CANTIER must be done only after
initialization mode is exited, which is INITRQ = 0 and INITAK = 0.
0 Normal operation
1 MSCAN in initialization mode

1 The MSCAN must be in normal mode for this bit to become set.
2 See the Bosch CAN 2.0A/B specification for a detailed definition of transmitter and receiver states.
3 In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the CPU enters wait (CSWAI = 1) or stop mode (see Section 12.5.5.2, “Operation in Wait Mode” and Section 12.5.5.3,
“Operation in Stop Mode”).

4 The CPU has to make sure that the WUPE bit and the WUPIE wake-up interrupt enable bit (see Section 12.3.5, “MSCAN
Receiver Interrupt Enable Register (CANRIER)) is enabled, if the recovery mechanism from stop or wait is required.

5 The CPU cannot clear SLPRQ before the MSCAN has entered sleep mode (SLPRQ = 1 and SLPAK = 1).
6 The CPU cannot clear INITRQ before the MSCAN has entered initialization mode (INITRQ = 1 and INITAK = 1).
7 In order to protect from accidentally violating the CAN protocol, the TXCAN pin is immediately forced to a recessive state when

the initialization mode is requested by the CPU. Thus, the recommended procedure is to bring the MSCAN into sleep mode
(SLPRQ = 1 and SLPAK = 1) before requesting initialization mode.

8 Not including WUPE, INITRQ, and SLPRQ.
9 TSTAT1 and TSTAT0 are not affected by initialization mode.
10 RSTAT1 and RSTAT0 are not affected by initialization mode.

Table 12-1. CANCTL0 Register Field Descriptions (continued)

Field Description
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NOTE
The CANTIER register is held in the reset state when the initialization mode
is active (INITRQ = 1 and INITAK = 1). This register is writable when not
in initialization mode (INITRQ = 0 and INITAK = 0).

Read: Anytime
Write: Anytime when not in initialization mode

12.3.8 MSCAN Transmitter Message Abort Request Register (CANTARQ)

The CANTARQ register allows abort request of messages queued for transmission.

NOTE
The CANTARQ register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1). This register is writable when
not in initialization mode (INITRQ = 0 and INITAK = 0).

Read: Anytime
Write: Anytime when not in initialization mode

Table 12-12. CANTIER Register Field Descriptions

Field Description

2:0
TXEIE[2:0]

Transmitter Empty Interrupt Enable
0 No interrupt request is generated from this event.
1 A transmitter empty (transmit buffer available for transmission) event causes a transmitter empty interrupt

request. See Section 12.5.2.2, “Transmit Structures” for details.

7 6 5 4 3 2 1 0

R 0 0 0 0 0
ABTRQ2 ABTRQ1 ABTRQ0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-12. MSCAN Transmitter Message Abort Request Register (CANTARQ)

Table 12-13. CANTARQ Register Field Descriptions

Field Description

2:0
ABTRQ[2:0]

Abort Request — The CPU sets the ABTRQx bit to request that a scheduled message buffer (TXEx = 0) be
aborted. The MSCAN grants the request if the message has not already started transmission, or if the
transmission is not successful (lost arbitration or error). When a message is aborted, the associated TXE (see
Section 12.3.6, “MSCAN Transmitter Flag Register (CANTFLG)”) and abort acknowledge flags (ABTAK, see
Section 12.3.9, “MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)”) are set and a transmit
interrupt occurs if enabled. The CPU cannot reset ABTRQx. ABTRQx is reset whenever the associated TXE flag
is set.
0 No abort request
1 Abort request pending
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Figure 12-23 shows the common 13-byte data structure of receive and transmit buffers for extended
identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 12-24.

All bits of the receive and transmit buffers are ‘x’ out of reset because of RAM-based implementation1.
All reserved or unused bits of the receive and transmit buffers always read ‘x’.

Table 12-24. Message Buffer Organization

Offset
Address

Register Access

0x00X0 Identifier Register 0

0x00X1 Identifier Register 1

0x00X2 Identifier Register 2

0x00X3 Identifier Register 3

0x00X4 Data Segment Register 0

0x00X5 Data Segment Register 1

0x00X6 Data Segment Register 2

0x00X7 Data Segment Register 3

0x00X8 Data Segment Register 4

0x00X9 Data Segment Register 5

0x00XA Data Segment Register 6

0x00XB Data Segment Register 7

0x00XC Data Length Register

0x00XD Transmit Buffer Priority Register1

1 Not applicable for receive buffers

0x00XE Time Stamp Register (High Byte)2

2 Read-only for CPU

0x00XF Time Stamp Register (Low Byte)3

3 Read-only for CPU

1. Exception: The transmit priority registers are 0 out of reset.
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Chapter 13
Serial Peripheral Interface (S08SPIV3)

13.1 Introduction
The serial peripheral interface (SPI) module provides for full-duplex, synchronous, serial communication
between the MCU and peripheral devices. These peripheral devices can include other microcontrollers,
analog-to-digital converters, shift registers, sensors, memories, etc.

