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2.2.1 Power

VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all
I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated
lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins. In this case, there
should be a bulk electrolytic capacitor, such as a 10-μF tantalum capacitor, to provide bulk charge storage
for the overall system and a 0.1-μF ceramic bypass capacitor located as near to the MCU power pins as
practical to suppress high-frequency noise. The MC9S08DV60 Series has two VDD pins except on the
32-pin package. Each pin must have a bypass capacitor for best noise suppression.

VDDA and VSSA are the analog power supply pins for the MCU. This voltage source supplies power to the
ADC module. A 0.1-μF ceramic bypass capacitor should be located as near to the MCU power pins as
practical to suppress high-frequency noise.

2.2.2 Oscillator

Immediately after reset, the MCU uses an internally generated clock provided by the multi-purpose clock
generator (MCG) module. For more information on the MCG, see Chapter 8, “Multi-Purpose Clock
Generator (S08MCGV1).”

The oscillator (XOSC) in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic
resonator. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL
input pin.

Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance
resistors such as carbon composition resistors. Wire-wound resistors and some metal film resistors have
too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically
designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value
is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity, and
lower values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific
crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin
capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance
which is the series combination of C1 and C2 (which are usually the same size). As a first-order
approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin
(EXTAL and XTAL).

2.2.3 RESET

RESET is a dedicated pin with a pull-up device built in. It has input hysteresis, a high current output driver,
and no output slew rate control. Internal power-on reset and low-voltage reset circuitry typically make
external reset circuitry unnecessary. This pin is normally connected to the standard 6-pin background
debug connector so a development system can directly reset the MCU system. If desired, a manual external
reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset).
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0xFFCE:0xFFCF IIC Viic

0xFFD0:0xFFD1 ADC Conversion Vadc

0xFFD2:0xFFD3 Port A, Port B, Port D Vport

0xFFD4:0xFFD5 SCI2 Transmit Vsci2tx

0xFFD6:0xFFD7 SCI2 Receive Vsci2rx

0xFFD8:0xFFD9 SCI2 Error Vsci2err

0xFFDA:0xFFDB SCI1 Transmit Vsci1tx

0xFFDC:0xFFDD SCI1 Receive Vsci1rx

0xFFDE:0xFFDF SCI1 Error Vsci1err

0xFFE0:0xFFE1 SPI Vspi

0xFFE2:0xFFE3 TPM2 Overflow Vtpm2ovf

0xFFE4:0xFFE5 TPM2 Channel 1 Vtpm2ch1

0xFFE6:0xFFE7 TPM2 Channel 0 Vtpm2ch0

0xFFE8:0xFFE9 TPM1 Overflow Vtpm1ovf

0xFFEA:0xFFEB TPM1 Channel 5 Vtpm1ch5

0xFFEC:0xFFED TPM1 Channel 4 Vtpm1ch4

0xFFEE:0xFFEF TPM1 Channel 3 Vtpm1ch3

0xFFF0:0xFFF1 TPM1 Channel 2 Vtpm1ch2

0xFFF2:0xFFF3 TPM1 Channel 1 Vtpm1ch1

0xFFF4:0xFFF5 TPM1 Channel 0 Vtpm1ch0

0xFFF6:0xFFF7 MCG Loss of lock Vlol

0xFFF8:0xFFF9 Low-Voltage Detect Vlvd

0xFFFA:0xFFFB IRQ Virq

0xFFFC:0xFFFD SWI Vswi

0xFFFE:0xFFFF Reset Vreset

Table 4-1. Reset and Interrupt Vectors

Address
(High/Low)

Vector Vector Name



Chapter 4 Memory

MC9S08DV60 Series Data Sheet, Rev 3

Freescale Semiconductor 61

4.5.10 Flash Registers and Control Bits

The Flash module has seven 8-bit registers in the high-page register space and three locations in the
nonvolatile register space in Flash memory. Two of those locations are copied into two corresponding
high-page control registers at reset. There is also an 8-byte comparison key in Flash memory. Refer to
Table 4-3 and Table 4-5 for the absolute address assignments for all Flash registers. This section refers to
registers and control bits only by their names. A Freescale Semiconductor-provided equate or header file
normally is used to translate these names into the appropriate absolute addresses.

