

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

ĿХF

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.25GHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (1)
USB	USB 2.0 (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 90°C (TA)
Security Features	Cryptography
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8535eavtath

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

Figure 5. Chip Pin Map Detail C

Pin Assignments and Reset States

Table 1. Pinout Listing (continued)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
--------	-------------	--------------------	----------	-----------------	-------

Notes:

- 1. All multiplexed signals may be listed only once and may not re-occur.
- 2. Recommend a weak pull-up resistor (2–10 K Ω) be placed on this pin to OV_{DD}.
- 3. This pin must always be pulled-high.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. However, if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the net at reset, then a pullup or active driver is needed.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 22.2, "CCB/SYSCLK PLL Ratio."
- 8. The value of LALE, LGPL2 and LBCTL at reset set the e500 core clock to CCB Clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 22.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin will therefore be described as an I/O for boundary scan.
- 10.For proper state of these signals during reset, UART_SOUT[1] must be pulled down to GND through a resistor. UART_SOUT[0] can be pulled up or left without a resistor. However, if there is any device on the net which might pull down the value of the net at reset, then a pullup is needed on UART_SOUT[0].
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD_CORE}/V_{DD_PLAT}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 15. These pins have other manufacturing or debug test functions. It's recommended to add both pull-up resistor pads to OVDD and pull-down resistor pads to GND on board to support future debug testing when needed.
- 16. If this pin is connected to a device that pulls down during reset, an external pull-up is required to drive this pin to a safe state during reset.
- 17. This pin is only an output in FIFO mode when used as Rx Flow Control.
- 18. Do not connect.
- 19.These must be pulled up (100 Ω 1 k Ω) to OVDD.
- 20. Independent supplies derived from board VDD.
- 21. Recommend a pull-up resistor (1 K Ω) be placed on this pin to OV_{DD}.
- 22. The following pins must NOT be pulled down during power-on reset: MDVAL, UART_SOUT[0], EC_MDC, TSEC1_TXD[3], TSEC3_TXD[7], HRESET_REQ, TRIG_OUT/READY/QUIESCE, MSRCID[2:4], ASLEEP.
- 23. This pin requires an external 4.7-kΩ pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively driven.
- 24. General-Purpose POR configuration of user system.

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 2. Absolute Maximum Ratings¹

	Characteristic	Symbol	Max Value	Unit	Notes
Core supply voltag	e	V _{DD_CORE}	-0.3 to 1.21	V	—
Platform supply vo	Itage	V _{DD_PLAT}	-0.3 to 1.1	V	—
PLL core supply vo	oltage	AV _{DD_CORE}	-0.3 to 1.21	V	
PLL other supply v	oltage	AV _{DD}	-0.3 to 1.1	V	
Core power supply	for SerDes transceivers	SV_DD , $\mathrm{S2V}_\mathrm{DD}$	-0.3 to 1.1	V	—
Pad power supply	for SerDes transceivers and PCI Express	XV _{DD,} X2V _{DD}	-0.3 to 1.1	V	
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	–0.3 to 1.98	V	—
Controller I/O supply voltage	DDR3 SDRAM Interface		-0.3 to 1.65		
Three-speed Ether	net I/O	LV _{DD} (eTSEC1)	-0.3 to 3.63 -0.3 to 2.75	V	2
		TV _{DD} (eTSEC3)	-0.3 to 3.63 -0.3 to 2.75	V	2
PCI, DUART, syste eSDHC, eSPI and	m control and power management, I ² C, USB, JTAG I/O voltage, MII management voltage	OV _{DD}	-0.3 to 3.63	V	
Local bus I/O volta	ge	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	_
Input voltage	DDR2/DDR3 DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	3
	DDR2/DDR3 DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	-0.3 to (LV _{DD} + 0.3) -0.3 to (TV _{DD} + 0.3)	V	3
Local bus signals		BV _{IN}	-0.3 to (BV _{DD} + 0.3)	—	—
	PCI, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3
Storage temperatu	re range	T _{STG}	-55 to 150	0C	—

Notes:

1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect chip reliability or cause permanent damage to the chip.

The 3.63-V maximum is only supported when the port is configured in GMII, MII, RMII or TBI modes; otherwise the 2.75V maximum applies. See Section 2.9.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.

3. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 7.

2.1.2 Recommended Operating Conditions

This table provides the recommended operating conditions for this chip. Note that the values in this table are the recommended and tested operating conditions. Proper chip operation outside these conditions is not guaranteed.

	Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage		V _{DD_CORE}	1.0 ± 50 mV	V	—
Platform supply voltag	le	V _{DD_PLAT}	1.0 ± 50 mV	V	—
PLL core supply voltage	ge	AV _{DD_CORE}	1.0 ± 50 mV	V	2
PLL other supply volta	age	AV _{DD}	1.0 ± 50 mV	V	2
Core power supply for	SerDes transceivers	SV _{DD}	1.0 ± 50 mV	V	_
Pad power supply for	SerDes transceivers and PCI Express	XV _{DD}	1.0 ± 50 mV	V	_
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	1.8 V ± 90 mV	V	3
voltage	DDR3 SDRAM Interface		1.5 V ± 75 mV		
Three-speed Ethernet	t I/O voltage	LV _{DD} (eTSEC1)	3.3 V ± 165 mV 2.5 V ± 125 mV	V	5
		TV _{DD} (eTSEC3)	3.3 V ± 165 mV 2.5 V ± 125 mV		
PCI, DUART, system of eSPI and JTAG I/O vo	control and power management, I ² C, USB, eSDHC, Itage, MII management voltage	OV _{DD}	3.3 V ± 165 mV	V	4
Local bus I/O voltage		BV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV 1.8 V ± 90 mV	V	—
Input voltage	DDR2 and DDR3 SDRAM Interface signals	MV _{IN}	GND to GV _{DD}	V	3
	DDR2 and DDR3 SDRAM Interface reference	MV _{REF}	GV _{DD} /2 ± 1%	V	—
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to LV _{DD} GND to TV _{DD}	V	5
	Local bus signals	BV _{IN}	GND to BV _{DD}	V	—
	PCI, Local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V	4
Operating Temperature range	Commercial		T _A = 0 (min) to T _J = 90(max)		
	Industrial standard temperature range		T _A = 0 (min) to T _J = 105 (max)	°C	6
	Extended temperature range	• 0	T _A = -40 (min) to T _J = 105 (max)		

Table 3. Recommended Operating Conditions

Notes:

- 2. This voltage is the input to the filter discussed in Section 3.2.1, "PLL Power Supply Filtering," and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter.
- 3. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. Caution: L/TVIN must not exceed L/TVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 6. Minimum temperature is specified with T_A; maximum temperature is specified with T_J.

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	Notes
Local bus interface utilities signals	25 35	BV _{DD} = 3.3 V BV _{DD} = 2.5 V	1
	45(default) 45(default) 125	BV _{DD} = 3.3 V BV _{DD} = 2.5 V BV _{DD} = 1.8 V	
PCI signals	25 42 (default)	OV _{DD} = 3.3 V	2
DDR2 signal	16 32 (half strength mode)	GV _{DD} = 1.8 V	3
DDR3 signal	20 40 (half strength mode)	GV _{DD} = 1.5 V	2
TSEC signals	42	LV _{DD} = 2.5/3.3 V	_
DUART, system control, JTAG	42	OV _{DD} = 3.3 V	—
l ² C	150	OV _{DD} = 3.3 V	—

Table 4. Output Drive Capability

Notes:

1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.

2. The drive strength of the PCI interface is determined by the setting of the PCI1_GNT1 signal at reset.

3. The drive strength of the DDR2 or DDR3 interface in half-strength mode is at T_i = 105°C and at GV_{DD} (min)

2.2 Power Sequencing

The chip requires its power rails to be applied in a specific sequence in order to ensure proper chip operation. These requirements are as follows for power up:

- 1. V_{DD_PLAT}, V_{DD_CORE} (if POWER_EN is not used to control V_{DD_CORE}), AV_{DD}, BV_{DD}, LV_{DD}, OV_{DD}, SV_{DD}, SV_{DD}, TV_{DD}, XV_{DD} and X2V_{DD}
- 2. [Wait for POWER_EN to assert], then V_{DD CORE} (if POWER_EN is used to control V_{DD CORE})
- 3. GV_{DD}

All supplies must be at their stable values within 50 ms.

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs.

In order to guarantee MCKE low during power-up, the above sequencing for GV_{DD} is required. If there is no concern about any of the DDR signals being in an indeterminate state during power-up, then the sequencing for GV_{DD} is not required.

From a system standpoint, if any of the I/O power supplies ramp prior to the VDD platform supply, the I/Os associated with that I/O supply may drive a logic one or zero during power-up, and extra current may be drawn by the chip.

