E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	600MHz
Co-Processors/DSP	-
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (1)
USB	USB 2.0 (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8535cvtakga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

This table provides the pin-out listing for the 783 FC-PBGA package.

Table 1. Pinout Listing

Signal	Signal Name	Signal Name Package Pin Number		Power Supply	Notes
PCI1_AD[31:0]	Muxed Address / data	AB15,Y17,AA17,AC15, AB17,AC16,AA18, AD17,AE17,AB18, AB19,AE18,AC19, AF18,AE19,AC20, AF23,AE23,AC23, AH24,AH23,AG24, AE24,AG25,AD24, AG27,AC24,AF25, AG26,AF26,AE25, AD26	I/O	OV _{DD}	_
PCI1_C_BE[3:0]	Command/Byte Enable	AD18, AD20,AD22, AH25	I/O	OV _{DD}	29
PCI1_PAR	Parity	AC22		OV _{DD}	29
PCI1_FRAME	Frame	AE20	I/O	OV _{DD}	2,29
PCI1_TRDY	Target Ready	AF21	I/O	OV _{DD}	2,29
PCI1_IRDY	Initiator Ready	AB20	I/O	OV _{DD}	2,29
PCI1_STOP	Stop	AD21	I/O	OV _{DD}	2,29
PCI1_DEVSEL	Device Select	AC21	I/O	OV _{DD}	2,29
PCI1_IDSEL	Init Device Select	AE16	I	OV _{DD}	29
PCI1_PERR	Parity Error	AB21	I/O	OV _{DD}	2,29
PCI1_SERR	System Error	AF22	I/O	OV _{DD}	2,4,29
PCI1_REQ[4:3]/GPIO[1:0]	Request	AE15,Y15	I	OV _{DD}	—
PCI1_REQ[2:1]	Request	AF13,W16	I	OV _{DD}	29
PCI1_REQ[0]	Request	AA16	I/O	OV _{DD}	29
PCI1_GNT[4:3]/GPIO[3:2]	Grant	AC14, AA15	0	OV _{DD}	
PCI1_GNT[2:1]	Grant	AF14,Y16	0	OV _{DD}	5,9,25,29
PCI1_GNT[0]	Grant	W18	I/O	OV _{DD}	29
PCI1_CLK	PCI Clock	AH26	I	OV _{DD}	29

Table 1. Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes				
25. When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the address pins as "No Connect" or terminated through 2–10 KΩ pull-up resistors with the default of internal arbiter if the address pins are not connected to any other PCI device. The PCI block will drive the address pins if it is configured to be the PCI arbiter—through POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is any other PCI device.									
26. When operating in DDR2 m mode) precision 1% resistor, mode) precision 1% resistor mode) or 40- Ω (half-strength mode)	26. When operating in DDR2 mode, connect MDIC[0] to ground through an $18.2 \cdot \Omega$ (full-strength mode) or $36.4 \cdot \Omega$ (half-strength mode) precision 1% resistor, and connect MDIC[1] to GVDD through an $18.2 \cdot \Omega$ (full-strength mode) or $36.4 \cdot \Omega$ (half-strength mode) precision 1% resistor. When operating in DDR3 mode, connect MDIC[0] to ground through an $20 \cdot \Omega$ (full-strength mode) or $40 \cdot \Omega$ (half-strength mode) precision 1% resistor. These pips are used for automatic calibration of the DDB IOS								
27. Connect to GND through a	pull down 1 k Ω resistor.								
28. It must be the same as \ensuremath{VD}	D_CORE								
29. The output pads are tristate GCR[DEEPSLEEP_Z] =1.	ed and the receivers of pad inp	uts are disabled during th	e Deep Sleer	o state when					
30. DDRCLK input is only requ configured to run in synchr recommended to tie it off to <i>III Integrated Host Process</i> PLL Ratio" and Table 4-10 operation in asynchronous	ired when the DDR controller is onous mode via POR setting c GND when DDR controller is ru or Family Reference Manual, 7 "DDR Complex Clock PLL Rati and synchronous modes.	s running in asynchronous fg_ddr_pll[0:2]=111, the E unning in synchronous mo Table 4-3 in section 4.2.2 ' io" for more detailed descr	s mode. Whe DRCLK inpu de. See the <i>I</i> 'Clock Signal ription regard	n the DDR co it is not requir <i>MPC8536E Po</i> is", section 4.4 ling DDR cont	ntroller is ed. It is <i>werQUICC</i> 4.3.2 "DDR troller				
31 EC GTX CLK125 is a 125	-MHz input clock shared among	n all eTSEC ports in the fo	llowing mode	s GMILTRI	RGMII and				