4.5.10.1 Flash Clock Divider Register (FCDIV)

Bit 7 of this register is a read-only flag. Bits 6:0 may be read at any time but can be written only one time.
Before any erase or programming operations are possible, write to this register to set the frequency of the
clock for the nonvolatile memory system within acceptable limits.

if PRDIV8 = 0 — fFCLK = fBus ÷ (DIV + 1) Eqn. 4-1

if PRDIV8 = 1 — fFCLK = fBus ÷ (8 × (DIV + 1)) Eqn. 4-2

Table 4-8 shows the appropriate values for PRDIV8 and DIV for selected bus frequencies.

7 6 5 4 3 2 1 0

R DIVLD
PRDIV8 DIV

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-5. Flash Clock Divider Register (FCDIV)

Table 4-7. FCDIV Register Field Descriptions

Field Description

7
DIVLD

Divisor Loaded Status Flag — When set, this read-only status flag indicates that the FCDIV register has been
written since reset. Reset clears this bit and the first write to this register causes this bit to become set regardless
of the data written.
0 FCDIV has not been written since reset; erase and program operations disabled for Flash.
1 FCDIV has been written since reset; erase and program operations enabled for Flash.

6
PRDIV8

Prescale (Divide) Flash Clock by 8 (This bit is write once.)
0 Clock input to the Flash clock divider is the bus rate clock.
1 Clock input to the Flash clock divider is the bus rate clock divided by 8.

5:0
DIV

Divisor for Flash Clock Divider — These bits are write once. The Flash clock divider divides the bus rate clock
(or the bus rate clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit DIV field plus one. The resulting
frequency of the internal Flash clock must fall within the range of 200 kHz to 150 kHz for proper Flash operations.
Program/Erase timing pulses are one cycle of this internal Flash clock which corresponds to a range of 5 μs to
6.7 μs. The automated programming logic uses an integer number of these pulses to complete an erase or
program operation. See Equation 4-1 and Equation 4-2.
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4.5.10.2 Flash Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from Flash into FOPT. To change
the value in this register, erase and reprogram the NVOPT location in Flash memory as usual and then issue
a new MCU reset.

Table 4-8. Flash Clock Divider Settings

fBus
PRDIV8
(Binary)

DIV
(Decimal)

fFCLK
Program/Erase Timing Pulse

(5 μs Min, 6.7 μs Max)

20 MHz 1 12 192.3 kHz 5.2 μs

10 MHz 0 49 200 kHz 5 μs

8 MHz 0 39 200 kHz 5 μs

4 MHz 0 19 200 kHz 5 μs

2 MHz 0 9 200 kHz 5 μs

1 MHz 0 4 200 kHz 5 μs

200 kHz 0 0 200 kHz 5 μs

150 kHz 0 0 150 kHz 6.7 μs

7 6 5 4 3 2 1 0

R KEYEN FNORED
Reserved

0 0 0 SEC

W

Reset F F F 0 0 0 F F

= Unimplemented or Reserved F = loaded from nonvolatile location NVOPT during reset

Figure 4-6. Flash Options Register (FOPT)

Table 4-9. FOPT Register Field Descriptions

Field Description

7
KEYEN

Backdoor Key Mechanism Enable — When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only from user (secured) firmware. BDM
commands cannot be used to write key comparison values that would unlock the backdoor key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5.9, “Security.”
0 No backdoor key access allowed.
1 If user firmware writes an 8-byte value that matches the nonvolatile backdoor key (NVBACKKEY through

NVBACKKEY+7 in that order), security is temporarily disengaged until the next MCU reset.

6
FNORED

Vector Redirection Disable — When this bit is 1, then vector redirection is disabled.
0 Vector redirection enabled.
1 Vector redirection disabled.

1:0
SEC

Security State Code — This 2-bit field determines the security state of the MCU as shown in Table 4-10. When
the MCU is secure, the contents of RAM and Flash memory cannot be accessed by instructions from any
unsecured source including the background debug interface. SEC changes to 1:0 after successful backdoor key
entry or a successful blank check of Flash. For more detailed information about security, refer to Section 4.5.9,
“Security.”
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5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer
(SP) points at the next available byte location on the stack. The current values of CPU registers are stored
on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.

