

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08dv32aclh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

	12.3.1	5MSCAN Identifier Acceptance Registers (CANIDAR0-7)	237
	12.3.1	6MSCAN Identifier Mask Registers (CANIDMR0-CANIDMR7)	238
12.4	Program	nmer's Model of Message Storage	239
	12.4.1	Identifier Registers (IDR0–IDR3)	242
	12.4.2	IDR0–IDR3 for Standard Identifier Mapping	244
	12.4.3	Data Segment Registers (DSR0-7)	245
	12.4.4	Data Length Register (DLR)	246
	12.4.5	Transmit Buffer Priority Register (TBPR)	247
	12.4.6	Time Stamp Register (TSRH–TSRL)	247
12.5	Function	nal Description	248
	12.5.1	General	248
	12.5.2	Message Storage	249
	12.5.3	Identifier Acceptance Filter	252
	12.5.4	Modes of Operation	259
	12.5.5	Low-Power Options	
	12.5.6	Reset Initialization	
	12.5.7	Interrupts	
12.6	Initializa	ation/Application Information	
	12.6.1	MSCAN initialization	
	12.6.2	Bus-Off Recovery	

Chapter 13 Serial Peripheral Interface (S08SPIV3)

13.1	Introducti	ion	271
	13.1.1 H	Features	273
	13.1.2 H	Block Diagrams	273
	13.1.3 \$	SPI Baud Rate Generation	275
13.2	External S	Signal Description	276
	13.2.1 \$	SPSCK — SPI Serial Clock	276
	13.2.2 N	MOSI — Master Data Out, Slave Data In	276
	13.2.3 N	MISO — Master Data In, Slave Data Out	276
	13.2.4 \$	\overline{SS} — Slave Select	276
13.3	Modes of	Operation	277
	13.3.1 \$	SPI in Stop Modes	277
13.4	Register I	Definition	277
	13.4.1 \$	SPI Control Register 1 (SPIC1)	277
	13.4.2 \$	SPI Control Register 2 (SPIC2)	278
	13.4.3 \$	SPI Baud Rate Register (SPIBR)	279
	13.4.4 \$	SPI Status Register (SPIS)	280
	13.4.5 \$	SPI Data Register (SPID)	281
13.5	Functiona	al Description	282
	13.5.1 \$	SPI Clock Formats	282

Chapter 1 Device Overview

Chapter 4 Memory

Table 4-3. High-Page Register Summary (Sheet 2 of 3)