- 31. EC_GTX_CLK125 is a 125-MHz input clock shared among all eTSEC ports in the following modes: GMII, TBI, RGMII and RTBI. If none of the eTSEC ports is operating in these modes, the EC_GTX_CLK125 input can be tied off to GND.
- 32. SDHC_WP is active low signal, which follows SDHC Host controller specification. However, it is reversed polarity for SD/MMC card specification.
- 33. Must connect to XGND.
- 34. Must connect to X2GND
- 35. For systems which boot from Local Bus(GPCM)-controlled NOR flash or (FCM) controlled NAND flash, a pullup on LGPL4 is required.

2 Electrical Characteristics

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

Power Mode	Core Frequen cy	CCB Frequen cy	DDR Frequen cy	V _{DD} Platfor m	V _{DD} Core	Junction Tempera Core Power Platform Power ⁹ ture		Core Power		ı Power ⁹	Notes
	(MHz)	(MHz)	(MHz)	(V)	(V)	(°C)	mean ⁷	Мах	mean ⁷	Мах	
Maximum (A)	1050	500	500			105		5.3/4.4		5.0/4.0	1, 3, 8
Thermal (W)	1250	500	500	1.0	1.0	/ 90		4.4/3.6		5.0/4.0	1, 4, 8
Typical (W)						65	2.2		1.7		1
Doze (W)							1.6	2.4	1.5	2.1	1
Nap (W)							0.8	1.6	1.5	2.1	1
Sleep (W)							0.8	1.6	1.1	1.7	1
Deep Sleep (W)						35	0	0	0.6	1.2	1, 6

Table 5. Power Dissipation (continued)⁵

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

- Typical power is an average value measured at the nominal recommended core voltage (V_{DD}) and 65°C junction temperature (see Table 3) while running the Dhrystone benchmark.
- 3. Maximum power is the maximum power measured with the worst process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep the execution unit maximally busy.
- 4. Thermal power is the maximum power measured with worst case process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running the Dhrystone benchmark.
- 6. Maximum power is the maximum number measured with USB1, eTSEC1, and DDR blocks enabled. The Mean power is the mean power measured with only external interrupts enabled and DDR in self refresh.
- 7. Mean power is provided for information purposes only and is the mean power consumed by a statistically significant range of devices.
- 8. Maximum operating junction temperature (see Table 3) for Commercial Tier is 90 ⁰C, for Industrial Tier is 105 ⁰C.
- 9. Platform power is the power supplied to all the $V_{DD}\ _{PLAT}$ pins.

See Section 2.23.6.1, "SYSCLK to Platform Frequency Options," for the full range of CCB frequencies that the chip supports.

This figure provides the AC test load for the DDR bus.

Figure 11. DDR AC Test Load

2.7 eSPI

This section describes the DC and AC electrical specifications for the eSPI of the chip.

2.7.1 eSPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the chip eSPI.

Table 20.	. SPI DO	C Electrical	Characteristics
-----------	----------	--------------	-----------------

Characteristic	Symbol	Symbol Condition		Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4		V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	VIL	—	-0.3	0.8	V
Input current	I _{IN}	$0 \ V \le V_{IN} \le OV_{DD}$	_	±10	μA

2.7.2 eSPI AC Timing Specifications

This table and provide the eSPI input and output AC timing specifications.

