

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR2, DDR3
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (2)
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 90°C (TA)
Security Features	Cryptography
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8536eavjaqga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignments and Reset States

This figure shows the major functional units within the chip.

Figure 1. Chip Block Diagram

1 Pin Assignments and Reset States

NOTE

The naming convention of TSEC1 and TSEC3 is used to allow the splitting voltage rails for the eTSEC blocks and to ease the port of existing PowerQUICC III software

NOTE

The UART_SOUT[0:1] and TEST_SEL pins must be set to a proper state during POR configuration. See Table 1 for more details.

Table	1.	Pinout	Listina	(continued)
I GINIO	•••	1 mout	Lioung	(continuou)

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes						
Programmable Interrupt Controller											
MCP	Machine check processor	Y14	I	OV _{DD}	—						
UDE	Unconditional debug event	AB14	I	OV _{DD}	—						
IRQ[0:8]	External interrupts	AG22,AF17,AB23, AF19,AG17,AF16, AA22,Y19,AB22	I	OV _{DD}	_						
IRQ[9]/DMA_DREQ[3]	External interrupt/DMA request	AE13	I	OV _{DD}	1						
IRQ[10]/DMA_DACK[3]	External interrupt/DMA Ack	AD13	I/O	OV _{DD}	1						
IRQ[11]/DMA_DDONE[3]	External interrupt/DMA done	AD14	I/O	OV _{DD}	1						
IRQ_OUT	Interrupt output	AC17	0	OV _{DD}	2,4						
	Ethernet Mana	gement Interface									
EC_MDC	Management data clock	Y10	0	OV _{DD}	5,9,22						
EC_MDIO	Management data In/Out	Y11	I/O	OV _{DD}	—						
	Gigabit Re	erence Clock									
EC_GTX_CLK125	Reference clock	AA6	I	LV _{DD}	31						
	Three-Speed Ethernet Co	ntroller (Gigabit Etherne	et 1)								
TSEC1_TXD[7:0]	Transmit data	AA8,AA5,Y8,Y5,W3, W5,W4,W6	0	LV _{DD}	5,9,22						
TSEC1_TX_EN	Transmit Enable	W1	0	LV _{DD}	23						
TSEC1_TX_ER	Transmit Error	AB5	0	LV _{DD}	5,9						
TSEC1_TX_CLK	Transmit clock In	AB4	I	LV _{DD}	—						
TSEC1_GTX_CLK	Transmit clock Out	W2	0	LV _{DD}							
TSEC1_CRS	Carrier sense	AA9	I/O	LV _{DD}	17						
TSEC1_COL	Collision detect	AB6	I	LV _{DD}	—						
TSEC1_RXD[7:0]	Receive data	AB3,AB7,AB8,Y6,AA2, Y3,Y1,Y2	I	LV _{DD}	—						
TSEC1_RX_DV	Receive data valid	AA1	I	LV _{DD}	—						
TSEC1_RX_ER	Receive data error	Y9	I	LV _{DD}	—						
TSEC1_RX_CLK	Receive clock	ААЗ	I	LV _{DD}							
	Three-Speed Ethernet Co	ntroller (Gigabit Etherne	et 3)								
TSEC3_TXD[7:0]	Transmit data	T12,V8,U8,V9,T8,T7, T5,T6	0	TV _{DD}	5,9,22						
TSEC3_TX_EN	Transmit Enable	V5	0	TV _{DD}	23						
TSEC3_TX_ER	Transmit Error	U9	0	TV _{DD}	5,9						