The SPI runs at a baud rate up to the bus clock divided by two in master mode and bus clock divided by
four in slave mode.

All devices in the MC9S08DV60 Series MCUs contain one SPI module, as shown in the following block
diagram.

NOTE
Ensure that the SPI should not be disabled (SPE=0) at the same time as a bit
change to the CPHA bit. These changes should be performed as separate
operations or unexpected behavior may occur.
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13.1.1 Features

Features of the SPI module include:

• Master or slave mode operation

• Full-duplex or single-wire bidirectional option

• Programmable transmit bit rate

• Double-buffered transmit and receive

• Serial clock phase and polarity options

• Slave select output

• Selectable MSB-first or LSB-first shifting

13.1.2 Block Diagrams

This section includes block diagrams showing SPI system connections, the internal organization of the SPI
module, and the SPI clock dividers that control the master mode bit rate.

13.1.2.1 SPI System Block Diagram

Figure 13-2 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master
device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI pin) to the
slave while simultaneously shifting data in (on the MISO pin) from the slave. The transfer effectively
exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock
output from the master and an input to the slave. The slave device must be selected by a low level on the
slave select input (SS pin). In this system, the master device has configured its SS pin as an optional slave
select output.

Figure 13-2. SPI System Connections
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CLOCK
GENERATOR

7 6 5 4 3 2 1 0
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Table 14-6. SCIxS1 Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers from
the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read
SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break
character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCIxD) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCIxC2

5
RDRF

Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into
the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data
register (SCIxD).
0 Receive data register empty.
1 Receive data register full.

4
IDLE

Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of
activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is
all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times
depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn’t
start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the
previous character do not count toward the full character time of logic high needed for the receiver to detect an
idle line.
To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has been
cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE
will get set only once even if the receive line remains idle for an extended period.
0 No idle line detected.
1 Idle line was detected.

3
OR

Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data
register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the new
character (and all associated error information) is lost because there is no room to move it into SCIxD. To clear
OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD).
0 No overrun.
1 Receive overrun (new SCI data lost).

2
NF

Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit
and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples
within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the
character. To clear NF, read SCIxS1 and then read the SCI data register (SCIxD).
0 No noise detected.
1 Noise detected in the received character in SCIxD.
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When using an internal oscillator in a LIN system, it is necessary to raise the break detection threshold by
one bit time. Under the worst case timing conditions allowed in LIN, it is possible that a 0x00 data
character can appear to be 10.26 bit times long at a slave which is running 14% faster than the master. This
would trigger normal break detection circuitry which is designed to detect a 10 bit break symbol. When
the LBKDE bit is set, framing errors are inhibited and the break detection threshold changes from 10 bits
to 11 bits, preventing false detection of a 0x00 data character as a LIN break symbol.

14.2.6 SCI Control Register 3 (SCIxC3)

1
LBKDE

LIN Break Detection Enable— LBKDE is used to select a longer break character detection length. While
LBKDE is set, framing error (FE) and receive data register full (RDRF) flags are prevented from setting.
0 Break character is detected at length of 10 bit times (11 if M = 1).
1 Break character is detected at length of 11 bit times (12 if M = 1).

0
RAF

Receiver Active Flag — RAF is set when the SCI receiver detects the beginning of a valid start bit, and RAF is
cleared automatically when the receiver detects an idle line. This status flag can be used to check whether an
SCI character is being received before instructing the MCU to go to stop mode.
0 SCI receiver idle waiting for a start bit.
1 SCI receiver active (RxD input not idle).

1 Setting RXINV inverts the RxD input for all cases: data bits, start and stop bits, break, and idle.

7 6 5 4 3 2 1 0

R R8
T8 TXDIR TXINV ORIE NEIE FEIE PEIE

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 14-10. SCI Control Register 3 (SCIxC3)

Table 14-8. SCIxC3 Field Descriptions

Field Description

7
R8

Ninth Data Bit for Receiver — When the SCI is configured for 9-bit data (M = 1), R8 can be thought of as a
ninth receive data bit to the left of the MSB of the buffered data in the SCIxD register. When reading 9-bit data,
read R8 before reading SCIxD because reading SCIxD completes automatic flag clearing sequences which
could allow R8 and SCIxD to be overwritten with new data.