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
0x1847	Reserved	—	_	_	—	_	_	—	_
0x1848	PTBPE	PTBPE7	PTBPE6	PTBPE5	PTBPE4	PTBPE3	PTBPE2	PTBPE1	PTBPE0
0x1849	PTBSE	PTBSE7	PTBSE6	PTBSE5	PTBSE4	PTBSE3	PTBSE2	PTBSE1	PTBSE0
0x184A	PTBDS	PTBDS7	PTBDS6	PTBDS5	PTBDS4	PTBDS3	PTBDS2	PTBDS1	PTBDS0
0x184B	Reserved	—				—	—		
0x184C	PTBSC	0	0	0	0	PTBIF	PTBACK	PTBIE	PTBMOD
0x184D	PTBPS	PTBPS7	PTBPS6	PTBPS5	PTBPS4	PTBPS3	PTBPS2	PTBPS1	PTBPS0
0x184E	PTBES	PTBES7	PTBES6	PTBES5	PTBES4	PTBES3	PTBES2	PTBES1	PTBES0
0x184F	Reserved	_				_	_		
0x1850	PTCPE	PTCPE7	PTCPE6	PTCPE5	PTCPE4	PTCPE3	PTCPE2	PTCPE1	PTCPE0
0x1851	PTCSE	PTCSE7	PTCSE6	PTCSE5	PTCSE4	PTCSE3	PTCSE2	PTCSE1	PTCSE0
0x1852	PTCDS	PTCDS7	PTCDS6	PTCDS5	PTCDS4	PTCDS3	PTCDS2	PTCDS1	PTCDS0
0x1853– 0x1857	Reserved	_	_	_	_	_	_	_	_
0x1858	PTDPE	PTDPE7	PTDPE6	PTDPE5	PTDPE4	PTDPE3	PTDPE2	PTDPE1	PTDPE0
0x1859	PTDSE	PTDSE7	PTDSE6	PTDSE5	PTDSE4	PTDSE3	PTDSE2	PTDSE1	PTDSE0
0x185A	PTDDS	PTDDS7	PTDDS6	PTDDS5	PTDDS4	PTDDS3	PTDDS2	PTDDS1	PTDDS0
0x185B	Reserved	_		_		_	_		
0x185C	PTDSC	0	0	0	0	PTDIF	PTDACK	PTDIE	PTDMOD
0x185D	PTDPS	PTDPS7	PTDPS6	PTDPS5	PTDPS4	PTDPS3	PTDPS2	PTDPS1	PTDPS0
0x185E	PTDES	PTDES7	PTDES6	PTDES5	PTDES4	PTDES3	PTDES2	PTDES1	PTDES0
0x185F	Reserved	_		_	_	_		_	
0x1860	PTEPE	PTEPE7	PTEPE6	PTEPE5	PTEPE4	PTEPE3	PTEPE2	PTEPE1	PTEPE0
0x1861	PTESE	PTESE7	PTESE6	PTESE5	PTESE4	PTESE3	PTESE2	PTESE1	PTESE0
0x1862	PTEDS	PTEDS7	PTEDS6	PTEDS5	PTEDS4	PTEDS3	PTEDS2	PTEDS1	PTEDS0
0x1863– 0x1867	Reserved	_	_	_	_	_	_	_	_
0x1868	PTFPE	PTFPE7	PTFPE6	PTFPE5	PTFPE4	PTFPE3	PTFPE2	PTFPE1	PTFPE0
0x1869	PTFSE	PTFSE7	PTFSE6	PTFSE5	PTFSE4	PTFSE3	PTFSE2	PTFSE1	PTFSE0
0x186A	PTFDS	PTFDS7	PTFDS6	PTFDS5	PTFDS4	PTFDS3	PTFDS2	PTFDS1	PTFDS0
0x186B– 0x186F	Reserved	_	_	_	_	_	_	_	_
0x1870	PTGPE	0	0	PTGPE5	PTGPE4	PTGPE3	PTGPE2	PTGPE1	PTGPE0
0x1871	PTGSE	0	0	PTGSE5	PTGSE4	PTGSE3	PTGSE2	PTGSE1	PTGSE0
0x1872	PTGDS	0	0	PTGDS5	PTGDS4	PTGDS3	PTGDS2	PTGDS1	PTGDS0
0x1873– 0x187F	Reserved			_			_		_
0x1880	CANCTL0	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
0x1881	CANCTL1	CANE	CLKSRC	LOOPB	LISTEN	BORM	WUPM	SLPAK	INITAK
0x1882	CANBTR0	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0

Table 4-14.	FSTAT	Register	Field	Descriptions	(continued)
-------------	-------	----------	-------	--------------	-------------

Field	Description
4 FACCERR	 Access Error Flag — FACCERR is set automatically when the proper command sequence is not obeyed exactly (the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register has been initialized, or if the MCU enters stop while a command was in progress. For a more detailed discussion of the exact actions that are considered access errors, see Section 4.5.6, "Access Errors." FACCERR is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect. 0 No access error. 1 An access error has occurred.
2 FBLANK	 Verified as All Blank (erased) Flag — FBLANK is set automatically at the conclusion of a blank check command if the entire Flash array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a new valid command. Writing to FBLANK has no meaning or effect. O After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the Flash array is not completely erased. 1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the Flash array is completely erased (all 0xFFFF).

4.5.10.6 Flash Command Register (FCMD)

Only six command codes are recognized in normal user modes, as shown in Table 4-15. All other command codes are illegal and generate an access error. Refer to Section 4.5.3, "Program and Erase Command Execution," for a detailed discussion of Flash programming and erase operations.

Figure 4-10. Flash Command Register (FCMD)

Command	FCMD	Equate File Label
Blank check	0x05	mBlank
Byte program	0x20	mByteProg
Burst program	0x25	mBurstProg
Sector erase	0x40	mSectorErase
Mass erase	0x41	mMassErase
Sector erase abort	0x47	mEraseAbort

Table 4-15. Flash Commands

It is not necessary to perform a blank check command after a mass erase operation. Only blank check is required as part of the security unlocking mechanism.

Chapter 6 Parallel Input/Output Control

6.5.1.5 Port A Drive Strength Selection Register (PTADS)

Figure 6-7. Drive Strength Selection for Port A Register (PTADS)

Table 6-5. PTADS Register Field Descriptions

Field	Description
7:0 PTADS[7:0]	 Output Drive Strength Selection for Port A Bits — Each of these control bits selects between low and high output drive for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect. 0 Low output drive strength selected for port A bit n. 1 High output drive strength selected for port A bit n.