Pin Assignments and Reset States

Signal	Signal Name	Package Pin Number	Pin Type	Power Supply	Notes
TSEC3_TX_CLK	Transmit clock In	U10	I	TV _{DD}	_
TSEC3_GTX_CLK	Transmit clock Out	U5	0	TV _{DD}	—
TSEC3_CRS	Carrier sense	T10	I/O	TV _{DD}	17
TSEC3_COL	Collision detect	Т9	I	TV _{DD}	_
TSEC3_RXD[7:0]	Receive data	U12,U13,U6,V6,V1,U3, U2,V3	I	TV _{DD}	—
TSEC3_RX_DV	Receive data valid	V2	I	TV _{DD}	_
TSEC3_RX_ER	Receive data error	T4	I	TV _{DD}	
TSEC3_RX_CLK	Receive clock	U1	ļ	TV _{DD}	
	IEEI	E 1588			
TSEC_1588_CLK	Clock In	W9	I	LV _{DD}	29
TSEC_1588_TRIG_IN[0:1]	Trigger In	W8,W7	I	LV _{DD}	29
TSEC_1588_TRIG_OUT[0:1]	Trigger Out	U11,W10	0	LV _{DD}	5,9,29
TSEC_1588_CLK_OUT	Clock Out	V10	0	LV _{DD}	5,9,29
TSEC_1588_PULSE_OUT1	Pulse Out1	V11	0	LV _{DD}	5,9,29
TSEC_1588_PULSE_OUT2	Pulse Out2	T11	0	LV _{DD}	5,9,29
	eS	DHC			•
SDHC_CMD	Command line	AH10	I/O	OV _{DD}	29
SDHC_CD/GPIO[4]	Card detection	AH11	I	OV _{DD}	_
SDHC_DAT[0:3]	Data line	AG12,AH12,AH13, AG11	I/O	OV _{DD}	29
SDHC_DAT[4:7] / SPI_CS[0:3]	8-bit MMC Data line / SPI chip select	AE8,AC10,AF9,AA10	I/O	OV _{DD}	29
SDHC_CLK	SD/MMC/SDIO clock	AG13	I/O	OV _{DD}	29
SDHC_WP/GPIO[5]	Card write protection	AG10	I	OV _{DD}	1, 32
	е	SPI			L
SPI_MOSI	Master Out Slave In	AF8	I/O	OV _{DD}	29
SPI_MISO	Master In Slave Out	AD9	I	OV _{DD}	29
SPI_CLK	eSPI clock	AD8	I/O	OV _{DD}	29
SPI_CS[0:3] / SDHC_DAT[4:7]	eSPI chip select / SDHC 8-bit MMC data	AE8,AC10,AF9,AA10	I/O	OV _{DD}	29
	DL	JART	-	-	
UART_CTS[0:1]	Clear to send	AE11,Y12	I	OV _{DD}	29
UART_RTS[0:1]	Ready to send	AB12,AD12	0	OV _{DD}	29
UART_SIN[0:1]	Receive data	AC12,AF12	I	OV _{DD}	29

Table 1. Pinout Listing (continued)

2.1.1 Absolute Maximum Ratings

This table provides the absolute maximum ratings.

Table 2. Absolute Maximum Ratings¹

	Characteristic	Symbol	Max Value	Unit	Notes
Core supply voltag	e	V _{DD_CORE}	-0.3 to 1.21	V	—
Platform supply vo	Itage	V _{DD_PLAT}	-0.3 to 1.1	V	—
PLL core supply vo	oltage	AV _{DD_CORE}	-0.3 to 1.21	V	—
PLL other supply v	oltage	AV _{DD}	-0.3 to 1.1	V	—
Core power supply	for SerDes transceivers	SV_DD , $\mathrm{S2V}_\mathrm{DD}$	-0.3 to 1.1	V	—
Pad power supply	for SerDes transceivers and PCI Express	XV _{DD,} X2V _{DD}	-0.3 to 1.1	V	
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	–0.3 to 1.98	V	—
Controller I/O supply voltage	DDR3 SDRAM Interface		-0.3 to 1.65		
Three-speed Ether	net I/O	LV _{DD} (eTSEC1)	-0.3 to 3.63 -0.3 to 2.75	V	2
		TV _{DD} (eTSEC3)	-0.3 to 3.63 -0.3 to 2.75	V	2
PCI, DUART, syste eSDHC, eSPI and	m control and power management, I ² C, USB, JTAG I/O voltage, MII management voltage	OV _{DD}	-0.3 to 3.63	V	
Local bus I/O volta	ge	BV _{DD}	-0.3 to 3.63 -0.3 to 2.75 -0.3 to 1.98	V	_
Input voltage	DDR2/DDR3 DRAM signals	MV _{IN}	-0.3 to (GV _{DD} + 0.3)	V	3
	DDR2/DDR3 DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	-0.3 to (LV _{DD} + 0.3) -0.3 to (TV _{DD} + 0.3)	V	3
	Local bus signals	BV _{IN}	-0.3 to (BV _{DD} + 0.3)	—	—
	PCI, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	3
Storage temperatu	re range	T _{STG}	-55 to 150	0C	—

Notes:

1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect chip reliability or cause permanent damage to the chip.