6
T8

Ninth Data Bit for Transmitter — When the SCI is configured for 9-bit data (M = 1), T8 may be thought of as a
ninth transmit data bit to the left of the MSB of the data in the SCIxD register. When writing 9-bit data, the entire
9-bit value is transferred to the SCI shift register after SCIxD is written so T8 should be written (if it needs to
change from its previous value) before SCIxD is written. If T8 does not need to change in the new value (such
as when it is used to generate mark or space parity), it need not be written each time SCIxD is written.

5
TXDIR

TxD Pin Direction in Single-Wire Mode — When the SCI is configured for single-wire half-duplex operation
(LOOPS = RSRC = 1), this bit determines the direction of data at the TxD pin.
0 TxD pin is an input in single-wire mode.
1 TxD pin is an output in single-wire mode.

Table 14-7. SCIxS2 Field Descriptions (continued)

Field Description
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The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)

• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
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The average chip-junction temperature (TJ) in °C can be obtained from:

TJ = TA + (PD × θJA) Eqn. A-1

where:

TA = Ambient temperature, °C

θJA = Package thermal resistance, junction-to-ambient, °C/W

PD = Pint + PI/O

Pint = IDD × VDD, Watts — chip internal power

PI/O = Power dissipation on input and output pins — user determined

For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ
(if PI/O is neglected) is:

PD = K ÷ (TJ + 273°C) Eqn. A-2

Solving equations 1 and 2 for K gives:

K = PD × (TA + 273°C) + θJA × (PD)2 Eqn. A-3

Table A-3. Thermal Characteristics

 Num C  Rating  Symbol  Value  Unit
Temp.
Code

1 D
Operating temperature range (packaged) TA

–40 to 125
–40 to 105
–40 to 85

°C
M
V
C

2 T Maximum Junction Temperature1

1 Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.

TJ 135 °C —

3 D Thermal resistance2

2 Junction to Ambient Natural Convection

Single-layer board

64-pin LQFP θJA 69 °C/W

48-pin LQFP θJA 75 °C/W

32-pin LQFP θJA 80 °C/W

Four-Layer board

64-pin LQFP θJA 51 °C/W

48-pin LQFP θJA 51 °C/W

32-pin LQFP θJA 52 °C/W
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Figure A-3. Active Background Debug Mode Latch Timing

Figure A-4. Pin Interrupt Timing

A.12.2 Timer/PWM

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that
can be used as the optional external source to the timer counter. These synchronizers operate from the
current bus rate clock.

Table A-14. TPM Input Timing

Num  C  Rating  Symbol  Min  Max  Unit

1 — External clock frequency fTCLK dc fBus/4 MHz

2 — External clock period tTCLK 4 — tcyc

3 D External clock high time tclkh 1.5 — tcyc

4 D External clock low time tclkl 1.5 — tcyc

5 D Input capture pulse width tICPW 1.5 — tcyc

BKGD/MS

RESET

tMSSU

tMSH

tIHIL

PIAx/PIBx/PIDx

tILIH

IRQ/PIAx/PIBx/PIDx
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Appendix B
Timer Pulse-Width Modulator (TPMV2)

NOTE
This chapter refers to S08TPM version 2, which applies to the 3M05C and
older mask sets of this device. )M74K and newer mask set devices use
S08TPM version 3. If your device uses mask 0M74K or newer, please refer
to Chapter 16, “Timer Pulse-Width Modulator (S08TPMV3) for
information pertaining to that module.

The TPM uses one input/output (I/O) pin per channel, TPMxCHn where x is the TPM number (for
example, 1 or 2) and n is the channel number (for example, 0–4). The TPM shares its I/O pins with
general-purpose I/O port pins (refer to the Pins and Connections chapter for more information).

B.0.1 Features

The TPM has the following features:

• Each TPM may be configured for buffered, center-aligned pulse-width modulation (CPWM) on all
channels

• Clock sources independently selectable per TPM (multiple TPMs device)

• Selectable clock sources (device dependent): bus clock, fixed system clock, external pin

• Clock prescaler taps for divide by 1, 2, 4, 8, 16, 32, 64, or 128

• 16-bit free-running or up/down (CPWM) count operation

• 16-bit modulus register to control counter range

• Timer system enable

• One interrupt per channel plus a terminal count interrupt for each TPM module (multiple TPMs
device)

• Channel features:

— Each channel may be input capture, output compare, or buffered edge-aligned PWM

— Rising-edge, falling-edge, or any-edge input capture trigger

— Set, clear, or toggle output compare action

— Selectable polarity on PWM outputs

B.0.2 Block Diagram

Figure B-1 shows the structure of a TPM. Some MCUs include more than one TPM, with various numbers
of channels.