Figure 5-1. Interrupt Stack Frame

When an RTI instruction is executed, these values are recovered from the stack in reverse order. As part of
the RTI sequence, the CPU fills the instruction pipeline by reading three bytes of program information,
starting from the PC address recovered from the stack.

The status flag corresponding to the interrupt source must be acknowledged (cleared) before returning
from the ISR. Typically, the flag is cleared at the beginning of the ISR so that if another interrupt is
generated by this same source, it will be registered so it can be serviced after completion of the current ISR.

5.5.2 External Interrupt Request (IRQ) Pin

External interrupts are managed by the IRQ status and control register, IRQSC. When the IRQ function is
enabled, synchronous logic monitors the pin for edge-only or edge-and-level events. When the MCU is in
stop mode and system clocks are shut down, a separate asynchronous path is used so the IRQ (if enabled)
can wake the MCU.

5.5.2.1 Pin Configuration Options

The IRQ pin enable (IRQPE) control bit in IRQSC must be 1 in order for the IRQ pin to act as the interrupt
request (IRQ) input. As an IRQ input, the user can choose the polarity of edges or levels detected
(IRQEDG), whether the pin detects edges-only or edges and levels (IRQMOD), and whether an event
causes an interrupt or only sets the IRQF flag which can be polled by software.
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Figure 7-2. Condition Code Register

Table 7-1. CCR Register Field Descriptions

Field Description

7
V

Two’s Complement Overflow Flag — The CPU sets the overflow flag when a two’s complement overflow occurs.
The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.
0 No overflow
1 Overflow

4
H

Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during
an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded
decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to
automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the
result to a valid BCD value.
0 No carry between bits 3 and 4
1 Carry between bits 3 and 4

3
I

Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts
are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service
routine is executed.
Interrupts are not recognized at the instruction boundary after any instruction that clears I (CLI or TAP). This
ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening
interrupt, provided I was set.
0 Interrupts enabled
1 Interrupts disabled

2
N

Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data
manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value
causes N to be set if the most significant bit of the loaded or stored value was 1.
0 Non-negative result
1 Negative result

1
Z

Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation
produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the
loaded or stored value was all 0s.
0 Non-zero result
1 Zero result

0
C

Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit
7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and
branch, shift, and rotate — also clear or set the carry/borrow flag.
0 No carry out of bit 7
1 Carry out of bit 7

CONDITION CODE REGISTER

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO’S COMPLEMENT OVERFLOW

7 0

CCRCV 1 1 H I N Z
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7.3 Addressing Modes
Addressing modes define the way the CPU accesses operands and data. In the HCS08, all memory, status
and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit
binary address can uniquely identify any memory location. This arrangement means that the same
instructions that access variables in RAM can also be used to access I/O and control registers or nonvolatile
program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing
mode to specify the source operand and a second addressing mode to specify the destination address.
Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location
of an operand for a test and then use relative addressing mode to specify the branch destination address
when the tested condition is true. For BRCLR, BRSET, CBEQ, and DBNZ, the addressing mode listed in
the instruction set tables is the addressing mode needed to access the operand to be tested, and relative
addressing mode is implied for the branch destination.

7.3.1 Inherent Addressing Mode (INH)

In this addressing mode, operands needed to complete the instruction (if any) are located within CPU
registers so the CPU does not need to access memory to get any operands.

7.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination location for branch instructions. A signed 8-bit
offset value is located in the memory location immediately following the opcode. During execution, if the
branch condition is true, the signed offset is sign-extended to a 16-bit value and is added to the current
contents of the program counter, which causes program execution to continue at the branch destination
address.

7.3.3 Immediate Addressing Mode (IMM)

In immediate addressing mode, the operand needed to complete the instruction is included in the object
code immediately following the instruction opcode in memory. In the case of a 16-bit immediate operand,
the high-order byte is located in the next memory location after the opcode, and the low-order byte is
located in the next memory location after that.