6.5.1.6 Port A Interrupt Status and Control Register (PTASC)

Figure 6-8. Port A Interrupt Status and Control Register (PTASC)

Table 6-6. PTASC Register Field Descriptions

Field	Description
3 PTAIF	 Port A Interrupt Flag — PTAIF indicates when a port A interrupt is detected. Writes have no effect on PTAIF. 0 No port A interrupt detected. 1 Port A interrupt detected.
2 PTAACK	Port A Interrupt Acknowledge — Writing a 1 to PTAACK is part of the flag clearing mechanism. PTAACK always reads as 0.
1 PTAIE	 Port A Interrupt Enable — PTAIE determines whether a port A interrupt is requested. 0 Port A interrupt request not enabled. 1 Port A interrupt request enabled.
0 PTAMOD	 Port A Detection Mode — PTAMOD (along with the PTAES bits) controls the detection mode of the port A interrupt pins. 0 Port A pins detect edges only. 1 Port A pins detect both edges and levels.

Dit Moni	nulation	Branch		Bas	d Modify M	Irito			trol	· /		Pagisto	Momony		
DIL-IVIAIII		Branch		Rea						4.0	D 0 0	Register	/wemory	50 0	50 0
BRSET0	BSET0	BRA	NEG	A0 1 NEGA	NEGX	NEG 5	NEG ⁴	RTI 9	BGE	SUB 2	SUB	SUB 4	SUB 4	SUB SUB	SUB
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
01 5 BRCLR0	11 5 BCLR0	21 3 BRN	31 5 CBEQ	41 4 CBEQA	51 4 CBEQX	61 5 CBEQ	71 5 CBEQ	81 6 RTS	91 3 BLT	A1 2 CMP	B1 3 CMP	C1 4 CMP	D1 4 CMP	E1 3 CMP	F1 3 CMP
3 DIR	2 DIR	2 REL	3 DIR	3 IMM	3 IMM	3 IX1+	2 IX+	1 INH	2 REL	2 IMM	2 DIR	3 EXI	3 IX2	2 IX1	1 IX
02 5 BRSET1	12 5 BSET1	22 3 BHI	32 5 LDHX	42 5 MUL	52 6 DIV	62 1 NSA	72 1 DAA	82 5+ BGND	92 3 BGT	A2 2 SBC	B2 3 SBC	C2 4 SBC	D2 4 SBC	SBC 3	F2 3 SBC
3 DIR	2 DIR	2 REL	3 EXT	1 INH	1 INH	1 INH	1 INH	1 INH	2 REL	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
03 5	13 5	23 3	33 5	43 1	53 1	63 5	73 4	83 11	93 3	A3 2	B3 3	C3 4	D3 4	E3 3	F3 3
BRCLR1 3 DIR	BCLR1 2 DIR	BLS 2 REL	2 DIR	COMA 1 INH	COMX 1 INH	COM 2 IX1	1 IX	SWI 1 INH	BLE 2 REL	CPX 2 IMM	CPX 2 DIR	CPX 3 EXT	CPX 3 IX2	CPX 2 IX1	CPX 1 IX
04 5	14 5	24 3	34 5	44 1	54 1	64 5	74 4	84 1	94 2	A4 2	B4 3	C4 4	D4 4	E4 3	F4 3
BRSET2 3 DIR	BSET2 2 DIR	BCC 2 REL	LSR 2 DIR	LSRA 1 INH	LSRX 1 INH	LSR 2 IX1	LSR 1 IX	TAP 1 INH	TXS 1 INH	AND 2 IMM	AND 2 DIR	AND 3 EXT	AND 3 IX2	AND 2 IX1	AND 1 IX
05 5	15 5	25 3	35 4	45 3	55 4	65 3	75 5	85 1	95 2	A5 2	B5 3	C5 4	D5 4	E5 3	F5 3
BRCLR2 3 DIR	BCLR2 2 DIR	BCS 2 REL	STHX 2 DIR	LDHX 3 IMM	LDHX 2 DIR	CPHX 3 IMM	CPHX 2 DIR	TPA 1 INH	TSX 1 INH	BIT 2 IMM	BIT 2 DIR	BIT 3 EXT	BIT 3 IX2	BIT 2 IX1	BIT 1 IX
06 5	16 5	26 3	36 5	46 1	56 1	66 5	76 4	86 3	96 5	A6 2	B6 3	C6 4	D6 4	E6 3	F6 3
BRSET3	BSET3	BNE	ROR	RORA	RORX	ROR	ROR	PULA	STHX	LDA	LDA	LDA	LDA	LDA	LDA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	3 EXT	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
07 5 BRCLR3	17 5 BCLR3	27 3 BEQ	37 5 ASR	47 1 ASRA	57 1 ASRX	67 5 ASR	77 4 ASR	87 2 PSHA	97 1 TAX	A7 2 AIS	B7 3 STA	C7 4 STA	D7 4 STA	E7 3 STA	F7 2 STA
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXT	3 IX2	2 IX1	1 IX
08 5 BRSET4	18 5 BSET4	²⁸ ³ BHCC	38 5 LSL	48 1 LSLA	58 1 LSLX	68 5 LSL	78 4 LSL	88 3 PULX	98 1 CLC	A8 2 EOR	B8 3 EOR	C8 4 EOR	D8 4 EOR	E8 3 EOR	F8 3 EOR
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXI	3 IX2	2 IX1	1 IX
09 5 BRCLR4	19 5 BCLR4	²⁹ ³ BHCS	³⁹ ROL	ROLA	ROLX	⁶⁹ ROL	ROL 4	PSHX	99 1 SEC	A9 2 ADC	ADC 3	C9 4	ADC 4	E9 3	F9 3 ADC
3 DIR	2 DIR	2 REL	2 DIR	1 INH	1 INH	2 IX1	1 IX	1 INH	1 INH	2 IMM	2 DIR	3 EXI	3 IX2	2 IX1	1 IX
0A 5 BRSET5	1A 5 BSET5	BPL	JA 5 DEC	4A 1 DECA	DECX	6A 5 DEC	DEC	8A 3 PULH		AA 2 ORA	BA 3 ORA	ORA ORA	DA 4 ORA	ORA	FA 3 ORA
	2 DIK				5D 4										
								°D SHH			د مم			د مم م	
3 DIR	2 DIR	2 REI	3 DIR			3 1X1		1 INH			2 DIR	3 FXT	3 122	2 181	
	10 5	2 1122	30 5	40 1	50 1	60 5	70 4	90 1	0 1	2 10101	PC 3			EC 3	EC 3
BRSET6	BSET6	BMC							RSP		JMP 2 DIR	JMP	JMP		
	1D 5	2 1122	2 0111		5D 1		7 3				PD 5				
BRCLR6	BCLR6	BMS	TST	TSTA	TSTX	TST	TST		NOP	BSR	JSR	JSR	JSR	JSR	JSR
						2 1/1		05 0		Z KEL			3 IX2		
BRSET7	BSET7	BIL		MOV	MOV	MOV		STOP	Page 2	LDX					
									05 1						
BRCLR7	BCLR7							BF 2+ WAIT	19F 1 TXA 1 IN⊔		STX	STX	STX	STX	STX 2
3 DIK	2 DIK	12 REL	Z DIK			2 IAT					Z DIK	J ENI	J 172		