Table 21. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit	Note
SPI_MOSI output—Master data hold time	t _{NIKHOX}	0.5			3
	t _{NIKHOX}	4.0	_	ns	4
SPI_MOSI output—Master data delay	t _{NIKHOV}		6.0		3
	t _{NIKHOV}		7.4	ns	4
SPI_CS outputs—Master data hold time	t _{NIKHOX2}	0	—	ns	—

2.8 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the chip.

2.8.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	- 0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	—	±5	μA
High-level output voltage (OV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}		0.4	V

Table 22. DUART DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

2.8.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 23	DUART	AC Timing	Specifications
----------	--------------	------------------	----------------

Parameter	Value	Unit	Notes
Minimum baud rate	CCB clock/1,048,576	baud	2
Maximum baud rate	CCB clock/16	baud	2,3
Oversample rate	16	—	4

Notes:

2. CCB clock refers to the platform clock.

3. Actual attainable baud rate will be limited by the latency of interrupt processing.

4. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

2.9 Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management

This section provides the AC and DC electrical characteristics for enhanced three-speed and MII management.

This figure shows the GMII transmit AC timing diagram.

Figure 16. GMII Transmit AC Timing Diagram

2.9.2.2.2 GMII Receive AC Timing Specifications

This table provides the GMII receive AC timing specifications.

Table 29. GMII Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{GRX}	_	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	35	—	65	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	_	_	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0	_	—	ns
RX_CLK clock rise (20%-80%)	t _{GRXR}	-	—	1.0	ns
RX_CLK clock fall time (80%-20%)	t _{GRXF}	_	—	1.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

This figure provides the AC test load for eTSEC.

Figure 17. eTSEC AC Test Load

A timing diagram for TBI receive appears in the following figure.

Figure 24. TBI Single-Clock Mode Receive AC Timing Diagram

2.9.2.6 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 35. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
Data to clock output skew (at transmitter)	t _{SKRGT_TX}	-500	0	500	ps
Data to clock input skew (at receiver) ²	t _{SKRGT_RX}	1.0	_	2.8	ns
Clock period duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000BASE-T ⁴	t _{RGTH} /t _{RGT}	45	_	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 4}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	_	0.75	ns
Fall time (20%-80%)	t _{RGTF}	—	—	0.75	ns

Notes:

- Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).
- 2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns will be added to the associated clock signal.
- 3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
- 4. Duty cycle may be stretched/shrunk during speed changes or while transition to a received packet's clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned between.

Parameter	Configuration	Symbol ¹	Min	Max	Unit	Notes
Output hold from local bus clock for LAD/LDP	—	t _{LBKHOX2}	0.9	_	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	—	t _{LBKHOZ1}	_	2.6	ns	5
Local bus clock to output high impedance for LAD/LDP	—	t _{LBKHOZ2}	_	2.6	ns	5

Table 53. Local Bus General Timing Parameters (BV_{DD} = 1.8 V DC) (continued)

Note:

The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

- 3. All signals are measured from BV_{DD}/2 of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to 0.4 × BV_{DD} of the signal in question for 1.8-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is guaranteed with LBCR[AHD] = 0.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BVDD/2.

This figure provides the AC test load for the local bus.

Figure 38. Local Bus AC Test Load

This figure provides the AC test load for TDO and the boundary-scan outputs.

Figure 45. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 46. JTAG Clock Input Timing Diagram

This figure provides the $\overline{\text{TRST}}$ timing diagram.

This figure provides the boundary-scan timing diagram.

Figure 48. Boundary-Scan Timing Diagram

2.16 Serial ATA (SATA)

This section describes the DC and AC electrical specifications for the serial ATA (SATA) of the chip. Note that the external cabled applications or long backplane applications (Gen1x & Gen2x) are not supported.