7.3.4 Direct Addressing Mode (DIR)

In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page
(0x0000–0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the
high-order half of the address and the direct address from the instruction to get the 16-bit address where
the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit
address for the operand.
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interrupt service routine, this would allow nesting of interrupts (which is not recommended because it
leads to programs that are difficult to debug and maintain).

For compatibility with the earlier M68HC05 MCUs, the high-order half of the H:X index register pair (H)
is not saved on the stack as part of the interrupt sequence. The user must use a PSHH instruction at the
beginning of the service routine to save H and then use a PULH instruction just before the RTI that ends
the interrupt service routine. It is not necessary to save H if you are certain that the interrupt service routine
does not use any instructions or auto-increment addressing modes that might change the value of H.

The software interrupt (SWI) instruction is like a hardware interrupt except that it is not masked by the
global I bit in the CCR and it is associated with an instruction opcode within the program so it is not
asynchronous to program execution.

7.4.3 Wait Mode Operation

The WAIT instruction enables interrupts by clearing the I bit in the CCR. It then halts the clocks to the
CPU to reduce overall power consumption while the CPU is waiting for the interrupt or reset event that
will wake the CPU from wait mode. When an interrupt or reset event occurs, the CPU clocks will resume
and the interrupt or reset event will be processed normally.

If a serial BACKGROUND command is issued to the MCU through the background debug interface while
the CPU is in wait mode, CPU clocks will resume and the CPU will enter active background mode where
other serial background commands can be processed. This ensures that a host development system can still
gain access to a target MCU even if it is in wait mode.

7.4.4 Stop Mode Operation

Usually, all system clocks, including the crystal oscillator (when used), are halted during stop mode to
minimize power consumption. In such systems, external circuitry is needed to control the time spent in
stop mode and to issue a signal to wake up the target MCU when it is time to resume processing. Unlike
the earlier M68HC05 and M68HC08 MCUs, the HCS08 can be configured to keep a minimum set of
clocks running in stop mode. This optionally allows an internal periodic signal to wake the target MCU
from stop mode.

When a host debug system is connected to the background debug pin (BKGD) and the ENBDM control
bit has been set by a serial command through the background interface (or because the MCU was reset into
active background mode), the oscillator is forced to remain active when the MCU enters stop mode. In this
case, if a serial BACKGROUND command is issued to the MCU through the background debug interface
while the CPU is in stop mode, CPU clocks will resume and the CPU will enter active background mode
where other serial background commands can be processed. This ensures that a host development system
can still gain access to a target MCU even if it is in stop mode.

Recovery from stop mode depends on the particular HCS08 and whether the oscillator was stopped in stop
mode. Refer to the Modes of Operation chapter for more details.
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8.3.5 MCG Control Register 3 (MCGC3)

1
OSCINIT

OSC Initialization — If the external reference clock is selected by ERCLKEN or by the MCG being in FEE, FBE,
PEE, PBE, or BLPE mode, and if EREFS is set, then this bit is set after the initialization cycles of the external
oscillator clock have completed. This bit is only cleared when either EREFS is cleared or when the MCG is in
either FEI, FBI, or BLPI mode and ERCLKEN is cleared.

0
FTRIM

MCG Fine Trim — Controls the smallest adjustment of the internal reference clock frequency. Setting FTRIM
will increase the period and clearing FTRIM will decrease the period by the smallest amount possible.

If an FTRIM value stored in nonvolatile memory is to be used, it’s the user’s responsibility to copy that value from
the nonvolatile memory location to this register’s FTRIM bit.

7 6 5 4 3 2 1 0

R
LOLIE PLLS CME

0
VDIV

W

Reset: 0 0 0 0 0 0 0 1

Figure 8-7. MCG PLL Register (MCGPLL)

Table 8-5. MCG PLL Register Field Descriptions

Field Description

7
LOLIE

Loss of Lock Interrupt Enable — Determines if an interrupt request is made following a loss of lock indication.
The LOLIE bit only has an effect when LOLS is set.
0 No request on loss of lock.
1 Generate an interrupt request on loss of lock.