Table 7-3. Opcode Map (Sheet 1 of 2)

INH	Inherent
IMM	Immediate
DIR	Direct
EXT	Extended
DD	DIR to DIR
IX+D	IX+ to DIR

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+ REL IX IX1 IX2 IMD DIX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Opcode in Hexadecimal F0 3 SUB 1 IX Addressing Mode Number of Bytes 1

Chapter 11 Inter-Integrated Circuit (S08IICV2)

Refer to the direct-page register summary in the memory chapter of this document for the absolute address assignments for all IIC registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

11.3.1 IIC Address Register (IICA)

Figure 11-3. IIC Address Register (IICA)

Table	11-1.	IICA	Field	Descriptions
-------	-------	------	-------	--------------

Field	Description
7–1 AD[7:1]	Slave Address. The AD[7:1] field contains the slave address to be used by the IIC module. This field is used on the 7-bit address scheme and the lower seven bits of the 10-bit address scheme.

11.3.2 IIC Frequency Divider Register (IICF)

Figure 11-4. IIC Frequency Divider Register (IICF)

Chapter 11 Inter-Integrated Circuit (S08IICV2)

Figure 11-9. IIC Bus Transmission Signals

11.4.1.1 Start Signal

When the bus is free, no master device is engaging the bus (SCL and SDA lines are at logical high), a master may initiate communication by sending a start signal. As shown in Figure 11-9, a start signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle states.

11.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the start signal is the slave address transmitted by the master. This is a seven-bit calling address followed by a R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 1 =Read transfer, the slave transmits data to the master.
- 0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending back an acknowledge bit. This is done by pulling the SDA low at the ninth clock (see Figure 11-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit an address equal to its own slave address. The IIC cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the IIC reverts to slave mode and operates correctly even if it is being addressed by another master.

