

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (1)
USB	USB 2.0 (2)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8535ebvjanga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
LAD[0:31]	Muxed data / address	K22,L21,L22,K23,K24, L24,L25,K25,L28,L27, K28,K27,J28,H28,H27, G27,G26,F28,F26,F25, E28,E27,E26,F24,E24, C26,G24,E23,G23,F22, G22,G21	I/O	BV _{DD}	5,9,29
LDP[0:3]	Data parity	K26,G28,B27,E25	I/O	BV _{DD}	29
LA[27]	Burst address	L19	0	BV _{DD}	5,9,29
LA[28:31]	Port address	K16,K17,H17,G17	0	BV _{DD}	5,7,9,29
LCS[0:4]	Chip selects	K18,G19,H19,H20,G16	0	BV _{DD}	29
LCS5/DMA_DREQ2	Chips selects / DMA Request	H16	I/O	BV _{DD}	1,29
LCS6/DMA_DACK2	Chips selects / DMA Ack	J16	0	BV _{DD}	1,29
LCS7/DMA_DDONE2	Chips selects / DMA Done	L18	0	BV _{DD}	1,29
LWE0/LBS0/LFWE	Write enable / Byte select	J22	0	BV _{DD}	5,9,29
LWE[1:3]/LBS[1:3]	Write enable / Byte select	H22,H23,H21	0	BV _{DD}	5,9,29
LBCTL	Buffer control	J25	0	BV _{DD}	5,8,9,29
LALE	Address latch enable	J26	0	BV _{DD}	5,8,9,29
LGPL0/LFCLE	UPM general purpose line 0 / FLash command latch enable	J20	0	BV _{DD}	5,9,29
LGPL1/LFALE	UPM general purpose line 1 / Flash address latch enable	K20	0	BV _{DD}	5,9,29
LGPL2/LOE/LFRE	UPM general purpose line 2 / Output enable/Flash read enable	G20	0	BV _{DD}	5,8,9,29
LGPL3/LFWP	UPM general purpose line 3 / Flash write protect	H18	0	BV _{DD}	5,9,29
LGPL4/ <mark>LGTA</mark> /LUPWAIT /LPBSE/LFRB	UPM general purpose line 4 / Target Ack/Wait/SDRAM parity byte select/Flash Ready-busy	L20	I/O	BV _{DD}	29, 35
LGPL5	UPM general purpose line 5 / Amux	К19	0	BV _{DD}	5,9,29
LCLK[0:2]	Local bus clock	H24,J24,H25	0	BV _{DD}	29
LSYNC_IN	Synchronization	D27	I	BV _{DD}	29
LSYNC_OUT	Local bus DLL	D28	0	BV _{DD}	29
	D	MA			
DMA_DACK[0:1] /GPIO[10:11]	DMA Acknowledge	AD6,AE10	0	OV _{DD}	_

Pin Assignments and Reset States

Table 1	. Pinout	Listing	(continued)
---------	----------	---------	-------------