The 3.63-V maximum is only supported when the port is configured in GMII, MII, RMII or TBI modes; otherwise the 2.75V maximum applies. See Section 2.9.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.

3. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 7.

2.1.2 Recommended Operating Conditions

This table provides the recommended operating conditions for this chip. Note that the values in this table are the recommended and tested operating conditions. Proper chip operation outside these conditions is not guaranteed.

	Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage		V _{DD_CORE}	1.0 ± 50 mV	V	—
Platform supply voltag	le	V _{DD_PLAT}	1.0 ± 50 mV	V	—
PLL core supply voltage	ge	AV _{DD_CORE}	1.0 ± 50 mV	V	2
PLL other supply volta	age	AV _{DD}	1.0 ± 50 mV	V	2
Core power supply for	SerDes transceivers	SV _{DD}	1.0 ± 50 mV	V	_
Pad power supply for	SerDes transceivers and PCI Express	XV _{DD}	1.0 ± 50 mV	V	_
DDR SDRAM	DDR2 SDRAM Interface	GV _{DD}	1.8 V ± 90 mV	V	3
voltage	DDR3 SDRAM Interface		1.5 V ± 75 mV		
Three-speed Ethernet	t I/O voltage	LV _{DD} (eTSEC1)	3.3 V ± 165 mV 2.5 V ± 125 mV	V	5
		TV _{DD} (eTSEC3)	3.3 V ± 165 mV 2.5 V ± 125 mV		
PCI, DUART, system of eSPI and JTAG I/O vo	control and power management, I ² C, USB, eSDHC, Itage, MII management voltage	OV _{DD}	3.3 V ± 165 mV	V	4
Local bus I/O voltage		BV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV 1.8 V ± 90 mV	V	—
Input voltage	DDR2 and DDR3 SDRAM Interface signals	MV _{IN}	GND to GV _{DD}	V	3
	DDR2 and DDR3 SDRAM Interface reference	MV _{REF}	GV _{DD} /2 ± 1%	V	—
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to LV _{DD} GND to TV _{DD}	V	5
	Local bus signals	BV _{IN}	GND to BV _{DD}	V	—
	PCI, Local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V	4
Operating Temperature range	Commercial		T _A = 0 (min) to T _J = 90(max)		
	Industrial standard temperature range		T _A = 0 (min) to T _J = 105 (max)	°C	6
	Extended temperature range	• 0	T _A = -40 (min) to T _J = 105 (max)		

Table 3. Recommended Operating Conditions

Notes:

- 2. This voltage is the input to the filter discussed in Section 3.2.1, "PLL Power Supply Filtering," and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter.
- 3. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. Caution: L/TVIN must not exceed L/TVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 6. Minimum temperature is specified with T_A; maximum temperature is specified with T_J.

Power Mode	Core Frequen cy	CCB Frequen cy	DDR Frequen cy	V _{DD} Platfor m	V _{DD} Core	Junction Tempera ture	Core	Core Power Platfo		ı Power ⁹	Notes
	(MHz)	(MHz)	(MHz)	(V)	(V)	(°C)	mean ⁷	Мах	mean ⁷	Мах	
Maximum (A)	1050	500	500			105		5.3/4.4		5.0/4.0	1, 3, 8
Thermal (W)	1250 500 500 1.0 1.0 / 90	500 1.0 1.0	/ 90		4.4/3.6		5.0/4.0	1, 4, 8			
Typical (W)						65	2.2		1.7		1
Doze (W)							1.6	2.4	1.5	2.1	1
Nap (W)							0.8	1.6	1.5	2.1	1
Sleep (W)							0.8	1.6	1.1	1.7	1
Deep Sleep (W)						35	0	0	0.6	1.2	1, 6

Table 5. Power Dissipation (continued)⁵

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

- Typical power is an average value measured at the nominal recommended core voltage (V_{DD}) and 65°C junction temperature (see Table 3) while running the Dhrystone benchmark.
- 3. Maximum power is the maximum power measured with the worst process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running a smoke test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep the execution unit maximally busy.
- 4. Thermal power is the maximum power measured with worst case process and recommended core and platform voltage (V_{DD}) at maximum operating junction temperature (see Table 3) while running the Dhrystone benchmark.
- 6. Maximum power is the maximum number measured with USB1, eTSEC1, and DDR blocks enabled. The Mean power is the mean power measured with only external interrupts enabled and DDR in self refresh.
- 7. Mean power is provided for information purposes only and is the mean power consumed by a statistically significant range of devices.
- 8. Maximum operating junction temperature (see Table 3) for Commercial Tier is 90 ⁰C, for Industrial Tier is 105 ⁰C.
- 9. Platform power is the power supplied to all the $V_{DD}\ _{PLAT}$ pins.