During the Deep Sleep state, the VDD core supply is removed. But all other power supplies remain applied. Therefore, there is no requirement to apply the VDD core supply before any other power rails when the silicon waking from Deep Sleep.

Power Mode	Core Frequen cy	CCB Frequen cy	DDR Frequen cy	V _{DD} Platfor m	V _{DD} Core	Junction Tempera ture	Core Power		Platform	ı Power ⁹	Notes																																					
	(MHz)	(MHz)	(MHz)	(V)	(V)	(°C)	mean ⁷	Мах	mean ⁷	Мах																																						
Maximum (A)	1050	500	500			105		5.3/4.4		5.0/4.0	1, 3, 8																																					
Thermal (W)	1250	500	500	500	500	500	500	1.0 1.0	1.0 1.0	1.0	1.0 1.0	1.0	.0 /90		4.4/3.6		5.0/4.0	1, 4, 8																														
Typical (W)						65	2.2		1.7		1																																					
Doze (W)							1.6	2.4	1.5	2.1	1																																					
Nap (W)																																												0.8	1.6	1.5	2.1	1
Sleep (W)							0.8	1.6	1.1	1.7	1																																					
Deep Sleep (W)						35	0	0	0.6	1.2	1, 6																																					

Table 5. Power Dissipation (continued)⁵

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

- Typical power is an average value measured at the nominal recommended core voltage (V_{DD}) and 65°C junction temperature (see Table 3) while running the Dhrystone benchmark.
- 3. Maximum power is the maximum power measured with the worst process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep the execution unit maximally busy.
- 4. Thermal power is the maximum power measured with worst case process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running the Dhrystone benchmark.
- 6. Maximum power is the maximum number measured with USB1, eTSEC1, and DDR blocks enabled. The Mean power is the mean power measured with only external interrupts enabled and DDR in self refresh.
- 7. Mean power is provided for information purposes only and is the mean power consumed by a statistically significant range of devices.
- 8. Maximum operating junction temperature (see Table 3) for Commercial Tier is 90 ⁰C, for Industrial Tier is 105 ⁰C.
- 9. Platform power is the power supplied to all the $V_{DD}\ _{PLAT}$ pins.

See Section 2.23.6.1, "SYSCLK to Platform Frequency Options," for the full range of CCB frequencies that the chip supports.

2.4.4 eTSEC Gigabit Reference Clock Timing

This table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications for the chip.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
EC_GTX_CLK125 frequency	f _{G125}	_	125	_	MHz	_
EC_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	_
EC_GTX_CLK rise and fall time $LV_{DD,} TV_{DD} = 2.5V$ $LV_{DD,} TV_{DD} = 3.3V$	t _{G125R} /t _{G125F}	_	_	0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	2

Table 8. EC_GTX_CLK125 AC Timing Specifications

Notes:

1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5V and 2.0V for L/TVDD=2.5V, and from 0.6 and 2.7V for L/TVDD=3.3V at 0.6 V and 2.7 V.

2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. EC_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 2.9.2.6, "RGMII and RTBI AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

2.4.5 DDR Clock Timing

This table provides the DDR clock (DDRCLK) AC timing specifications for the chip.

Table 9. DDRCLK AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3V ± 5%.

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
DDRCLK frequency	f _{DDRCLK}	66	—	166	MHz	1
DDRCLK cycle time	^t DDRCLK	6.0	—	15.15	ns	
DDRCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
DDRCLK duty cycle	t _{KHK} /t _{DDRCLK}	40	—	60	%	_
DDRCLK jitter	—	—	—	+/- 150	ps	3, 4

Notes:

1. **Caution:** The DDR complex clock to DDRCLK ratio settings must be chosen such that the resulting DDR complex clock frequency does not exceed the maximum or minimum operating frequencies. See Section 2.23.4, "DDR/DDRCLK PLL Ratio," for ratio settings.

2. Rise and fall times for DDRCLK are measured at 0.6 V and 2.7 V.

- 3. The DDRCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track DDRCLK drivers with the specified jitter.
- 4. For spread spectrum clocking, guidelines are +0% to −1% down spread at a modulation rate between 20 kHz and 60 kHz on DDRCLK.

This table provides the DDR capacitance when $GV_{DD}(type) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1, 2
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}		0.5	pF	1, 2
	•				

Table 14. DDR2 SDRAM Capacitance for GV_{DD}(typ)=1.8 V

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.090 V (for DDR2), f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

2. This parameter is sampled. $GVDD = 1.5 V \pm 0.075 V$ (for DDR3), f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.175 V.