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes		
DMA_DREQ[0:1] /GPIO[14:15]	DMA Request	AB10,AD11	I	OV _{DD}	_		
DMA_DDONE[0:1] /GPIO[12:13]	DMA Done	AA11,AB11	0	OV _{DD}	_		
DMA_DREQ[2]/LCS[5]	Chips selects / DMA Request	H16	I/O	BV _{DD}	1,29		
DMA_DACK[2]/LCS[6]	Chips selects / DMA Ack	J16	0	BV _{DD}	1,29		
DMA_DDONE[2]/LCS[7]	Chips selects / DMA Done	L18	0	BV _{DD}	1,29		
DMA_DREQ[3]/IRQ[9]	External interrupt/DMA request	AE13	I	OV _{DD}	1		
DMA_DACK[3]/IRQ[10]	External interrupt/DMA Ack	AD13	I/O	OV _{DD}	1		
DMA_DDONE[3]/IRQ[11]	External interrupt/DMA done	AD14	I/O	OV _{DD}	1		
	USB	Port 1					
USB1_D[7:0]	USB1 Data bits	AF1,AE2,AE1,AD2, AC2,AC1,AB2,AB1	I/O	OV _{DD}	—		
USB1_NXT	USB1 Next data	AF2	I	OV _{DD}	_		
USB1_DIR	USB1 Data Direction	AH1	I	OV _{DD}	—		
USB1_STP	USB1 Stop	AG1	0	OV _{DD}	5,9		
USB1_PWRFAULT	USB1 bus power fault.	AH2	ļ	OV _{DD}	—		
USB1_PCTL0/GPIO[6]	USB1 Port control 0	AC3	0	OV _{DD}	_		
USB1_PCTL1/GPIO[7]	USB1 Port control 1	AC4	0	OV _{DD}	_		
USB1_CLK	USB1 bus clock	AD1	I	OV _{DD}	_		
	USB	Port 2					
USB2_D[7:0]	USB2 Data bits	AE6,AC6,AF5,AE5, AF4,AE4,AE3,AD3	I/O	OV _{DD}	—		
USB2_NXT	USB2 Next data	AC7	I	OV _{DD}	_		
USB2_DIR	USB2 Data Direction	AF7	I	OV _{DD}	—		
USB2_STP	USB2 Stop	AD7	0	OV _{DD}	5,9		
USB2_PWRFAULT	USB2 bus power fault.	AC8	I	OV _{DD}	—		
USB2_PCTL0/GPIO[8]	USB2 Port control 0	AG9	0	OV _{DD}	—		
USB2_PCTL1/GPIO[9]	USB2 Port control 1	AC9	0	OV _{DD}	—		
USB2_CLK	USB2 bus clock	AD5	ļ	OV _{DD}	—		
Reserved	_	AH8	_	_	—		
Reserved	_	AH7,AG6,AH6,AG5, AG4,AH4,AG3,AH3, AG7, AG8, AH9,AH5			27		

Pin Assignments and Reset States

Table 1. Pinout Listing	g (continued)
-------------------------	---------------

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
UART_SOUT[0:1]	Transmit data	AF10,AA12	0	OV _{DD}	5,9,22, 10,29
	l ² C i	nterface			
IIC1_SCL	Serial clock	AG21	I/O	OV _{DD}	4,21,29
IIC1_SDA	Serial data	AH22	I/O	OV _{DD}	4,21,29
IIC2_SCL	Serial clock	AH15	I/O	OV _{DD}	4,21,29
IIC2_SDA	Serial data	AG14	I/O	OV _{DD}	4,21,29
	Serl	Des1(x4)	•		
SD1_TX[7:4]	Transmit Data (+)	Y23,W21,V23,U21	0	XV _{DD}	_
SD1_TX[7:4]	Transmit Data(-)	Y22,W20,V22,U20	0	XV _{DD}	—
SD1_RX[7:4]	Receive Data(+)	AC28,AB26,AA28,Y26	I	XV _{DD}	_
SD1_RX[7:4]	Receive Data(-)	AC27,AB25,AA27,Y25	I	XV _{DD}	
Reserved	—	R21,P23,N21,M23, R20,P22,N20,M22	—	_	18
Reserved	-	T26,R28,P26,N28, T25,R27,P25,N27	_		33
SD1_PLL_TPD	PLL test point Digital	V28	0	XV _{DD}	18
SD1_REF_CLK	PLL Reference clock	U28	I	XV _{DD}	—
SD1_REF_CLK	PLL Reference clock complement	U27	I	XV _{DD}	_
Reserved	_	T22	—	—	18
Reserved	_	T23	—	—	18
	Serl	Des2(x1)	•		
SD2_TX[0]	Transmit data(+)	P11	0	X2V _{DD}	_
SD2_TX[0]	Transmit data(-)	P12	0	X2V _{DD}	—
SD2_RX[0]	Receive data(+)	P6	I	X2V _{DD}	
SD2_RX[0]	Receive data(-)	P7	I	X2V _{DD}	
Reserved	_	M11,M12	_	—	18
Reserved	_	N8, N9	—	_	34
SD2_PLL_TPD	PLL test point Digital	L7	0	X2V _{DD}	18
SD2_REF_CLK	PLL Reference clock	M6	I	X2V _{DD}	—
SD2_REF_CLK	PLL Reference clock complement	M7	I	X2V _{DD}	_
Reserved	—	L8	—	X2V _{DD}	18
Reserved	—	L9	—	X2V _{DD}	18

2.4 Input Clocks

2.4.1 System Clock Timing

This table provides the system clock (SYSCLK) AC timing specifications for the chip.