11.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction specified by the R/\overline{W} bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while SCL is high as shown in Figure 11-9. There is one clock pulse on SCL for each data bit, the msb being transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the ninth bit time, the SDA line must be left high by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave interprets this as an end of data transfer and releases the SDA line.

In either case, the data transfer is aborted and the master does one of two things:

- Relinquishes the bus by generating a stop signal.
- Commences a new calling by generating a repeated start signal.

11.4.1.4 Stop Signal

The master can terminate the communication by generating a stop signal to free the bus. However, the master may generate a start signal followed by a calling command without generating a stop signal first. This is called repeated start. A stop signal is defined as a low-to-high transition of SDA while SCL at logical 1 (see Figure 11-9).

The master can generate a stop even if the slave has generated an acknowledge at which point the slave must release the bus.

11.4.1.5 Repeated Start Signal

As shown in Figure 11-9, a repeated start signal is a start signal generated without first generating a stop signal to terminate the communication. This is used by the master to communicate with another slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

11.4.1.6 Arbitration Procedure

The IIC bus is a true multi-master bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest one among the masters. The relative priority of the contending masters is determined by a data arbitration procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The losing masters immediately switch over to slave receive mode and stop driving SDA output. In this case,

Field	Description Wake-Up Interrupt Enable 0 0 No interrupt request is generated from this event. 1 A wake-up event causes a Wake-Up interrupt request.					
7 WUPIE ¹						
6 CSCIE	 CAN Status Change Interrupt Enable No interrupt request is generated from this event. A CAN Status Change event causes an error interrupt request. 					
5:4 RSTATE[1:0]	 Receiver Status Change Enable — These RSTAT enable bits control the sensitivity level in which receiver state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level the RSTAT flags continue to indicate the actual receiver state and are only updated if no CSCIF interrupt is pending. 00 Do not generate any CSCIF interrupt caused by receiver state changes. 01 Generate CSCIF interrupt only if the receiver enters or leaves "bus-off" state. Discard other receiver state changes for generating CSCIF interrupt. 10 Generate CSCIF interrupt only if the receiver enters or leaves "RxErr" or "bus-off"² state. Discard other receiver state changes for generating CSCIF interrupt. 11 Generate CSCIF interrupt on all state changes. 					
3:2 TSTATE[1:0]	 Transmitter Status Change Enable — These TSTAT enable bits control the sensitivity level in which transmitter state changes are causing CSCIF interrupts. Independent of the chosen sensitivity level, the TSTAT flags continue to indicate the actual transmitter state and are only updated if no CSCIF interrupt is pending. 00 Do not generate any CSCIF interrupt caused by transmitter state changes. 01 Generate CSCIF interrupt only if the transmitter enters or leaves "bus-off" state. Discard other transmitter state changes for generating CSCIF interrupt. 10 Generate CSCIF interrupt only if the transmitter enters or leaves "TxErr" or "bus-off" state. Discard other transmitter state changes for generating CSCIF interrupt. 11 Generate CSCIF interrupt on all state changes. 					
1 OVRIE	Overrun Interrupt Enable 0 No interrupt request is generated from this event. 1 An overrun event causes an error interrupt request.					
0 RXFIE	Receiver Full Interrupt Enable0No interrupt request is generated from this event.1A receive buffer full (successful message reception) event causes a receiver interrupt request.					

Table 12-10. CANRIER Register Field Descriptions

¹ WUPIE and WUPE (see Section 12.3.1, "MSCAN Control Register 0 (CANCTL0)") must both be enabled if the recovery mechanism from stop or wait is required.

² Bus-off state is defined by the CAN standard (see Bosch CAN 2.0A/B protocol specification: for only transmitters. Because the only possible state change for the transmitter from bus-off to TxOK also forces the receiver to skip its current state to RxOK, the coding of the RXSTAT[1:0] flags define an additional bus-off state for the receiver (see Section 12.3.4.1, "MSCAN Receiver Flag Register (CANRFLG)").

12.3.6 MSCAN Transmitter Flag Register (CANTFLG)

The transmit buffer empty flags each have an associated interrupt enable bit in the CANTIER register.

12.3.9 MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)

The CANTAAK register indicates the successful abort of messages queued for transmission, if requested by the appropriate bits in the CANTARQ register.

Figure 12-13. MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)

NOTE

The CANTAAK register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1).