See Section 2.23.6.1, "SYSCLK to Platform Frequency Options," for the full range of CCB frequencies that the chip supports.

2.4.6 Platform to FIFO Restrictions

Please note the following FIFO maximum speed restrictions based on platform speed. The "platform clock (CCB) frequency" in the following formula refers to the maximum platform (CCB) frequency of the speed bins the part belongs to, which is defined in Table 73.

For FIFO GMII mode:

FIFO TX/RX clock frequency <= platform clock frequency/3.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 167 MHz

For FIFO encoded mode:

FIFO TX/RX clock frequency <= platform clock frequency/3.2

For example, if the platform frequency is 533 MHz, the FIFO TX/RX clock frequency should be no more than 167 MHz

2.4.7 Other Input Clocks

For information on the input clocks of other functional blocks of the platform such as SerDes, and eTSEC, see the specific section of this document.

2.5 **RESET** Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the chip. This table provides the RESET initialization AC timing specifications for the DDR SDRAM component(s).

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HREST	100		μs	_
Minimum assertion time for SRESET	3	—	Sysclk	1
PLL input setup time with stable SYSCLK before HRESET negation	100	—	μs	_
Input setup time for POR configurations (other than PLL config) with respect to negation of HRESET	4	—	SYSCLKs	1
Input hold time for all POR configurations (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configurations with respect to negation of HRESET		5	SYSCLKs	1
HRESET rise time		1	SYSCLK	_

 Table 10. RESET Initialization Timing Specifications

Notes:

1. SYSCLK is the primary clock input for the chip.

This table provides the PLL lock times.

Table 11. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	—	100	μs	_
Local bus PLL	—	50	μs	_
PCI bus lock time	—	50	μs	

This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 9. Timing Diagram for tDDKHMH

This figure shows the DDR SDRAM output timing diagram.

Figure 10. DDR SDRAM Output Timing Diagram

Figure 29. 4-Wire AC-Coupled SGMII Serial Link Connection Example

Figure 30. SGMII Transmitter DC Measurement Circuit

Table 40. SGMII DC Receiver Electrical Characteristics

Parameter		Symbol	Min	Тур	Мах	Unit	Notes
Supply Voltage		X2V _{DD}	0.95	1.0	1.05	V	—
DC Input voltage range		—		N/A		_	1
Input differential voltage	LSTS = 0	V _{RX_DIFFp-p}	100	—	1200	mV	2, 4
	LSTS = 1		175	—			
Loss of signal threshold	LSTS = 0	VLOS	30	—	100	mV	3, 4
	LSTS = 1		65	—	175		
Input AC common mode voltage		V _{CM_ACp-p}	—	—	100	mV	5

Figure 32. SGMII AC Test/Measurement Load

2.9.4 eTSEC IEEE 1588 AC Specifications

This figure shows the data and command output timing diagram.

Figure 33. eTSEC IEEE 1588 Output AC timing

¹ The output delay is count starting rising edge if $t_{T1588CLKOUT}$ is non-inverting. Otherwise, it is count starting falling edge. This figure provides the data and command input timing diagram.

Figure 34. eTSEC IEEE 1588 Input AC timing

This table provides the DC electrical characteristics for the local bus interface operating at $BV_{DD} = 1.8$ V DC.