Table 6. SYSCLK AC Timing Specifications

At recommended operating conditions (see Table 2) with $OV_{DD} = 3.3 V \pm 165 mV$.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	f _{SYSCLK}	33		133	MHz	1
SYSCLK cycle time	t _{SYSCLK}	7.5	_	30	ns	_
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.1	ns	2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	_	60	%	
SYSCLK jitter	—	—	_	+/-150	ps	3, 4

Notes:

 Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum operating frequencies. See Section 2.23.2, "CCB/SYSCLK PLL Ratio," and Section 2.23.3, "e500 Core PLL Ratio," for ratio settings.

2. Rise and fall times for SYSCLK are measured at 0.6 V and 2.7 V.

3. The SYSCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter.

4. For spread spectrum clocking, guidelines are +0% to -1% down spread at a modulation rate between 20 KHz and 60 KHz on SYSCLK.

2.4.2 PCI Clock Timing

When the PCI controller is configured for asynchronous operation, the reference clock for the PCI controller is not the SYSCLK input, but instead the PCI_CLK. This table provides the PCI reference clock AC timing specifications for the chip.

Table 7. PCICLK AC Timing Specifications

At recommended operating conditions (see Table 2) with $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}$.

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
PCICLK frequency	f _{PCICLK}	33	—	66	MHz	—
PCICLK cycle time	t _{PCICLK}	15	—	30	ns	—
PCICLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.1	ns	1
PCICLK duty cycle	t _{KHK} /t _{PCICLK}	40	—	60	%	—

Notes:

1. Rise and fall times for PCICLK are measured at 0.6 V and 2.7 V.

2.4.3 Real Time Clock Timing

The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then used as an input to the counters of the PIC and the TimeBase unit of the e500. There is no jitter specification. The minimum pulse width of the RTC signal should be greater than 2x the period of the CCB clock. That is, minimum clock high time is $2 \times t_{CCB}$, and minimum clock low time is $2 \times t_{CCB}$. There is no minimum RTC frequency; RTC may be grounded if not needed.

Table 19. DDR SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with GVDD of 1.8 V \pm 5% for DDR2 or 1.5 V \pm 5% for DDR3.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
<= 667 MHz		$0.9 imes t_{MCK}$			7
MDQS epilogue end	t _{DDKHME}			ns	6
<= 667 MHz		$0.4 imes t_{MCK}$	$0.6 imes t_{MCK}$		7

Note:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8536E PowerQUICC III Integrated Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 7. Maximum DDR2 and DDR3 frequency is 667 MHz

NOTE

For the ADDR/CMD setup and hold specifications in Table 19, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

Parameters	Symbol	Min	Мах	Unit	Notes
Supply voltage 2.5 V	LV _{DD} /TV _{DD}	2.37	2.63	V	1,2
Output high voltage (LV _{DD} /TV _{DD} = Min, IOH = -1.0 mA)	V _{OH}	2.00	$LV_{DD}/TV_{DD} + 0.3$	V	—
Output low voltage (LV _{DD} <u>/TV_{DD}</u> = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	—
Input high voltage	V _{IH}	1.70	$LV_{DD}/TV_{DD} + 0.3$	V	—
Input low voltage	V _{IL}	-0.3	0.70	V	—
Input high current $(V_{IN} = LV_{DD}, V_{IN} = TV_{DD})$	IIH	—	10	μΑ	1, 2,3
Input low current (V _{IN} = GND)	IIL	-15	—	μΑ	3

Table 25. RGMII, RTBI, and FIFO DC Electrical Characteristics

Note:

¹ LV_{DD} supports eTSECs 1.

 $^2~{\rm TV}_{\rm DD}$ supports eTSECs 3.