6
PLLS

PLL Select — Controls whether the PLL or FLL is selected. If the PLLS bit is clear, the PLL is disabled in all
modes. If the PLLS is set, the FLL is disabled in all modes.
1 PLL is selected
0 FLL is selected

Table 8-4. MCG Status and Control Register Field Descriptions (continued)

Field Description
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9.3 Memory Map/Register Definition
The ACMP includes one register:

• An 8-bit status and control register

Refer to the direct-page register summary in the memory section of this document for the absolute address
assignments for the ACMP register.This section refers to register and control bits only by their names and
relative address offsets.

Some MCUs may have more than one ACMP, so register names include placeholder characters (x) to
identify which ACMP is being referenced.

9.3.1 ACMPx Status and Control Register (ACMPxSC)

ACMPxSC contains the status flag and control bits used to enable and configure the ACMP.

Table 9-2. ACMP Register Summary

Name 7 6 5 4 3 2 1 0

ACMPxSC
R

ACME ACBGS ACF ACIE
ACO

ACOPE ACMOD
W

7 6 5 4 3 2 1 0

R
ACME ACBGS ACF ACIE

ACO
ACOPE ACMOD

W

Reset: 0 0 0 0 0 0 0 0

Figure 9-3. ACMPx Status and Control Register (ACMPxSC)

Table 9-3. ACMPxSC Field Descriptions

Field Description

7
ACME

Analog Comparator Module Enable. Enables the ACMP module.
0 ACMP not enabled
1 ACMP is enabled

6
ACBGS

Analog Comparator Bandgap Select. Selects between the bandgap reference voltage or the ACMPx+ pin as the
input to the non-inverting input of the analog comparator.
0 External pin ACMPx+ selected as non-inverting input to comparator
1 Internal reference select as non-inverting input to comparator

5
ACF

Analog Comparator Flag. ACF is set when a compare event occurs. Compare events are defined by ACMOD.
ACF is cleared by writing a one to it.
0 Compare event has not occurred
1 Compare event has occurred

4
ACIE

Analog Comparator Interrupt Enable. Enables the interrupt from the ACMP. When ACIE is set, an interrupt is
asserted when ACF is set.
0 Interrupt disabled
1 Interrupt enabled
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10.1.5 Temperature Sensor

To use the on-chip temperature sensor, the user must perform the following:

• Configure ADC for long sample with a maximum of 1 MHz clock

• Convert the bandgap voltage reference channel (AD27)

— By converting the digital value of the bandgap voltage reference channel using the value of
VBG the user can determine VDD. For value of bandgap voltage, see Section A.6, “DC
Characteristics”.

• Convert the temperature sensor channel (AD26)

— By using the calculated value of VDD, convert the digital value of AD26 into a voltage, VTEMP

Equation 10-1 provides an approximate transfer function of the temperature sensor.

Temp = 25 - ((VTEMP -VTEMP25) ÷ m) Eqn. 10-1

where:

— VTEMP is the voltage of the temperature sensor channel at the ambient temperature.

— VTEMP25 is the voltage of the temperature sensor channel at 25°C.

— m is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the VTEMP25 and m values from the ADC Electricals table.

In application code, the user reads the temperature sensor channel, calculates VTEMP, and compares to
VTEMP25. If VTEMP is greater than VTEMP25 the cold slope value is applied in Equation 10-1. If VTEMP is
less than VTEMP25 the hot slope value is applied in Equation 10-1. To improve accuracy the user should
calibrate the bandgap voltage reference and temperature sensor.

Calibrating at 25°C will improve accuracy to ± 4.5°C.

Calibration at three points, -40°C, 25°C, and 125°C will improve accuracy to ± 2.5°C. Once calibration
has been completed, the user will need to calculate the slope for both hot and cold. In application code, the
user would then calculate the temperature using Equation 10-1 as detailed above and then determine if the
temperature is above or below 25°C. Once determined if the temperature is above or below 25°C, the user
can recalculate the temperature using the hot or cold slope value obtained during calibration.
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12.3.9 MSCAN Transmitter Message Abort Acknowledge Register
(CANTAAK)

The CANTAAK register indicates the successful abort of messages queued for transmission, if requested
by the appropriate bits in the CANTARQ register.

NOTE
The CANTAAK register is held in the reset state when the initialization
mode is active (INITRQ = 1 and INITAK = 1).