Read: Anytime Write: Unimplemented for ABTAKx flags

Table 12-14. CANTAAK Register Field Descriptions

Field	Description					
2:0 ABTAK[2:0]	 Abort Acknowledge — This flag acknowledges that a message was aborted due to a pending transmission abort request from the CPU. After a particular message buffer is flagged empty, this flag can be used by the application software to identify whether the message was aborted successfully or was sent anyway. The ABTAKx flag is cleared whenever the corresponding TXE flag is cleared. 0 The message was not aborted. 1 The message was aborted. 					

12.3.10 MSCAN Transmit Buffer Selection Register (CANTBSEL)

The CANTBSEL selections of the actual transmit message buffer, which is accessible in the CANTXFG register space.

Chapter 12 Freescale's Controller Area Network (S08MSCANV1)

Section 12.3.10, "MSCAN Transmit Buffer Selection Register (CANTBSEL)"). For receive buffers, only when RXF flag is set (see Section 12.3.4.1, "MSCAN Receiver Flag Register (CANRFLG)").

Write: For transmit buffers, anytime when TXEx flag is set (see Section 12.3.6, "MSCAN Transmitter Flag Register (CANTFLG)") and the corresponding transmit buffer is selected in CANTBSEL (see Section 12.3.10, "MSCAN Transmit Buffer Selection Register (CANTBSEL)"). Unimplemented for receive buffers.

Reset: Undefined (0x00XX) because of RAM-based implementation

= Unused, always read 'x'

Figure 12-24. Receive/Transmit Message Buffer — Standard Identifier Mapping

¹ The position of RTR differs between extended and standard indentifier mapping.

² IDE is 0.

12.4.1 Identifier Registers (IDR0–IDR3)

The identifier registers for an extended format identifier consist of a total of 32 bits; ID[28:0], SRR, IDE, and RTR bits. The identifier registers for a standard format identifier consist of a total of 13 bits; ID[10:0], RTR, and IDE bits.

12.4.1.1 IDR0–IDR3 for Extended Identifier Mapping

Figure 12-25. Identifier Register 0 (IDR0) — Extended Identifier Mapping

Chapter 12 Freescale's Controller Area Network (S08MSCANV1)

Section 12.3.1, "MSCAN Control Register 0 (CANCTL0)"). In case of a transmission, the CPU can only read the time stamp after the respective transmit buffer has been flagged empty.

The timer value, which is used for stamping, is taken from a free running internal CAN bit clock. A timer overrun is not indicated by the MSCAN. The timer is reset (all bits set to 0) during initialization mode. The CPU can only read the time stamp registers.

Figure 12-37. Time Stamp Register — Low Byte (TSRL)

Read: Anytime when TXEx flag is set (see Section 12.3.6, "MSCAN Transmitter Flag Register (CANTFLG)") and the corresponding transmit buffer is selected in CANTBSEL (see Section 12.3.10, "MSCAN Transmit Buffer Selection Register (CANTBSEL)").

Write: Unimplemented

12.5 Functional Description

12.5.1 General

This section provides a complete functional description of the MSCAN. It describes each of the features and modes listed in the introduction.

Chapter 12 Freescale's Controller Area Network (S08MSCANV1)

12.5.2.1 Message Transmit Background

Modern application layer software is built upon two fundamental assumptions:

- Any CAN node is able to send out a stream of scheduled messages without releasing the CAN bus between the two messages. Such nodes arbitrate for the CAN bus immediately after sending the previous message and only release the CAN bus in case of lost arbitration.
- The internal message queue within any CAN node is organized such that the highest priority message is sent out first, if more than one message is ready to be sent.

The behavior described in the bullets above cannot be achieved with a single transmit buffer. That buffer must be reloaded immediately after the previous message is sent. This loading process lasts a finite amount of time and must be completed within the inter-frame sequence (IFS) to be able to send an uninterrupted stream of messages. Even if this is feasible for limited CAN bus speeds, it requires that the CPU reacts with short latencies to the transmit interrupt.

A double buffer scheme de-couples the reloading of the transmit buffer from the actual message sending and, therefore, reduces the reactiveness requirements of the CPU. Problems can arise if the sending of a message is finished while the CPU re-loads the second buffer. No buffer would then be ready for transmission, and the CAN bus would be released.

At least three transmit buffers are required to meet the first of the above requirements under all circumstances. The MSCAN has three transmit buffers.

The second requirement calls for some sort of internal prioritization which the MSCAN implements with the "local priority" concept described in Section 12.5.2.2, "Transmit Structures."