³ Note that the symbol V_{IN}, in this case, represents the LV_{IN} and TV_{IN} symbols referenced in Table 1 and Table 2.

2.9.2 FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications

The AC timing specifications for FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI are presented in this section.

2.9.2.1 FIFO AC Specifications

The basis for the AC specifications for the eTSEC's FIFO modes is the double data rate RGMII and RTBI specifications, since they have similar performance and are described in a source-synchronous fashion like FIFO modes. However, the FIFO interface provides deliberate skew between the transmitted data and source clock in GMII fashion.

When the eTSEC is configured for FIFO modes, all clocks are supplied from external sources to the relevant eTSEC interface. That is, the transmit clock must be applied to the eTSEC*n*'s TSEC*n*_TX_CLK, while the receive clock must be applied to pin TSEC*n*_RX_CLK. The eTSEC internally uses the transmit clock to synchronously generate transmit data and outputs an echoed copy of the transmit clock back out onto the TSEC*n*_GTX_CLK pin (while transmit data appears on TSEC*n*_TXD[7:0], for example). It is intended that external receivers capture eTSEC transmit data using the clock on TSEC*n*_GTX_CLK as a source-synchronous timing reference. Typically, the clock edge that launched the data can be used, since the clock is delayed by the eTSEC to allow acceptable set-up margin at the receiver. Note that there is relationship between the maximum FIFO speed and the platform speed. For more information see Section 2.4.6, "Platform to FIFO Restrictions."

A summary of the FIFO AC specifications appears in the following tables.

Table 26. FIFO Mode Transmit AC Timing Specification

Parameter/Condition	Symbol	Min	Тур	Max	Unit
TX_CLK, GTX_CLK clock period ²	t _{FIT}	6.0	8.0	100	ns
TX_CLK, GTX_CLK duty cycle	t _{FITH}	45	50	55	%
TX_CLK, GTX_CLK peak-to-peak jitter	t _{FITJ}	—	—	250	ps

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 25. RGMII and RTBI AC Timing and Multiplexing Diagrams

2.9.2.7 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

2.9.2.7.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in the following table.

Table 36. RMII Transmit AC Timing Specifications

At recommended operating conditions with L/TV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TSECn_TX_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
TSECn_TX_CLK duty cycle	t _{RMTH}	35	50	65	%
TSECn_TX_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps

This figures provide the AC test load and signals for the USB, respectively.

Figure 42. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 8 or 16(PLL Enabled)

2.13 Enhanced Secure Digital Host Controller (eSDHC)

This section describes the DC and AC electrical specifications for the eSDHC interface of the chip.

2.13.1 eSDHC DC Electrical Characteristics

This table provides the DC electrical characteristics for the eSDHC interface of the chip.

Table 55. eSDHC interface DC Electrical Characteristics

At recommended operating conditions (see Table 3)

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}	—	0.625 * OVDD	OVDD+0.3	V	_
Input low voltage	V _{IL}	—	-0.3	0.25 * OVDD	V	_
Input/Output leakage current	I _{IN} /I _{OZ}	—	-10	10	uA	_
Output high voltage	V _{OH}	I _{OH} = -100 uA @OVDDmin	0.75 * OVDD	—	V	—

This figure provides the eSDHC clock input timing diagram.

Figure 43. eSDHC Clock Input Timing Diagram

This figure provides the data and command input/output timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 44. eSDHC Data and Command Input/Output Timing Diagram Referenced to Clock

2.14 Programmable Interrupt Controller (PIC)

In IRQ edge trigger mode, when an external interrupt signal is asserted (according to the programmed polarity), it must remain the assertion for at least 3 system clocks (SYSCLK periods).

2.15 JTAG

This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the chip.

2.15.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the JTAG interface.

 Table 57. JTAG DC Electrical Characteristics

Parameter	Symbol ¹	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V

2.16.2 Differential Transmitter (TX) Output Characteristics

This table provides the differential transmitter (TX) output characteristics for the SATA interface.

