

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Active Core Processor STM8 Core Size 8-Bit	
Core Size 8-Bit	
Speed 16MHz	
Connectivity I ² C, IrDA, SPI, UART/USART	
Peripherals Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT	
Number of I/O 41	
Program Memory Size 64KB (64K x 8)	
Program Memory Type FLASH	
EEPROM Size 2K x 8	
RAM Size 4K x 8	
Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V	
Data ConvertersA/D 25x12b; D/A 2x12b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 105°C (TA)	
Mounting Type Surface Mount	
Package / Case 48-LQFP	
Supplier Device Package48-LQFP (7x7)	
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151c8t7	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		9.3.8	Communication interfaces 104	4
		9.3.9	LCD controller (STM8L152x6/8 only) 109	9
		9.3.10	Embedded reference voltage 110	0
		9.3.11	Temperature sensor	1
		9.3.12	Comparator characteristics 11	1
		9.3.13	12-bit DAC characteristics 113	3
		9.3.14	12-bit ADC1 characteristics 115	5
		9.3.15	EMC characteristics	1
	9.4	Therma	characteristics	3
10	Packa	age info	rmation	4
	10.1	LQFP80	package information	4
	10.2	LQFP64	package information	8
	10.3	LQFP48	package information	1
	10.4	UFQFPI	N48 package information 13	5
	10.5	WLCSP	32 package information 138	8
11	Order	ing info	rmation scheme 14 ⁴	1
12	Revis	ion hist	ory	2

				s. mgn-density and med	um	- uei					-		escription (continued)		
Pi	n nu	ımb	er				I	npu	t	0	utpu	ıt			
LQFP80	LQFP64	UFQFPN48 and LQFP48	WLCSP32	Pin name	Type	I/O level	floating	ndm	Ext. interrupt	High sink/source	OD	ЬР	Main function (after reset)	Default alternate function	
44	36	-		PB5/SPI1_SCK/ LCD_SEG15 ⁽³⁾ /ADC1_IN13 / [COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port B5	SPI1 clock / LCD segment 15 / ADC1_IN13/ [Comparator 1 positive input]	
-	-	29		PB5/SPI1_SCK/ LCD_SEG15 ⁽³⁾ /ADC1_IN13 /DAC_OUT2/ [COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	х	HS	x	х	Port B5	[SPI1 clock] / LCD segment 15 / ADC1_IN13 / DAC channel 2 output/ [Comparator 1 positive input]	
45	37	-	-	PB6/SPI1_MOSI/ LCD_SEG16 ⁽³⁾ /ADC1_IN12 /[COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	x	Port B6	SPI1 master out/slave in/ LCD segment 16 / ADC1_IN12/ [Comparator 1 positive input]	
-	-	30	F1	PB6/SPI1_MOSI/ LCD_SEG16 ⁽³⁾ /ADC1_IN12 /DAC_OUT2/ <i>[COMP1_INP]</i>	I/O	FT ⁽⁶⁾	x	x	x	HS	x	x	Port B6	SPI1 master out/ slave in / LCD segment 16 / ADC1_IN12 / DAC channel 2 output/[Comparator 1 positive input]	
46	38	31	E1	PB7/SPI1_MISO/ LCD_SEG17 ⁽³⁾ / ADC1_IN11/ <i>[COMP1_INP]</i>	I/O	FT ⁽⁶⁾	x	х	x	HS	х	х	Port B7	SPI1 master in- slave out/ LCD segment 17 / ADC1_IN11/[Comparato r 1 positive input]	
65	53	37	B1	PC0/I2C1_SDA	I/O	FT ⁽⁶⁾	Х	-	Х		T ⁽⁷⁾		Port C0	I2C1 data	
66	54	38	A1	PC1/l2C1_SCL	I/O	FT ⁽⁶⁾	X	-	Х		T ⁽⁷⁾		Port C1	I2C1 clock	
69	57	41		PC2/USART1_RX/ LCD_SEG22/ADC1_IN6/ <i>[COMP1_INP]</i> /VREFINT	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port C2	USART1 receive / LCD segment 22 / ADC1_IN6/ [Comparator 1 positive input] /Internal reference voltage output	
-	-	42	A2	PC3/USART1_TX/ LCD_SEG23 ⁽³⁾ / ADC1_IN5	I/O	FT ⁽⁶⁾	x	х	х	HS	х	х	Port C3	USART1 transmit / LCD segment 23 / ADC1_IN5	

Table 5. High-density and medium+ density STM8L15x pin description (continued)

Address	Block	Register label	Register name	Reset status		
0x00 502E to 0x00 5049			Reserved area (28 byte)			
0x00 5050		FLASH_CR1	Flash control register 1	0x00		
0x00 5051		FLASH_CR2	Flash control register 2	0x00		
0x00 5052	Flash	FLASH_PUKR	Flash program memory unprotection key register	0x00		
0x00 5053		FLASH_DUKR	Data EEPROM unprotection key register	0x00		
0x00 5054		FLASH_IAPSR	Flash in-application programming status register	0x00		
0x00 5055 to 0x00 506F			Reserved area (27 byte)			
0x00 5070		DMA1_GCSR	DMA1 global configuration & status register	0xFC		
0x00 5071	_	DMA1_GIR1	DMA1 global interrupt register 1	0x00		
0x00 5072 to 0x00 5074		Reserved area (3 byte)				
0x00 5075		DMA1_C0CR	DMA1 channel 0 configuration register	0x00		
0x00 5076		DMA1_C0SPR	DMA1 channel 0 status & priority register	0x00		
0x00 5077		DMA1_C0NDTR	DMA1 number of data to transfer register (channel 0)	0x00		
0x00 5078		DMA1_C0PARH	DMA1 peripheral address high register (channel 0)	0x52		
0x00 5079		DMA1_C0PARL	DMA1 peripheral address low register (channel 0)	0x00		
0x00 507A	- DMA1		Reserved area (1 byte)			
0x00 507B		DMA1_C0M0ARH	DMA1 memory 0 address high register (channel 0)	0x00		
0x00 507C		DMA1_C0M0ARL	DMA1 memory 0 address low register (channel 0)	0x00		
0x00 507D to 0x00 507E			Reserved area (2 byte)			
0x00 507F	1	DMA1_C1CR	DMA1 channel 1 configuration register	0x00		
0x00 5080	1	DMA1_C1SPR	DMA1 channel 1 status & priority register	0x00		
0x00 5081		DMA1_C1NDTR	DMA1 number of data to transfer register (channel 1)	0x00		
0x00 5082		DMA1_C1PARH	DMA1 peripheral address high register (channel 1)	0x52		
0x00 5083	DMA1	DMA1_C1PARL	DMA1 peripheral address low register (channel 1)	0x00		