This table provides the current draw characteristics for MV_{REF}

Table 15. Current Draw Characteristics for MV_{REF}

Parameter/Condition		Symbol	Min	Max	Unit	Note
Current draw for MV _{REF} n DDR2 SDRAM		I _{MVREFn}	_	1500	μA	1
	DDR3 SDRAM			1250		

1. The voltage regulator for MV_{REF} must be able to supply up to 1500 µA or 1250 uA current for DDR2 or DDR3 respectively.

2.6.2 DDR2 and DDR3 SDRAM Interface AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM Controller interface. The DDR controller supports both DDR2 and DDR3 memories. Please note that although the minimum data rate for most off-the-shelf DDR3 DIMMs available is 800 MHz, JEDEC specification does allow the DDR3 to run at the data rate as low as 606 MHz. Unless otherwise specified, the AC timing specifications described in this section for DDR3 is applicable for data rate between 606 MHz and 667 MHz, as long as the DC and AC specifications of the DDR3 memory to be used are compliant to both JEDEC specifications as well as the specifications and requirements described in this document.

2.6.2.1 DDR2 and DDR3 SDRAM Interface Input AC Timing Specifications

These tables provide the input AC timing specifications for the DDR controller.

Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GVDD of 1.8 V \pm 5%

Parameter		Symbol	Min	Мах	Unit
AC input low voltage	667	V _{ILAC}	—	MV _{REF} – 0.20	V
	<=533		—	MV _{REF} – 0.25	V
AC input high voltage	667	V _{IHAC}	MV _{REF} + 0.20	—	V
	<=533		MV _{REF} + 0.25	—	V

Characteristic	Symbol ²	Min	Мах	Unit	Note
SPI_CS outputs—Master data delay	t _{NIKHOV2}	—	6.0	ns	_
SPI inputs—Master data input setup time	t _{NIIVKH}	5	—	ns	_
SPI inputs—Master data input hold time	t _{NIIXKH}	0	—	ns	—

Table 21. SPI AC Timing Specifications¹ (continued)

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOV} symbolizes the NMSI outputs internal timing (NI) for the time t_{SPI} memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).

3. SPCOM[RxDelay] is set to 0.

4. SPCOM[RxDelay] is set to 1.

This figure provides the AC test load for the SPI.

This figure represents the AC timing from Table 21. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Note: The clock edge is selectable on SPI.

Figure 13. SPI AC Timing in Master mode (Internal Clock) Diagram

Parameters	Symbol	Min	Мах	Unit	Notes
Supply voltage 2.5 V	LV _{DD} /TV _{DD}	2.37	2.63	V	1,2
Output high voltage (LV _{DD} /TV _{DD} = Min, IOH = -1.0 mA)	V _{OH}	2.00	$LV_{DD}/TV_{DD} + 0.3$	V	—
Output low voltage (LV _{DD} <u>/TV_{DD}</u> = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	—
Input high voltage	V _{IH}	1.70	$LV_{DD}/TV_{DD} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.70	V	—
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	—	10	μΑ	1, 2,3
Input low current (V _{IN} = GND)	IIL	-15	—	μΑ	3

Table 25. RGMII, RTBI, and FIFO DC Electrical Characteristics

Note:

¹ LV_{DD} supports eTSECs 1.

 $^2~{\rm TV}_{\rm DD}$ supports eTSECs 3.

³ Note that the symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

2.9.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI are presented in this section.

2.9.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back out onto the TSEC*n*_GTX_CLK pin (while transmit data appears on TSEC*n*_TXD[7:0], for example). It is intended that external receivers capture eTSEC transmit data using the clock on TSEC*n*_GTX_CLK as a source-synchronous timing reference. Typically, the clock edge that launched the data can be used, since the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver. Note that there is relationship between the maximum FIFO speed and the platform speed. For more information see Section 2.4.6, "Platform to FIFO Restrictions."

A summary of the FIFO AC specifications appears in the following tables.

Table 26. FIFO Mode Transmit AC Timing Specification

Parameter/Condition	Symbol	Min	Тур	Max	Unit
TX_CLK, GTX_CLK clock period ²	t _{FIT}	6.0	8.0	100	ns
TX_CLK, GTX_CLK duty cycle	t _{FITH}	45	50	55	%
TX_CLK, GTX_CLK peak-to-peak jitter	t _{FITJ}	—	—	250	ps

This figure shows the MII transmit AC timing diagram.