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Channel Speed 1.5G 3.0G	^t CH_SPEED	_	1.5 3.0	_	Gbps	_
Unit Interval 1.5G 3.0G	T _{UI}	666.4333 333.2167	666.4333 333.3333	670.2333 335.1167	ps	_
DC Coupled Common Mode Voltage	V _{dc_cm}	200	250	450	mV	3
TX Diff Output Voltage 1.5G 3.0G	V _{SATA_TXDIFF}	400 400	500 —	600 700	mV	—
TX rise/fall time 1.5G 3.0G	t _{SATA_20-80TX}	100 67		273 136	ps	—
TX differential skew	t _{SATA_TXSKEW}	_	_	20	ps	_
TX Differential pair impedance 1.5G	Z _{SATA_TXDIFFIM}	85	_	115	ohm	_
TX Single ended impedance 1.5G	Z _{SATA_TXSEIM}	40	_	_	ohm	—
TX AC common mode voltage (peak to peak) 1.5G 3.0G	V _{SATA_TXCMMOD}	_		— 50	mV	_
OOB Differential Delta	V _{SATA_OOBvdoff}	—	—	25	mV	1
OOB Common mode Delta	V _{SATA_OOBcm}	—	_	50	mV	1
TX Rise/Fall Imbalance	T _{SATA_TXR/Fbal}	—	—	20	%	_
TX Amplitude Imbalance	T _{SATA_TXampbal}	—	—	10	%	—
TX Differential Mode Return loss 150 MHz - 300 MHz 300 MHz - 600 MHz 600 MHz - 1.2 GHz 1.2 GHz - 2.4 GHz 2.4 GHz - 3.0 GHz 3.0 GHz - 5.0 GHz	RL _{SATA_TXDD11}	_ _ _ _		14 8 6 3 1	dB	1, 2

Table 60. Differential Transmitter (TX) Output Characteristics

2.18 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface of the chip.

2.18.1 GPIO DC Electrical Characteristics

This table provides the DC electrical characteristics for the GPIO interface.

Table 65. GPIO DC Electrical Characteristics

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	- 0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}	_	±5	μA
High-level output voltage (OV _{DD} = min, I _{OH} = -2 mA)	V _{OH}	2.4	—	V
Low-level output voltage (OV _{DD} = min, I _{OL} = 2 mA)	V _{OL}	_	0.4	V

Note:

1. The symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

2.18.2 GPIO AC Electrical Specifications

This table provides the GPIO input and output AC timing specifications.

Table 66. GPIO Input and Output AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit	Notes
GPIO inputs—minimum pulse width	t _{PIWID}	7.5	ns	3
GPIO outputs—minimum pulse width	t _{GTOWID}	12	ns	—

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.
- 3. The minimum pulse width is a function of the MPX/Platform clock. The minimum pulse width must be greater than or equal to 4 times the MPX/Platform clock period.

This figure provides the AC test load for the GPIO.

Figure 53. GPIO AC Test Load

Symbol	Parameter	Min	Nom	Max	Units	Comments
V _{TX-DE-RATIO}	De- Emphasized Differential Output Voltage (Ratio)	-3.0	-3.5	-4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. See Note 2.
T _{TX-EYE}	Minimum TX Eye Width	0.70	_	—	UI	The maximum Transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.3$ UI. See Notes 2 and 3.
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median.	_	_	0.15	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered TX UI. A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX UI. See Notes 2 and 3.
T _{TX-RISE} , T _{TX-FALL}	D+/D- TX Output Rise/Fall Time	0.125	_	—	UI	See Notes 2 and 5
V _{TX-CM-ACp}	RMS AC Peak Common Mode Output Voltage	_	_	20	mV	
VTX-CM-DC-ACTIVE- IDLE-DELTA	Absolute Delta of DC Common Mode Voltage During L0 and Electrical Idle	0	_	100	mV	$eq:logical_lo$
V _{TX-CM-DC-LINE-DELTA}	Absolute Delta of DC Common Mode between D+ and D-	0	_	25	mV	$\begin{split} & V_{TX-CM-DC-D+} - V_{TX-CM-DC-D-} <= 25 \text{ mV} \\ &V_{TX-CM-DC-D+} = DC_{(avg)} \text{ of } V_{TX-D+} \\ &V_{TX-CM-DC-D-} = DC_{(avg)} \text{ of } V_{TX-D-} \\ &\text{See Note 2.} \end{split}$
V _{TX-IDLE} -DIFFp	Electrical Idle differential Peak Output Voltage	0	_	20	mV	$V_{TX-IDLE-DIFFp} = V_{TX-IDLE-D+} - V_{TX-IDLE-D-} \le 20 \text{ mV}$ See Note 2.
V _{TX-RCV} -DETECT	The amount of voltage change allowed during Receiver Detection	_	_	600	mV	The total amount of voltage change that a transmitter can apply to sense whether a low impedance Receiver is present. See Note 6.
V _{TX-DC-CM}	The TX DC Common Mode Voltage	0	_	3.6	V	The allowed DC Common Mode voltage under any conditions. See Note 6.
I _{TX-SHORT}	TX Short Circuit Current Limit	_	_	90	mA	The total current the Transmitter can provide when shorted to its ground
T _{TX-IDLE-MIN}	Minimum time spent in Electrical Idle	50	_	_	UI	Minimum time a Transmitter must be in Electrical Idle Utilized by the Receiver to start looking for an Electrical Idle Exit after successfully receiving an Electrical Idle ordered set