Parameter	Symbol	Condition	Min	Мах	Unit
Supply voltage 1.8V	BV _{DD}	—	1.71	1.89	V
High-level input voltage	V _{IH}	—	0.65*BV _{DD}	0.3+BV _{DD}	V
Low-level input voltage	V _{IL}	—	-0.3	0.35*BV _{DD}	V
Input current (BV _{IN} ¹ = 0 V or BV _{IN} = BV _{DD})	I _{IN}	—	-15	10	μΑ
High-level output voltage	V _{OH}	I _{OH} = −100 μA	BV _{DD} – 0.2	—	V
		I _{OH} = -2 mA	BV _{DD} – 0.45	_	
Low-level output voltage	V _{OL}	I _{OH} = 100 μA	—	0.2	V
		I _{OH} = 2 mA	—	0.45	

Table 50	Local Rus	DC	Flectrical	Characteristics	(1 8)	
Table 50.	LUCAI DUS		Electrical	Characteristics	(1.0 \	v DC)

Note:

1. Note that the symbol BV_{IN} , in this case, represents the BV_{IN} symbol referenced in Table 1.

2.12.2 Local Bus AC Electrical Specifications

This table describes the general timing parameters of the local bus interface at $BV_{DD} = 3.3 \text{ V DC}$. For information about the frequency range of local bus see Section 2.23.1, "Clock Ranges."

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	t _{LBKH} /t _{LBK}	43	57	%	—
LCLK[n] skew to LCLK[m] or LSYNC_OUT	tlbkskew		150	ps	7
Input setup to local bus clock (except LUPWAIT)	t _{LBIVKH1}	1.8		ns	3, 4
LUPWAIT input setup to local bus clock	t _{LBIVKH2}	1.7	—	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	t _{LBIXKH1}	1.0	_	ns	3, 4
LUPWAIT input hold from local bus clock	t _{LBIXKH2}	1.0	_	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	t _{LBOTOT}	1.5	_	ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	t _{LBKHOV1}	_	2.3	ns	—
Local bus clock to data valid for LAD/LDP	t _{LBKHOV2}	—	2.4	ns	3
Local bus clock to address valid for LAD	t _{LBKHOV3}	—	2.3	ns	3
Local bus clock to LALE assertion	t _{LBKHOV4}	—	2.3	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	t _{LBKHOX1}	0.7	_	ns	3

Table 51. Local Bus General Timing Parameters (BV_{DD} = 3.3 V DC)

Parameter	Symbol ¹	Min	Max	Unit	Notes
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	0.7	—	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	t _{LBKHOZ1}		2.5	ns	5
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ2}	—	2.5	ns	5

Table 51. Local Bus General Timing Parameters (BV_{DD} = 3.3 V DC) (continued)

Note:

- The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.
- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6.t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is guaranteed with LBCR[AHD] = 0.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BVDD/2.

This table describes the general timing parameters of the local bus interface at $BV_{DD} = 2.5 \text{ V DC}$.

Parameter	Configuration	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	—	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	—	t _{LBKH/} t _{LBK}	43	57	%	_
LCLK[n] skew to LCLK[m] or LSYNC_OUT	—	tlbkskew	Ι	150	ps	7
Input setup to local bus clock (except LUPWAIT)	—	t _{LBIVKH1}	1.9	_	ns	3, 4
LUPWAIT input setup to local bus clock	—	t _{LBIVKH2}	1.8	_	ns	3, 4
Input hold from local bus clock (except LUPWAIT)	—	t _{LBIXKH1}	1.1	_	ns	3, 4
LUPWAIT input hold from local bus clock	—	t _{LBIXKH2}	1.1	_	ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	—	t _{LBOTOT}	1.5		ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	—	t _{LBKHOV1}	_	2.4	ns	_
Local bus clock to data valid for LAD/LDP	—	t _{LBKHOV2}	_	2.5	ns	3
Local bus clock to address valid for LAD	—	t _{LBKHOV3}	_	2.4	ns	3
Local bus clock to LALE assertion	—	t _{LBKHOV4}	_	2.4	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	_	t _{LBKHOX1}	0.8	_	ns	3

Table 52. Local Bus General Timing Parameters (BV_{DD} = 2.5 V DC)

Parameter	Configuration	Symbol ¹	Min	Max	Unit	Notes
Output hold from local bus clock for LAD/LDP	—	t _{LBKHOX2}	0.8	_	ns	3
Local bus clock to output high Impedance (except LAD/LDP and LALE)	—	t _{LBKHOZ1}	_	2.6	ns	5
Local bus clock to output high impedance for LAD/LDP	—	t _{LBKHOZ2}		2.6	ns	5

Table 52. Local Bus General Timing Parameters (BV_{DD} = 2.5 V DC) (continued)

Note:

The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(First two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to LSYNC_IN for PLL enabled and internal local bus clock for PLL bypass mode.