Parameter	Symbol	Min	Typical	Max	Units	Notes
RX Differential Mode Return loss						2, 3
150 MHz - 300 MHz		—	—	18		
300 MHz - 600 MHz		—	—	14		
600 MHz - 1.2 GHz	RL _{SATA_RXDD11}	—	—	10	dB	
1.2 GHz - 2.4 GHz						
2.4 GHz - 3.0 GHz		—	—	8		
3.0 GHz - 5.0 GHz		—	—	3		
		—	—	1		
RX Common Mode						2, 3, 4
150 MHz - 300 MHz		_	_	5		
300 MHz - 600 MHz		_	_	5		
600 MHz - 1.2 GHz	RL _{SATA_RXCC11}	—	—	2	dB	
2.4 GHz - 2.4 GHz		_	_	2		
3.0 GHz - 5.0 GHz		_	_	2		
		—	—	1		
RX Impedance Balance						2, 3
150 MHz - 300 MHz 300 MHz - 600 MHz				30		
600 MHz - 1.2 GHz		_	_	20	dB	
	RL _{SATA_RXDC11}					
1.2 GHz - 2.4 GHz				10		
2.4 GHZ - 3.0 GHZ				10		
		_	_	4		
Deterministic jitter						
1.5G	U _{SATA RXDJ}	—	—	0.4	UI	
3.0G				0.47		
Total Jitter						—
1.5G	U _{SATA_RXTJ}	—	—	0.65	UI	
3.0G				0.65		

Table 61. Differential Receiver (RX) Input Characteristics (continued)

Notes:

1. The min values apply only to Gen1m, and Gen2m. the min values for Gen1i is 325 mVp-p and for Gen2i is 275 mVp-p.

2. Only applies when operating in 3.0Gb data rate mode.

3. The max value stated for 3.0 GHz - 5.0 GHz range only applies to Gen2i mode and not to Gen2m mode.

4. The max value stated for 2.4 GHz - 3.0 GHz range only applies to Gen2i mode for Gen2m the value is 1.

5. Only applies to Gen1i mode.

Table 64. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 63).

Parameter	Symbol ¹	Min	Max	Unit	Notes
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs	—
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V	—
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V	—

Note:

- 1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{I2DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{I2C} clock reference (K) going to the high (H) state or setup time. Also, t_{I2SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{I2C} clock reference (K) going to the low (L) state or hold time. Also, t_{I2PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the tipe clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. As a transmitter, the chip provides a delay time of at least 300 ns for the SDA signal (referred to the Vihmin of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of Start or Stop condition. When the chip acts as the I²C bus master while transmitting, the chip drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the chip would not cause unintended generation of Start or Stop condition. Therefore, the 300 ns SDA output delay time is not a concern. For details of the l^2C frequency calculation, refer to Determining the l^2C Frequency Divider Ratio for SCL (AN2919). Note that the I²C Source Clock Frequency is half of the CCB clock frequency for the chip.
- 3. The maximum t_{I2DVKH} has only to be met if the chip does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.

This figure provides the AC test load for the I^2C .

Figure 51, I²C AC Test Load

This figure shows the AC timing diagram for the I^2C bus.

Figure 52. I²C Bus AC Timing Diagram

Parameter	Symbol ¹	Min	Мах	Unit	Notes
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8
Rise time (20%–80%)	t PCICLK	0.6	2.1	ns	—
Failing time (20%–80%)	t PCICLK	0.6	2.1	ns	—

Table 68. PCI AC Timing Specifications at 66 MHz (continued)

Notes:

- The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of PCI_SYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 22, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 9. The reset assertion timing requirement for HRESET is 100 μ s.

This figure provides the AC test load for PCI.

Figure 54. PCI AC Test Load

This figure shows the PCI input AC timing conditions.

Figure 55. PCI Input AC Timing Measurement Conditions

- The external reference clock driver must be able to drive this termination.
- The SerDes reference clock input can be either differential or single-ended. See the Differential Mode and Single-ended Mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1V above SnGND (xcorevss). For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0mA to 16mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800mV with the common mode voltage at 400mV.
 - If the device driving the SDn_REF_CLK and $\overline{SDn_REF_CLK}$ inputs cannot drive 50 Ω to SnGND (xcorevss) DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.
- The input amplitude requirement
 - This requirement is described in detail in the following sections.