Table 71. Differential Transmitter (TX) Output Specifications (continued)

Symbol	Parameter	Min	Nom	Max	Units	Comments
L _{TX-SKEW}	Total Skew	_		20	ns	Skew across all lanes on a Link. This includes variation in the length of SKP ordered set (for example, COM and one to five Symbols) at the RX as well as any delay differences arising from the interconnect itself.

Table 72. Differential Receiver (RX) Input Specifications (continued)

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 71 should be used as the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 70). If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- 3. A T_{RX-EYE} = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The T_{RX-EYE-MEDIAN-to-MAX-JITTER} specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- 4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 ohms to ground for both the D+ and D- line (that is, as measured by a Vector Network Analyzer with 50 ohm probes see Figure 71). Note: that the series capacitors CTX is optional for the return loss measurement.
- 5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.
- 6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be measured at 300 mV above the RX ground.
- 7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

2.22 Receiver Compliance Eye Diagrams

The RX eye diagram in Figure 70 is specified using the passive compliance/test measurement load (see Figure 71) in place of any real PCI Express RX component.

Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement load (see Figure 71) will be larger than the minimum Receiver eye diagram measured over a range of systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the real PCI Express component to vary in impedance from the compliance/test measurement load. The input Receiver eye diagram is implementation specific and is not specified. RX component designer should provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram (shown in Figure 70) expected at the input Receiver based on some adequate combination of system simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the eye diagram.

The eye diagram must be valid for any 250 consecutive UIs.

Please note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode.

The DDRCLKDR configuration register in the Global Utilities block allows the DDR controller to be run in a divided down mode where the DDR bus clock is half the speed of the default configuration. Changing of these defaults must be completed prior to initialization of the DDR controller.

Functional Signals	Reset Configuration Name	Value (Binary)	DDR:DDRCLK Ratio
		000	3:1
TSEC_1588_TRIG_OUT[0:1], TSEC1_1588_CLK_OUT		001	4:1
	cfg_ddr_pll[0:2]	010	6:1
		011	8:1
		100	10:1
		101	12:1
		110	Reserved
		111	Synchronous mode

Table 77. DDR Clock Ratio

2.23.5 PCI Clocks

The integrated PCI controller in this chip supports PCI input clock frequency in the range of 33–66 MHz. The PCI input clock can be applied from SYSCLK in synchronous mode or PCI1_CLK in asynchronous mode. For specifications on the PCI1_CLK, refer to the PCI 2.2 Specification.

The use of PCI1_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI1_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.

2.23.6 Frequency Options

2.23.6.1 SYSCLK to Platform Frequency Options

This table shows the expected frequency values for the platform frequency when using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)								
	33.33	41.66	66.66	83	100	111	133.33		
			Platform /C	CB Frequ	ency (MHz)			
3						333	400		
4				333	400	444			
5			333	415	500				
6			400	500					
8		333					-		
10	333	417			-				
12	400	500		•					

Table 78. Frequency Options of SYSCLK with Respect to Memory Bus Speeds

2.24 Thermal

This section describes the thermal specifications of the chip.