Read: Anytime
Write: Unimplemented for ABTAKx flags

12.3.10 MSCAN Transmit Buffer Selection Register (CANTBSEL)

The CANTBSEL selections of the actual transmit message buffer, which is accessible in the CANTXFG
register space.

7 6 5 4 3 2 1 0

R 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-13. MSCAN Transmitter Message Abort Acknowledge Register (CANTAAK)

Table 12-14. CANTAAK Register Field Descriptions

Field Description

2:0
ABTAK[2:0]

Abort Acknowledge — This flag acknowledges that a message was aborted due to a pending transmission
abort request from the CPU. After a particular message buffer is flagged empty, this flag can be used by the
application software to identify whether the message was aborted successfully or was sent anyway. The ABTAKx
flag is cleared whenever the corresponding TXE flag is cleared.
0 The message was not aborted.
1 The message was aborted.

7 6 5 4 3 2 1 0

R 0 0 0 0 0
TX2 TX1 TX0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-14. MSCAN Transmit Buffer Selection Register (CANTBSEL)
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Read: For transmit buffers, anytime when TXEx flag is set (see Section 12.3.6, “MSCAN Transmitter Flag
Register (CANTFLG)”) and the corresponding transmit buffer is selected in CANTBSEL (see

Register
Name

Bit 7 6 5 4 3 2 1 Bit0

IDR0
R

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
W

IDR1
R

ID20 ID19 ID18 SRR(1)

1 SRR and IDE are both 1s.

IDE(1) ID17 ID16 ID15
W

IDR2
R

ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
W

IDR3
R

ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR2

2 The position of RTR differs between extended and standard indentifier mapping.

W

DSR0
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR1
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR2
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR3
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR4
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR5
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR6
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DSR7
R

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
W

DLR
R

DLC3 DLC2 DLC1 DLC0
W

= Unused, always read ‘x’

Figure 12-23. Receive/Transmit Message Buffer — Extended Identifier Mapping



Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)

MC9S08DV60 Series Data Sheet, Rev 3

Freescale Semiconductor 267

12.5.7.1 Description of Interrupt Operation

The MSCAN supports four interrupt vectors (see Table 12-37), any of which can be individually masked
(for details see sections from Section 12.3.5, “MSCAN Receiver Interrupt Enable Register (CANRIER),”
to Section 12.3.7, “MSCAN Transmitter Interrupt Enable Register (CANTIER)”).

NOTE
The dedicated interrupt vector addresses are defined in the Resets and
Interrupts chapter.

12.5.7.2 Transmit Interrupt

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message
for transmission. The TXEx flag of the empty message buffer is set.

12.5.7.3 Receive Interrupt

A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO.
This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are
multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the
foreground buffer.

12.5.7.4 Wake-Up Interrupt

A wake-up interrupt is generated if activity on the CAN bus occurs during MSCAN internal sleep mode.
WUPE (see Section 12.3.1, “MSCAN Control Register 0 (CANCTL0)”) must be enabled.

12.5.7.5 Error Interrupt

An error interrupt is generated if an overrun of the receiver FIFO, error, warning, or bus-off condition
occurrs. Section 12.3.4.1, “MSCAN Receiver Flag Register (CANRFLG) indicates one of the following
conditions:

• Overrun — An overrun condition of the receiver FIFO as described in Section 12.5.2.3, “Receive
Structures,” occurred.

• CAN Status Change — The actual value of the transmit and receive error counters control the
CAN bus state of the MSCAN. As soon as the error counters skip into a critical range
(Tx/Rx-warning, Tx/Rx-error, bus-off) the MSCAN flags an error condition. The status change,
which caused the error condition, is indicated by the TSTAT and RSTAT flags (see

Table 12-37. Interrupt Vectors

Interrupt Source CCR Mask Local Enable

Wake-Up Interrupt (WUPIF) I bit CANRIER (WUPIE)

Error Interrupts Interrupt (CSCIF, OVRIF) I bit CANRIER (CSCIE, OVRIE)

Receive Interrupt (RXF) I bit CANRIER (RXFIE)

Transmit Interrupts (TXE[2:0]) I bit CANTIER (TXEIE[2:0])
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Table 14-6. SCIxS1 Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers from
the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, read
SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD).
0 Transmit data register (buffer) full.
1 Transmit data register (buffer) empty.