- 3. All signals are measured from $BV_{DD}/2$ of the rising edge of LSYNC_IN for PLL enabled or internal local bus clock for PLL bypass mode to $0.4 \times BV_{DD}$ of the signal in question for 2.5-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. t_{LBOTOT} is a measurement of the minimum time between the negation of LALE and any change in LAD. tLBOTOT is guaranteed with LBCR[AHD] = 0.
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at BVDD/2.

This table describes the general timing parameters of the local bus interface at $BV_{DD} = 1.8 \text{ V DC}$.

Parameter	Configuration	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	—	t _{LBK}	7.5	12	ns	2
Local bus duty cycle	_	t _{LBKH/} t _{LBK}	43	57	%	
LCLK[n] skew to LCLK[m] or LSYNC_OUT	—	t lbkskew		150	ps	7
Input setup to local bus clock (except LUPWAIT)	—	t _{LBIVKH1}	2.4		ns	3, 4
LUPWAIT input setup to local bus clock	—	t _{LBIVKH2}	1.9		ns	3, 4
Input hold from local bus clock (except LUPWAIT)	_	t _{LBIXKH1}	1.1		ns	3, 4
LUPWAIT input hold from local bus clock	_	t _{LBIXKH2}	1.1		ns	3, 4
LALE output transition to LAD/LDP output transition (LATCH setup and hold time)	_	t _{LBOTOT}	1.2		ns	6
Local bus clock to output valid (except LAD/LDP and LALE)	—	t _{LBKHOV1}	_	3.2	ns	_
Local bus clock to data valid for LAD/LDP	—	t _{LBKHOV2}		3.2	ns	3
Local bus clock to address valid for LAD	_	t _{LBKHOV3}	_	3.2	ns	3
Local bus clock to LALE assertion	_	t _{LBKHOV4}	—	3.2	ns	3
Output hold from local bus clock (except LAD/LDP and LALE)	_	t _{LBKHOX1}	0.9	_	ns	3

Table 53. Local Bus General Timing Parameters (BV_{DD} = 1.8 V DC)

This figures show the local bus signals.

Figure 39. Local Bus Signals, Non-Special Signals Only (PLL Enabled)

NOTE

In PLL bypass mode, some signals are launched and captured on the opposite edge of LCLK[n] to that used in PLL Enable Mode. In this mode, output signals are launched at the falling edge of the LCLK[n] and inputs signals are captured at the rising edge of LCLK[n] with the exception of LGTA/LUPWAIT (which is captured at the falling edge of the LCLK[n]).

2.16.2 Differential Transmitter (TX) Output Characteristics

This table provides the differential transmitter (TX) output characteristics for the SATA interface.

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Channel Speed 1.5G 3.0G	^t CH_SPEED	_	1.5 3.0	_	Gbps	_
Unit Interval 1.5G 3.0G	T _{UI}	666.4333 333.2167	666.4333 333.3333	670.2333 335.1167	ps	_
DC Coupled Common Mode Voltage	V _{dc_cm}	200	250	450	mV	3
TX Diff Output Voltage 1.5G 3.0G	V _{SATA_TXDIFF}	400 400	500 —	600 700	mV	—
TX rise/fall time 1.5G 3.0G	t _{SATA_20-80TX}	100 67		273 136	ps	—
TX differential skew	t _{SATA_TXSKEW}	_	_	20	ps	_
TX Differential pair impedance 1.5G	Z _{SATA_TXDIFFIM}	85	_	115	ohm	_
TX Single ended impedance 1.5G	Z _{SATA_TXSEIM}	40	_	_	ohm	—
TX AC common mode voltage (peak to peak) 1.5G 3.0G	V _{SATA_TXCMMOD}	_		— 50	mV	_
OOB Differential Delta	V _{SATA_OOBvdoff}	—	—	25	mV	1
OOB Common mode Delta	V _{SATA_OOBcm}	—		50	mV	1
TX Rise/Fall Imbalance	T _{SATA_TXR/Fbal}	—	—	20	%	_
TX Amplitude Imbalance	T _{SATA_TXampbal}	—	—	10	%	—
TX Differential Mode Return loss 150 MHz - 300 MHz 300 MHz - 600 MHz 600 MHz - 1.2 GHz 1.2 GHz - 2.4 GHz 2.4 GHz - 3.0 GHz 3.0 GHz - 5.0 GHz	RL _{SATA_TXDD11}	_ _ _ _		14 8 6 3 1	dB	1, 2