Figure 58. Receiver of SerDes Reference Clocks

2.20.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the chip's SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below.

- **Differential Mode**
 - The input amplitude of the differential clock must be between 400mV and 1600mV differential peak-peak (or between 200mV and 800mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing less than 800mV and greater than 200mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
 - For external DC-coupled connection, as described in Section 2.20.2.1, "SerDes Reference Clock Receiver Characteristics," the maximum average current requirements sets the requirement for average voltage (common mode voltage) to be between 100 mV and 400 mV. Figure 59 shows the SerDes reference clock input requirement for DC-coupled connection scheme.
 - For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SnGND. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage (SnGND). Figure 60 shows the SerDes reference clock input requirement for AC-coupled connection scheme.
- **Single-ended Mode**
 - The reference clock can also be single-ended. The SDn REF CLK input amplitude (single-ended swing) must be between 400mV and 800mV peak-peak (from Vmin to Vmax) with SDn REF CLK either left unconnected or tied to ground.
 - The SDn_REF_CLK input average voltage must be between 200 and 400 mV. Figure 61 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as the clock input (SDn_REF_CLK) in use.

SDn_REF_CLK

 $Vmin \ge 0 V$

Figure 59. Differential Reference Clock Input DC Requirements (External DC-Coupled)

2.21 PCI Express

This section describes the DC and AC electrical specifications for the PCI Express bus of the chip.

2.21.1 DC Requirements for PCI Express SD1_REF_CLK and SD1_REF_CLK

For more information, see Section 2.20.2, "SerDes Reference Clocks."

2.21.2 AC Requirements for PCI Express SerDes Clocks

This table lists AC requirements.

	Table 70. SD1	REF CLK an	d SD1 REF	CLK AC Re	quirements
--	---------------	------------	-----------	-----------	------------

Symbol	Parameter Description	Min	Typical	Мах	Units	Notes
t _{REF}	REFCLK cycle time	—	10		ns	1
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles	—	—	100	ps	—
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	—	50	ps	1,2,3

Notes:

1. Tj at BER of 10E-6 86 ps Max.

2. Total peak-to-peak deterministic jitter "Dj" should be less than or equal to 42 ps.

3. Limits from "PCI Express CEM Rev 2.0" and measured per "PCI Express Rj, D, and Bit Error Rates".

2.21.3 Clocking Dependencies

The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million 15 (ppm) of each other at all times. This is specified to allow bit rate clock sources with a +/-300 ppm tolerance.

2.21.4 Physical Layer Specifications

The following is a summary of the specifications for the physical layer of PCI Express on this chip. For further details as well as the specifications of the transport and data link layer, please use the PCI Express Base Specification. REV. 1.0a document.

2.21.4.1 Differential Transmitter (TX) Output

This table defines the specifications for the differential output at all transmitters (TXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Nom	Max	Units	Comments
UI	Unit Interval	399.88	400	400.12	ps	Each UI is 400 ps \pm 300 ppm. UI does not account for Spread Spectrum Clock dictated variations. See Note 1.
V _{TX-DIFFp-p}	Differential Peak-to-Peak Output Voltage	0.8	_	1.2	V	$V_{TX-DIFFp-p} = 2^* V_{TX-D+} - V_{TX-D-} $ See Note 2.

Table 71. Differential Transmitter (TX) Output Specifications

The recommended attachment method to the heat sink is illustrated in the following figure. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 10 pounds force (45 Newton).

Figure 73. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the chip. Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Advanced Thermal Solutions, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that will allow the chip to function in various environments.