6
TC

Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break
character is being transmitted.
0 Transmitter active (sending data, a preamble, or a break).
1 Transmitter idle (transmission activity complete).
TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things:

• Write to the SCI data register (SCIxD) to transmit new data
• Queue a preamble by changing TE from 0 to 1
• Queue a break character by writing 1 to SBK in SCIxC2

5
RDRF

Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter into
the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data
register (SCIxD).
0 Receive data register empty.
1 Receive data register full.

4
IDLE

Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a period of
activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive character is
all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit times
depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver doesn’t
start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of the
previous character do not count toward the full character time of logic high needed for the receiver to detect an
idle line.
To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has been
cleared, it cannot become set again until after a new character has been received and RDRF has been set. IDLE
will get set only once even if the receive line remains idle for an extended period.
0 No idle line detected.
1 Idle line was detected.

3
OR

Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive data
register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the new
character (and all associated error information) is lost because there is no room to move it into SCIxD. To clear
OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD).
0 No overrun.
1 Receive overrun (new SCI data lost).

2
NF

Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start bit
and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the samples
within any bit time in the frame, the flag NF will be set at the same time as the flag RDRF gets set for the
character. To clear NF, read SCIxS1 and then read the SCI data register (SCIxD).
0 No noise detected.
1 Noise detected in the received character in SCIxD.
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• Non-intrusive commands can be executed at any time even while the user’s program is running.
Non-intrusive commands allow a user to read or write MCU memory locations or access status and
control registers within the background debug controller.

Typically, a relatively simple interface pod is used to translate commands from a host computer into
commands for the custom serial interface to the single-wire background debug system. Depending on the
development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port,
or some other type of communications such as a universal serial bus (USB) to communicate between the
host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET,
and sometimes VDD. An open-drain connection to reset allows the host to force a target system reset,
which is useful to regain control of a lost target system or to control startup of a target system before the
on-chip nonvolatile memory has been programmed. Sometimes VDD can be used to allow the pod to use
power from the target system to avoid the need for a separate power supply. However, if the pod is powered
separately, it can be connected to a running target system without forcing a target system reset or otherwise
disturbing the running application program.

Figure 17-1. BDM Tool Connector

17.2.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. The primary function of this pin is for
bidirectional serial communication of active background mode commands and data. During reset, this pin
is used to select between starting in active background mode or starting the user’s application program.
This pin is also used to request a timed sync response pulse to allow a host development tool to determine
the correct clock frequency for background debug serial communications.

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of
microcontrollers. This protocol assumes the host knows the communication clock rate that is determined
by the target BDC clock rate. All communication is initiated and controlled by the host that drives a
high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit
first (MSB first). For a detailed description of the communications protocol, refer to Section 17.2.2,
“Communication Details.”

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC
command may be sent to the target MCU to request a timed sync response signal from which the host can
determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required.
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively
driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts.
Refer to Section 17.2.2, “Communication Details,” for more detail.

2

4

6NO CONNECT   5

 NO CONNECT   3

1

RESET

BKGD GND

VDD
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Figure 17-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU.
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal
during this period.

Figure 17-2. BDC Host-to-Target Serial Bit Timing

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT
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The SYNC command is unlike other BDC commands because the host does not necessarily know the
correct communications speed to use for BDC communications until after it has analyzed the response to
the SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest
clock is normally the reference oscillator/64 or the self-clocked rate/64.)

• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically
one cycle of the fastest clock in the system.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for
subsequent BDC communications. Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication protocol can easily tolerate speed
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather
than executing that instruction if and when it reaches the end of the instruction queue. This implies that
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more
flexible than the simple breakpoint in the BDC module.
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A.10 External Oscillator (XOSC) Characteristics

3 Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes
4 Based on input pad leakage current. Refer to pad electricals.