12.5.2.2 Transmit Structures

The MSCAN triple transmit buffer scheme optimizes real-time performance by allowing multiple messages to be set up in advance. The three buffers are arranged as shown in Figure 12-38.

All three buffers have a 13-byte data structure similar to the outline of the receive buffers (see Section 12.4, "Programmer's Model of Message Storage"). An additional Section 12.4.5, "Transmit Buffer Priority Register (TBPR) contains an 8-bit local priority field (PRIO) (see Section 12.4.5, "Transmit Buffer Priority Register (TBPR)"). The remaining two bytes are used for time stamping of a message, if required (see Section 12.4.6, "Time Stamp Register (TSRH–TSRL)").

To transmit a message, the CPU must identify an available transmit buffer, which is indicated by a set transmitter buffer empty (TXEx) flag (see Section 12.3.6, "MSCAN Transmitter Flag Register (CANTFLG)"). If a transmit buffer is available, the CPU must set a pointer to this buffer by writing to the CANTBSEL register (see Section 12.3.10, "MSCAN Transmit Buffer Selection Register (CANTBSEL)"). This makes the respective buffer accessible within the CANTXFG address space (see Section 12.4, "Programmer's Model of Message Storage"). The algorithmic feature associated with the CANTBSEL register simplifies the transmit buffer selection. In addition, this scheme makes the handler software simpler because only one address area is applicable for the transmit process, and the required address space is minimized.

The CPU then stores the identifier, the control bits, and the data content into one of the transmit buffers. Finally, the buffer is flagged as ready for transmission by clearing the associated TXE flag.

12.5.5.5 MSCAN Initialization Mode

In initialization mode, any on-going transmission or reception is immediately aborted and synchronization to the CAN bus is lost, potentially causing CAN protocol violations. To protect the CAN bus system from fatal consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE

The user is responsible for ensuring that the MSCAN is not active when initialization mode is entered. The recommended procedure is to bring the MSCAN into sleep mode (SLPRQ = 1 and SLPAK = 1) before setting the INITRQ bit in the CANCTL0 register. Otherwise, the abort of an on-going message can cause an error condition and can impact other CAN bus devices.

In initialization mode, the MSCAN is stopped. However, interface registers remain accessible. This mode is used to reset the CANCTLO, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ, CANTAAK, and CANTBSEL registers to their default values. In addition, the MSCAN enables the configuration of the CANBTRO, CANBTR1 bit timing registers; CANIDAC; and the CANIDAR, CANIDMR message filters. See Section 12.3.1, "MSCAN Control Register 0 (CANCTLO)," for a detailed description of the initialization mode.

Figure 12-46. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN, INITRQ must be synchronized to all domains by using a special handshake mechanism. This handshake causes additional synchronization delay (see Section Figure 12-46., "Initialization Request/Acknowledge Cycle").

If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus clocks and three additional CAN clocks. When all parts of the MSCAN are in initialization mode, the INITAK flag is set. The application software must use INITAK as a handshake indication for the request (INITRQ) to go into initialization mode.

NOTE

The CPU cannot clear INITRQ before initialization mode (INITRQ = 1 and INITAK = 1) is active.

Table 14-6. SCIxS1 Field Descriptions (continued)

Field	Description				
1 FE	 Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read SCIxS1 with FE = 1 and then read the SCI data register (SCIxD). 0 No framing error detected. This does not guarantee the framing is correct. 1 Framing error. 				
0 PF	 Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in the received character does not agree with the expected parity value. To clear PF, read SCIxS1 and then read the SCI data register (SCIxD). 0 No parity error. 1 Parity error. 				

14.2.5 SCI Status Register 2 (SCIxS2)

This register has one read-only status flag.

Figure 14-9. SCI Status Register 2 (SCIxS2)

Table 14-7. SCIxS2 Field Descriptions

Field	Description				
7 LBKDIF	LIN Break Detect Interrupt Flag — LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break character is detected. LBKDIF is cleared by writing a "1" to it. 0 No LIN break character has been detected. 1 LIN break character has been detected.				
6 RXEDGIF	 RxD Pin Active Edge Interrupt Flag — RXEDGIF is set when an active edge (falling if RXINV = 0, rising if RXINV=1) on the RxD pin occurs. RXEDGIF is cleared by writing a "1" to it. 0 No active edge on the receive pin has occurred. 1 An active edge on the receive pin has occurred. 				
4 RXINV ¹	 Receive Data Inversion — Setting this bit reverses the polarity of the received data input. 0 Receive data not inverted 1 Receive data inverted 				
3 RWUID	 Receive Wake Up Idle Detect— RWUID controls whether the idle character that wakes up the receiver sets the IDLE bit. 0 During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. 1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character. 				
2 BRK13	 Break Character Generation Length — BRK13 is used to select a longer transmitted break character length. Detection of a framing error is not affected by the state of this bit. Break character is transmitted with length of 10 bit times (11 if M = 1) Break character is transmitted with length of 13 bit times (14 if M = 1) 				

Chapter 14 Serial Communications Interface (S08SCIV4)

Chapter 17 Development Support

¹ BDFR is writable only through serial background mode debug commands, not from user programs.