Table 60. Differential Transmitter (TX) Output Characteristics

Parameter	Symbol	Min	Typical	Мах	Units	Notes
TX Common Mode Return						
loss						
150 MHz - 300 MHz		—	—	5		
300 MHz - 600 MHz		—	—	5		1, 2
600 MHZ - 1.2 GHZ	RLSATA_TXCC11	_	_	2	aв	
1.2 GHz - 2.4 GHz						
2.4 GHz - 3.0 GHz		—	—	2		
3.0 GHz - 5.0 GHz		—	—	1		
		—	—	1		
TX Impedance Balance						
				20		
300 MHz - 600 MHz				30		1 2
600 MHz - 1 2 GHz				10	dB	1, 2
	RLSATA TYDC11			10	чъ	
1.2 GHz - 2.4 GHz	SAIA_INDOTI					
2.4 GHz - 3.0 GHz		—	—	10		
3.0 GHz - 5.0 GHz		—	—	4		
		—	—	4		
Deterministic jitter						_
1.5G	U _{SATA_TXDJ}	—	—	0.18	UI	
3.0G				0.14		
Total Jitter						—
1.5G	U _{SATA_TXTJ}	—	—	0.42	UI	
3.0G				0.32		

Table 60. Differential Transmitter (TX) Output Characteristics (continued)

Notes:

1. Only applies when operating in 3.0Gb data rate mode.

2. The max value stated for 3.0 GHz - 5.0 GHz range only applies to Gen2i mode and not to Gen2m mode.

3. Only applies to Gen1i mode.

Parameter	Symbol	Min	Typical	Max	Units	Notes
RX Differential Mode Return loss 150 MHz - 300 MHz		_	_	18		2, 3
300 MHz - 600 MHz 600 MHz - 1.2 GHz	RL _{SATA_RXDD11}	_	_	14 10	dB	
1.2 GHz - 2.4 GHz 2.4 GHz - 3.0 GHz 3.0 GHz - 5.0 GHz		_ _ _	_ _ _	8 3 1		
RX Common Mode Return loss 150 MHz - 300 MHz 300 MHz - 600 MHz 600 MHz - 1.2 GHz	RL _{SATA_RXCC11}	 	 	5 5 2	dB	2, 3, 4
1.2 GHz - 2.4 GHz 2.4 GHz - 3.0 GHz 3.0 GHz - 5.0 GHz		 	 	2 2 1		
RX Impedance Balance						2, 3
150 MHz - 300 MHz 300 MHz - 600 MHz 600 MHz - 1.2 GHz	RL _{SATA_RXDC11}	 	 	30 30 20	dB	
1.2 GHz - 2.4 GHz 2.4 GHz - 3.0 GHz 3.0 GHz - 5.0 GHz				10 4 4		
Deterministic jitter 1.5G 3.0G	U _{SATA_RXDJ}	_	_	0.4 0.47	UI	—
Total Jitter 1.5G 3.0G	U _{SATA_RXTJ}	_	_	0.65 0.65	UI	_

Table 61. Differential Receiver (RX) Input Characteristics (continued)

Notes:

1. The min values apply only to Gen1m, and Gen2m. the min values for Gen1i is 325 mVp-p and for Gen2i is 275 mVp-p.

2. Only applies when operating in 3.0Gb data rate mode.

3. The max value stated for 3.0 GHz - 5.0 GHz range only applies to Gen2i mode and not to Gen2m mode.

4. The max value stated for 2.4 GHz - 3.0 GHz range only applies to Gen2i mode for Gen2m the value is 1.

5. Only applies to Gen1i mode.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	8
Rise time (20%–80%)	t PCICLK	0.6	2.1	ns	—
Failing time (20%–80%)	t PCICLK	0.6	2.1	ns	—

Table 68. PCI AC Timing Specifications at 66 MHz (continued)

Notes:

- The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. All PCI signals are measured from $OV_{DD}/2$ of the rising edge of PCI_SYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V PCI signaling levels.
- 4. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.
- The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 22, "Clocking."
- 7. The setup and hold time is with respect to the rising edge of HRESET.
- 8. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the *PCI 2.2 Local Bus Specifications*.
- 9. The reset assertion timing requirement for HRESET is 100 μ s.