Table A-11. Oscillator Electrical Specifications (Temperature Range = –40 to 125°C Ambient)

Num  C  Rating  Symbol  Min  Typ1

1 Typical data was characterized at 3.0 V, 25°C or is recommended value.

 Max  Unit

1

Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1

 Low range (RANGE = 0) flo 32 — 38.4 kHz

C  High range (RANGE = 1) FEE or FBE mode 2

2 When MCG is configured for FEE or FBE mode, the input clock source must be divisible using RDIV to within the range of
31.25 kHz to 39.0625 kHz.

fhi-fll 1 — 5 MHz

 High range (RANGE = 1) PEE or PBE mode3

3 When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz
to 2 MHz.

fhi-pll 1 — 16 MHz

 High range (RANGE = 1, HGO = 1) BLPE mode fhi-hgo 1 — 16 MHz

High range (RANGE = 1, HGO = 0) BLPE mode fhi-lp 1 — 8 MHz

2 — Load capacitors
C1
C2

See crystal or resonator
manufacturer’s recommendation.

3

Feedback resistor

— Low range (32 kHz to 100 kHz) RF — 10 — MΩ

High range (1 MHz to 16 MHz) — 1 — MΩ

4

Series resistor

Low range, low gain (RANGE = 0, HGO = 0) — 0 —

Low range, high gain (RANGE = 0, HGO = 1) — 100 —

— High range, low gain (RANGE = 1, HGO = 0) RS — 0 — kΩ

High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz — 0 0

4 MHz — 0 10

1 MHz — 0 20

5

Crystal start-up time 4

4 This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to
achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be
characterized by the crystal manufacturer.

Low range, low gain (RANGE = 0, HGO = 0) t
CSTL-LP — 200 —

T Low range, high gain (RANGE = 0, HGO = 1) t
CSTL-HGO — 400 —

High range, low gain (RANGE = 1, HGO = 0)5

5 4 MHz crystal.

t
CSTH-LP — 5 — ms

High range, high gain (RANGE = 1, HGO = 1)4 t
CSTH-HGO — 15 —

6

Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)

T FEE or FBE mode 2 0.03125 — 5

PEE or PBE mode3 fextal 1 — 16 MHz

BLPE mode 0 — 40
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All TPM channels are programmable independently as input capture, output compare, or buffered
edge-aligned PWM channels.

B.1 External Signal Description
When any pin associated with the timer is configured as a timer input, a passive pullup can be enabled.
After reset, the TPM modules are disabled and all pins default to general-purpose inputs with the passive
pullups disabled.

B.1.1 External TPM Clock Sources

When control bits CLKSB:CLKSA in the timer status and control register are set to 1:1, the prescaler and
consequently the 16-bit counter for TPMx are driven by an external clock source, TPMxCLK, connected
to an I/O pin. A synchronizer is needed between the external clock and the rest of the TPM. This
synchronizer is clocked by the bus clock so the frequency of the external source must be less than one-half
the frequency of the bus rate clock. The upper frequency limit for this external clock source is specified to
be one-fourth the bus frequency to conservatively accommodate duty cycle and phase-locked loop (PLL)
or frequency-locked loop (FLL) frequency jitter effects.

On some devices the external clock input is shared with one of the TPM channels. When a TPM channel
is shared as the external clock input, the associated TPM channel cannot use the pin. (The channel can still
be used in output compare mode as a software timer.) Also, if one of the TPM channels is used as the
external clock input, the corresponding ELSnB:ELSnA control bits must be set to 0:0 so the channel is not
trying to use the same pin.

B.1.2 TPMxCHn — TPMx Channel n I/O Pins

Each TPM channel is associated with an I/O pin on the MCU. The function of this pin depends on the
configuration of the channel. In some cases, no pin function is needed so the pin reverts to being controlled
by general-purpose I/O controls. When a timer has control of a port pin, the port data and data direction
registers do not affect the related pin(s). See the Pins and Connections chapter for additional information
about shared pin functions.

B.2 Register Definition
The TPM includes:

• An 8-bit status and control register (TPMxSC)

• A 16-bit counter (TPMxCNTH:TPMxCNTL)

• A 16-bit modulo register (TPMxMODH:TPMxMODL)

Each timer channel has:

• An 8-bit status and control register (TPMxCnSC)

• A 16-bit channel value register (TPMxCnVH:TPMxCnVL)

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address
assignments for all TPM registers. This section refers to registers and control bits only by their names. A