Figure 17-6. System Background Debug Force Reset Register (SBDFR)

Table 17-3. SBDFR Register Field Description

Field	Description
0 BDFR	Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program.

17.4.3 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control and status registers. These registers are located in the high register space of the normal memory map so they are accessible to normal application programs. These registers are rarely if ever accessed by normal user application programs with the possible exception of a ROM patching mechanism that uses the breakpoint logic.

17.4.3.1 Debug Comparator A High Register (DBGCAH)

This register contains compare value bits for the high-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.2 Debug Comparator A Low Register (DBGCAL)

This register contains compare value bits for the low-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.3 Debug Comparator B High Register (DBGCBH)

This register contains compare value bits for the high-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.4 Debug Comparator B Low Register (DBGCBL)

This register contains compare value bits for the low-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

A.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1	—	Operating Voltage	V _{DD}		2.7	_	5.5	V
	Ρ	All I/O pins, low-drive strength		5 V, I _{Load} = –2 mA	V _{DD} – 1.5	—	_	
	С			3 V, I _{Load} = -0.6 mA	V _{DD} – 1.5	—	_	
	С	Output high		5 V, I _{Load} = -0.4 mA	V _{DD} – 0.8			
2	С	voltage	V _{OH}	3 V, I _{Load} = -0.24 mA	V _{DD} – 0.8	—	—	V
	Ρ	All I/O pins, high-drive strength		5 V, I _{Load} = -10 mA	V _{DD} – 1.5			
	С			3 V, I _{Load} = –3 mA	V _{DD} – 1.5		_	
	С			5 V, I _{Load} = –2 mA	V _{DD} – 0.8		_	
	С			3 V, I _{Load} = -0.4 mA	V _{DD} – 0.8		_	
3	С	Output Max total I _{OH} for all ports	I _{OHT}	5 V	0		-100	mA
		high current		3 V	0	_	-60	
	Р	All I/O pins, low-drive strength		5 V, I _{Load} = 2 mA	—	—	1.5	
	С			3 V, I _{Load} = 0.6 mA	—	—	1.5	
4	С	Output low		5 V, I _{Load} = 0.4 mA	—	—	0.8	V
	С	voltage	V _{OL}	3 V, I _{Load} = 0.24 mA	—	—	0.8	
	Р	All I/O pins, high-drive strength		5 V, I _{Load} = 10 mA	—		1.5	
	С			3 V, I _{Load} = 3 mA	_		1.5	
	С			5 V, I _{Load} = 2 mA	—		0.8	
	С			3 V, I _{Load} = 0.4 mA	—		0.8	
5	С	Output Max total I _{OL} for all ports	I _{OLT}	5 V	0		100	mA
		low current		3 V	0		60	
6	С	Input high voltage; all digital inputs	V_{IH}	5V	0.65 x V _{DD}	—	—	
7	С	Input low voltage; all digital inputs	V_{IL}	5V	—		0.35 x V _{DD}	V
8	С	Input hysteresis	V _{hys}		0.06 x V _{DD}			mV
9	Ρ	Input leakage current (Per pin) all input only pins	I _{In}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.1	1	μA
10	Ρ	Hi-Z (off-state) leakage current (per pin) all input/output	I _{OZ}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.1	1	μΑ
11	Ρ	Pullup resistors (or Pulldown ² resistors when enabled)	R _{PU} , R _{PD}	5 V	20	45	65	kΩ
	С			3 V	20	45	65	
12	Т	Input Capacitance, all pins	C _{In}		_		8	pF
13	D	RAM retention voltage	V _{RAM}			0.6	1.0	V
L	I	-		1			I	I

Table A-6. DC Characteristics

Pin Count	Туре	Abbreviation	Designator	Document No.
64	Low Quad Flat Package	LQFP	LH	98ASS23234W
48	Low Quad Flat Package	LQFP	LF	98ASH00962A
32	Low Quad Flat Package	LQFP	LC	98ASH70029A

Table C-2. Package Descriptions