Figure 19. MII Transmit AC Timing Diagram

2.9.2.3.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 31. MII Receive AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise (20%–80%)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time (80%-20%)	t _{MRXF}	1.0	—	4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

This figure provides the AC test load for eTSEC.

Figure 20. eTSEC AC Test Load

This figure shows the MII receive AC timing diagram.

Figure 21. MII Receive AC Timing Diagram

2.9.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

2.9.2.4.1 TBI Transmit AC Timing Specifications

This table provides the TBI transmit AC timing specifications.

Table 32. TBI Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	—	8.0	—	ns
GTX_CLK duty cycle	t_{TTXH}/t_{TTX}	40	—	60	%
GTX_CLK to TCG[9:0] delay time	t _{TTKHDX} 2	1.0	—	5.0	ns
GTX_CLK rise (20%-80%)	t _{TTXR}	—	—	1.0	ns
GTX_CLK fall time (80%-20%)	t _{TTXF}	—	—	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Data valid tTTKHDV to GTX_CLK Min Setup time is a function of clock period and max hold time. (Min Setup = Cycle time - Max Hold)

This figure shows the TBI transmit AC timing diagram.

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 25. RGMII and RTBI AC Timing and Multiplexing Diagrams

2.9.2.7 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

2.9.2.7.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in the following table.

Table 36. RMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TSECn_TX_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
TSECn_TX_CLK duty cycle	t _{RMTH}	35	50	65	%
TSECn_TX_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps

Figure 32. SGMII AC Test/Measurement Load

2.9.4 eTSEC IEEE 1588 AC Specifications

This figure shows the data and command output timing diagram.

Figure 33. eTSEC IEEE 1588 Output AC timing

¹ The output delay is count starting rising edge if $t_{T1588CLKOUT}$ is non-inverting. Otherwise, it is count starting falling edge. This figure provides the data and command input timing diagram.

Figure 34. eTSEC IEEE 1588 Input AC timing

The IEEE 1588 AC timing specifications are in the following table.

Table 43. eTSEC IEEE 1588 AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Note
TSEC_1588_CLK clock period	t _{T1588CLK}	3.8	—	T _{TX_CLK} *7	ns	1
TSEC_1588_CLK duty cycle	t _{T1588} CLKH /t _{T1588} CLK	40	50	60	%	—
TSEC_1588_CLK peak-to-peak jitter	t _{T1588} CLKINJ	—	—	250	ps	—
Rise time eTSEC_1588_CLK (20%-80%)	t _{T1588CLKINR}	1.0	—	2.0	ns	—
Fall time eTSEC_1588_CLK (80%-20%)	t _{T1588CLKINF}	1.0	—	2.0	ns	—
TSEC_1588_CLK_OUT clock period	t _{T1588} CLKOUT	2*t _{T1588CLK}	—	—	ns	—
TSEC_1588_CLK_OUT duty cycle	t _{T1588} CLKOTH /t _{T1588} CLKOUT	30	50	70	%	—
TSEC_1588_PULSE_OUT	t _{T1588OV}	0.5	—	3.0	ns	—
TSEC_1588_TRIG_IN pulse width	t _{T1588} TRIGH	2*t _{T1588CLK_MAX}	—	—	ns	2

Note:

1. When TMR_CTRL[CKSEL]=00, the external TSEC_1588_CLK input is selected as the 1588 timer reference clock source, with the timing defined in the Table above. The maximum value of t_{T1588CLK} is defined in terms of T_{TX_CLK}, which is the maximum clock cycle period of the equivalent interface speed that the eTSEC1 port is running.

When eTSEC1 is configured to operate in the parallel mode, the T_{TX_CLK} is the maximum clock period of the TSEC1_TX_CLK. When eTSEC1 operates in SGMII mode, the maximum value of $t_{T1588CLK}$ is defined in terms of the recovered clock from SGMII SerDes. For example, for 10/100/1000 Mbps modes, the maximum value of $t_{T1588CLK}$ will be 2800, 280, and 56 ns respectively.

See the MPC8536E PowerQUICC III Integrated Communications Processor Reference Manual for a description of TMR_CTRL registers.

2. It need to be at least two times of clock period of clock selected by TMR_CTRL[CKSEL]. See the *MPC8536E PowerQUICC III Integrated Processor Reference Manual* for a description of TMR_CTRL registers.