This figure provides the AC test load for PCI.

Figure 54. PCI AC Test Load

This figure shows the PCI input AC timing conditions.

Figure 55. PCI Input AC Timing Measurement Conditions

2.23.1 Clock Ranges

This table provides the clocking specifications for the processor cores and Table 74 provides the clocking specifications for the memory bus.

	Maximum Processor Core Frequency									
Characteristic	600 MHz		800 MHz 1000) MHz 125		0 MHz	Unit	Notes	
	Min	Max	Min	Max	Min	Max	Min	Max		
e500 core processor frequency	600	600	600	800	600	1000	600	1250	MHz	1, 2
CCB frequency	400	400	400	400	333	400	333	500		
DDR Data Rate	400	400	400	400	400	400	400	500		

Table 73. Processor Core Clocking Specifications

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. See Section 2.23.2, "CCB/SYSCLK PLL Ratio," Section 2.23.3, "e500 Core PLL Ratio," and Section 2.23.4, "DDR/DDRCLK PLL Ratio," for ratio settings.

2. The processor core frequency speed bins listed also reflect the maximum platform (CCB) and DDR data rate frequency supported by production test. Running CCB and/or DDR data rate higher than the limit shown above, although logically possible via valid clock ratio setting in some condition, is not supported.

The DDR memory controller can run in either synchronous or asynchronous mode. When running in synchronous mode, the memory bus is clocked relative to the platform clock frequency. When running in asynchronous mode, the memory bus is clocked with its own dedicated PLL. This table provides the clocking specifications for the memory bus.

Table 74	. Memory	Bus	Clocking	Specifications
----------	----------	-----	----------	----------------

Characteristic	Maximum Process	or Core Frequency		
	600, 800, ⁻	1000, 1250	Unit	Notes
	Min	Мах		
DDR Memory bus clock speed	200 250		MHz	1, 2, 3, 4

Notes:

1. **Caution:** The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB clock frequency do not exceed their respective maximum or minimum operating frequencies. See Section 2.23.2, "CCB/SYSCLK PLL Ratio," Section 2.23.3, "e500 Core PLL Ratio," and Section 2.23.4, "DDR/DDRCLK PLL Ratio," for ratio settings.

2. The Memory bus clock refers to the chip's memory controllers' MCK[0:5] and MCK[0:5] output clocks, running at half of the DDR data rate.

- 3. In synchronous mode, the memory bus clock speed is half the platform clock frequency. In other words, the DDR data rate is the same as the platform (CCB) frequency. If the desired DDR data rate is higher than the platform (CCB) frequency, asynchronous mode must be used.
- 4. In asynchronous mode, the memory bus clock speed is dictated by its own PLL. See Section 2.23.4, "DDR/DDRCLK PLL Ratio." The memory bus clock speed must be less than or equal to the CCB clock rate which in turn must be less than the DDR data rate.

Please note that the DDR PLL reference clock input, DDRCLK, is only required in asynchronous mode.

The DDRCLKDR configuration register in the Global Utilities block allows the DDR controller to be run in a divided down mode where the DDR bus clock is half the speed of the default configuration. Changing of these defaults must be completed prior to initialization of the DDR controller.

Functional Signals	Reset Configuration Name	Value (Binary)	DDR:DDRCLK Ratio
TSEC_1588_TRIG_OUT[0:1], TSEC1_1588_CLK_OUT	cfg_ddr_pll[0:2]	000	3:1
		001	4:1
		010	6:1
		011	8:1
		100	10:1
		101	12:1
		110	Reserved
		111	Synchronous mode

Table 77. DDR Clock Ratio	able 7	7. DDR	Clock	Ratic
---------------------------	--------	--------	-------	-------

2.23.5 PCI Clocks

The integrated PCI controller in this chip supports PCI input clock frequency in the range of 33–66 MHz. The PCI input clock can be applied from SYSCLK in synchronous mode or PCI1_CLK in asynchronous mode. For specifications on the PCI1_CLK, refer to the PCI 2.2 Specification.

The use of PCI1_CLK is optional if SYSCLK is in the range of 33–66 MHz. If SYSCLK is outside this range then use of PCI1_CLK is required as a separate PCI clock source, asynchronous with respect to SYSCLK.