2.24.3.1 Internal Package Conduction Resistance

For the packaging technology, shown in Table 70, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

This figure depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 74. Package with Heat Sink Mounted to a Printed-Circuit Board

Hardware Design Considerations

This figure shows the PLL power supply filter circuit.

$$V_{DD} \circ \underbrace{10 \Omega}_{2.2 \mu F} \circ AV_{DD}$$

2.2 $\mu F \underbrace{-}_{GND} 2.2 \mu F$
Low ESL Surface Mount Capacitors

Figure 75. Chip PLL Power Supply Filter Circuit

The AV_{DD}_SRDS*n* signals provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in following Figure 76. For maximum effectiveness, the filter circuit is placed as closely as possible to the AV_{DD}_SRDS*n* balls to ensure it filters out as much noise as possible. The ground connection should be near the AV_{DD}_SRDS*n* balls. The 0.003- μ F capacitor is closest to the balls, followed by the 1- μ F capacitor, and finally the 1 ohm resistor to the board supply plane. The capacitors are connected from AV_{DD}_SRDS*n* to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide and direct.

1. An 0805 sized capacitor is recommended for system initial bring-up

Figure 76. SerDes PLL Power Supply Filter Circuit

Note the following:

- AV_{DD} should be a filtered version of SV_{DD}.
- Signals on the SerDes interface are fed from the XV_{DD} power plane.

3.3 Pin States in Deep Sleep State

In all low power mode by default, all input and output pads remain driven as per normal functional operation. The inputs remain enabled.

The exception is that in Deep Sleep mode, GCR[DEEPSLEEP_Z] can be used to tristate a subset of output pads, and disable the receivers of input pads as defined in Table 1. See the *MPC8536E PowerQUICC III Integrated Processor Reference Manual* for details.

3.4 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, this chip can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the chip system, and the chip itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the chip. These decoupling capacitors should receive their power from separate V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} , and GND power planes in the PCB, utilizing short low impedance traces to minimize inductance. Capacitors must be placed directly under the chip using a standard escape pattern as much as possible. If some caps are to be placed surrounding the part it should be routed with short and large trace to minimize the inductance.

These capacitors should have a value of 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON). However, customers should work directly with their power regulator vendor for best values types and quantity of bulk capacitors.

3.5 SerDes Block Power Supply Decoupling Recommendations

he SerDes1 and SerDes2 blocks require a clean, tightly regulated source of power (SnV_{DD} and XnV_{DD}) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the chip. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the chip as close to the supply and ground connections as possible.
- Second, there should be a $1-\mu F$ ceramic chip capacitor from each SerDes supply (SnV_{DD} and XnV_{DD}) to the board ground plane on each side of the chip. This should be done for all SerDes supplies.
- Third, between the chip and any SerDes voltage regulator there should be a 10-μF, low equivalent series resistance (ESR) SMT tantalum chip capacitor and a 100-μF, low ESR SMT tantalum chip capacitor. This should be done for all SerDes supplies.

3.6 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active low inputs should be tied to V_{DD} , TV_{DD} , BV_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} as required. All unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected. Power and ground connections must be made to all external V_{DD} , TV_{DD} , BV_{DD} , GV_{DD} , and LV_{DD} as for the chip.

3.7 Pull-Up and Pull-Down Resistor Requirements

The chip requires weak pull-up resistors (2–10 k Ω is recommended) on open drain type pins including I²C pins and MPIC interrupt pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 78. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion will give unpredictable results.

The following pins must NOT be pulled down during power-on reset: TSEC1_TXD[3], HRESET_REQ, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP. The UART_SOUT[0:1] and TEST_SEL pins must be set to a proper state during POR configuration. Please refer to the pinlist table (see Table 62) of the individual chip for more details.

See the PCI 2.2 specification for all pull-ups required for PCI.

3.8 Output Buffer DC Impedance

The chip drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

Hardware Design Considerations

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

Figure 78. JTAG Interface Connection

Package Information

5 Package Information

This section details package parameters, pin assignments, and dimensions.

5.1 Package Parameters for the FC-PBGA

The package parameters are as provided in the following list. The package type is 29 mm \times 29 mm, 783 flip chip plastic ball grid array (FC-PBGA) without a lid.

Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	2.23 mm
Maximum module height	2.8 mm
Solder Balls	96.5Sn/3.5Ag
Ball diameter (typical)	0.6 mm