2.10 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals EC_MDIO (management data input/output) and EC_MDC (management data clock). The electrical characteristics for GMII, SGMII, RGMII, RMII, TBI and RTBI are specified in Section 2.9, "Ethernet: Enhanced Three-Speed Ethernet (eTSEC), MII Management"

Table 63. I²C DC Electrical Characteristics (continued)

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between 0.1 \times OV_{DD} and 0.9 \times OV_{DD}(max)	Ι _Ι	-10	10	μA	3
Capacitance for each I/O pin	CI		10	pF	—

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. See the MPC8536E PowerQUICC III Integrated Processor Reference Manual for information on the digital filter used.

3. I/O pins will obstruct the SDA and SCL lines if OV_{DD} is switched off.

2.17.2 I²C AC Electrical Specifications

This table provides the AC timing parameters for the I^2C interfaces.

Table 64. I²C AC Electrical Specifications

All values refer to $V_{IH} \, (min)$ and $V_{IL} \, (max)$ levels (see Table 63).

Parameter	Symbol ¹	Min	Max	Unit	Notes
SCL clock frequency	f _{I2C}	0	400	kHz	
Low period of the SCL clock	t _{I2CL}	1.3	—	μs	—
High period of the SCL clock	t _{I2CH}	0.6	—	μs	—
Setup time for a repeated START condition	t _{I2SVKH}	0.6	—	μs	—
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	_	μs	—
Data setup time	t _{I2DVKH}	100	—	ns	—
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0	-	μs	2
Data output delay time	t _{I2OVKL}	_	0.9	μs	3
Set-up time for STOP condition	t _{I2PVKH}	0.6	—	μs	—
Rise time of both SDA and SCL signals	t _{l2CR}	—	300	ns	4
Fall time of both SDA and SCL signals	t _{I2CF}		300	ns	4

2.20.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the chip's SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below.

- **Differential Mode**
 - The input amplitude of the differential clock must be between 400mV and 1600mV differential peak-peak (or between 200mV and 800mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing less than 800mV and greater than 200mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
 - For external DC-coupled connection, as described in Section 2.20.2.1, "SerDes Reference Clock Receiver Characteristics," the maximum average current requirements sets the requirement for average voltage (common mode voltage) to be between 100 mV and 400 mV. Figure 59 shows the SerDes reference clock input requirement for DC-coupled connection scheme.
 - For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to SnGND. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage (SnGND). Figure 60 shows the SerDes reference clock input requirement for AC-coupled connection scheme.
- **Single-ended Mode**
 - The reference clock can also be single-ended. The SDn REF CLK input amplitude (single-ended swing) must be between 400mV and 800mV peak-peak (from Vmin to Vmax) with SDn REF CLK either left unconnected or tied to ground.
 - The SDn_REF_CLK input average voltage must be between 200 and 400 mV. Figure 61 shows the SerDes reference clock input requirement for single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused phase (SDn_REF_CLK) through the same source impedance as the clock input (SDn_REF_CLK) in use.

SDn_REF_CLK

 $Vmin \ge 0 V$

Figure 59. Differential Reference Clock Input DC Requirements (External DC-Coupled)

Hardware Design Considerations

The heat sink removes most of the heat from the chip for most applications. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

2.24.3.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increased contact pressure. This performance characteristic chart is generally provided by the thermal interface vendors.

3 Hardware Design Considerations

This section provides electrical and thermal design recommendations for successful application of the chip.

3.1 System Clocking

This chip includes seven PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 2.23.2, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 2.23.3, "e500 Core PLL Ratio."
- The PCI PLL generates the clocking for the PCI bus
- The local bus PLL generates the clock for the local bus.
- There is a PLL for the SerDes1 block to be used for PCI Express interface
- There is a PLL for the SerDes2 block to be used for SGMII and SATA interfaces.
- The DDR PLL generates the DDR clock from the externally supplied DDRCLK input in asynchronous mode. The frequency ratio between the DDR clock and DDRCLK is described in Section 2.23.4, "DDR/DDRCLK PLL Ratio."

3.2 Power Supply Design and Sequencing

3.2.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD}_PLAT, AV_{DD}_CORE, AV_{DD}_PCI, AV_{DD}_LBIU, and AV_{DD}_SRDS respectively). The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 75, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of 783 FC-PBGA the footprint, without the inductance of vias.

Hardware Design Considerations

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be closed to position A during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed to position B.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

Figure 78. JTAG Interface Connection

Package Information

5.2 Mechanical Dimensions of the FC-PBGA

The mechanical dimensions and bottom surface nomenclature of the 783 FC-PBGA package are shown in the following figure.

Figure 81. Mechanical Dimensions and Bottom Surface Nomenclature of the FC-PBGA

NOTES for Figure 81

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.