2.24.1 Thermal Characteristics

This table provides the package thermal characteristics.

Table 79. Package Thermal Characteristics

Characteristic	JEDEC Board	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection	Single layer board (1s)	$R_{ extsf{ heta}JA}$	23	°C/W	1, 2
Junction-to-ambient Natural Convection	Four layer board (2s2p)	$R_{ extsf{ heta}JA}$	18	°C/W	1, 2
Junction-to-ambient (@200 ft/min)	Single layer board (1s)	$R_{ extsf{ heta}JA}$	18	°C/W	1, 2

Figure 72. System-Level Thermal Model for the Chip (Not to Scale)

The Flotherm library files of the parts have a dense grid to accurately capture the laminar boundary layer for flow over the part in standard JEDEC environments, as well as the heat spreading in the board under the package. In a real system, however, the part will require a heat sink to be mounted on it. In this case, the predominant heat flow path will be from the die to the heat sink. Grid density lower than currently in the package library file will suffice for these simulations. The user will need to determine the optimal grid for their specific case.

2.24.3 Thermal Management Information

This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material.

Hardware Design Considerations

The heat sink removes most of the heat from the chip for most applications. Heat generated on the active side of the chip is conducted through the silicon and through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

2.24.3.2 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increased contact pressure. This performance characteristic chart is generally provided by the thermal interface vendors.

3 Hardware Design Considerations

This section provides electrical and thermal design recommendations for successful application of the chip.

3.1 System Clocking

This chip includes seven PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 2.23.2, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 2.23.3, "e500 Core PLL Ratio."
- The PCI PLL generates the clocking for the PCI bus
- The local bus PLL generates the clock for the local bus.
- There is a PLL for the SerDes1 block to be used for PCI Express interface
- There is a PLL for the SerDes2 block to be used for SGMII and SATA interfaces.
- The DDR PLL generates the DDR clock from the externally supplied DDRCLK input in asynchronous mode. The frequency ratio between the DDR clock and DDRCLK is described in Section 2.23.4, "DDR/DDRCLK PLL Ratio."

3.2 Power Supply Design and Sequencing

3.2.1 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD}_PLAT, AV_{DD}_CORE, AV_{DD}_PCI, AV_{DD}_LBIU, and AV_{DD}_SRDS respectively). The AV_{DD} level should always be equivalent to V_{DD}, and preferably these voltages will be derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits per PLL power supply as illustrated in Figure 75, one to each of the AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of 783 FC-PBGA the footprint, without the inductance of vias.

Ordering Information

4.1 Part Numbers Fully Addressed by this Document

This table shows the part numbering nomenclature.

MPC	nnnn	E	С	VT	AA	X	R
Product Code	Part Identifier	Security Engine	Tiers and Temperature Range	Package ¹	Processor Frequency ²	DDR Frequency ³	Revision Level
MPC	8536 8535	E = included Blank = not included	 A = Commercial tier standard temperature range (0° to 90°C) B or Blank = industrial tier standard temperature range (0° to 105°C) C = Industrial tier extended temperature range (-40° to 105°C) 	 VT = FC-PBGA (Pb-free) PX = plastic standard 	 AK = 600 MHz AN = 800 MHz AQ = 1000 MHz AT = 1250 MHz AU = 1333 MHz AV = 1500 MHz 	• G = 400 MHz • H = 500 MHz • J = 533 MHz • L = 667 MHz	 Blank = Ver. 1.0 or 1.1 (SVR = 0x803F0190, 0x803F0191) A = Ver. 1.2 (SVR = 0x803F0192) Blank = Ver. 1.0 or 1.1 (SVR = 0x80370190, 0x80370191) A = Ver. 1.2 (SVR = 0x80370192)

Table 82. Part Numbering Nomenclature

Notes:

1. See Section 5, "Package Information," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

3. See Table 84 for the corresponding maximum platform frequency.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +303-675-2140 Fax: +303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC8535EEC Rev. 5 09/2011

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg., U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