Table 9.	General	hardware	register map
	Ocherai	naraware	register map

Address	Block	Register label	Register name	Reset statu		
0x00 5084			Reserved area (1 byte)	1		
0x00 5085	- DMA1	DMA1_C1M0ARH	DMA1 memory 0 address high register (channel 1)	0x00		
0x00 5086		DMA1_C1M0ARL	DMA1 memory 0 address low register (channel 1)	0x00		
0x00 5087 0x00 5088			Reserved area (2 byte)			
0x00 5089		DMA1_C2CR	DMA1 channel 2 configuration register	0x00		
0x00 508A		DMA1_C2SPR	DMA1 channel 2 status & priority register	0x00		
0x00 508B		DMA1_C2NDTR	DMA1 number of data to transfer register (channel 2)	0x00		
0x00 508C		DMA1_C2PARH	DMA1 peripheral address high register (channel 2)	0x52		
0x00 508D	DMA1	DMA1_C2PARL	DMA1 peripheral address low register (channel 2)	0x00		
0x00 508E			Reserved area (1 byte)			
0x00 508F		DMA1_C2M0ARH	DMA1 memory 0 address high register (channel 2)	0x00		
0x00 5090		DMA1_C2M0ARL	DMA1 memory 0 address low register (channel 2)	0x00		
0x00 5091 0x00 5092			Reserved area (2 byte)			
0x00 5093		DMA1_C3CR	DMA1 channel 3 configuration register	0x00		
0x00 5094		DMA1_C3SPR	DMA1 channel 3 status & priority register	0x00		
0x00 5095		DMA1_C3NDTR	DMA1 number of data to transfer register (channel 3)	0x00		
0x00 5096		DMA1_C3PARH_ C3M1ARH	DMA1 peripheral address high register (channel 3)	0x40		
0x00 5097	DMA1	DMA1_C3PARL_ C3M1ARL	DMA1 peripheral address low register (channel 3)	0x00		
0x00 5098		DMA_C3M0EAR	DMA channel 3 memory 0 extended address register	0x00		
0x00 5099		DMA1_C3M0ARH	DMA1 memory 0 address high register (channel 3)	0x00		
0x00 509A		DMA1_C3M0ARL	DMA1 memory 0 address low register (channel 3)	0x00		
0x00 509B to 0x00 509C			Reserved area (3 byte)			

Table 9. General hardware register map (continued)

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
20	TIM2/ USART2	Capture/Compare/USART 2 interrupt	-	-	Yes	Yes ⁽³⁾	0x00 8058
21	TIM3/ USART3	TIM3 Update /Overflow/Trigger/Break/ USART3 transmission complete/transmit data register empty interrupt	-	-	Yes	Yes ⁽³⁾	0x00 805C
22	TIM3/ USART3	TIM3 Capture/Compare/ USART3 Receive register data full/overrun/idle line detected/parity error/ interrupt	-	-	Yes	Yes ⁽³⁾	0x00 8060
23	TIM1	Update /overflow/trigger/ COM	-	-	-	Yes ⁽³⁾	0x00 8064
24	TIM1	Capture/Compare	-	-	-	Yes ⁽³⁾	0x00 8068
25	TIM4	Update/overflow/trigger	-	-	Yes	Yes ⁽³⁾	0x00 806C
26	SPI1	End of Transfer	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8070
27	USART 1/ TIM5	USART1 transmission complete/transmit data register empty/ TIM5 update/overflow/ trigger/break	-	-	Yes	Yes ⁽³⁾	0x00 8074
28	USART 1/ TIM5	USART1 Receive register data full/overrun/idle line detected/parity error/ TIM5 capture/compare	-	-	Yes	Yes ⁽³⁾	0x00 8078
29	I ² C1/SPI2	I ² C1 interrupt ⁽⁵⁾ / SPI2	Yes	Yes	Yes	Yes ⁽³⁾	0x00 807C

Table 11. Interrupt mapping (continued)

1. The Low-power wait mode is entered when executing a WFE instruction in Low-power run mode.

2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.

3. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

4. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see *External interrupt port select register (EXTI_CONF)* in the RM0031).

5. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

Ontion	Option Option Option				
byte no.	Option description				
OPT0	ROP[7:0] Memory readout protection (ROP) 0xAA: Disable readout protection (write access via SWIM protocol) Refer to Readout protection section in the STM8L reference manual (RM0031).				
OPT1	UBC[7:0] Size of the user boot code area UBC[7:0] Size of the user boot code area 0x00: No UBC 0x01: Page 0 reserved for the UBC and write protected. 0xFF: Page 0 to 254 reserved for the UBC and write-protected. Refer to User boot code section in the STM8L reference manual (RM0031).				
OPT2	PCODESIZE[7:0] Size of the proprietary code area 0x00: No proprietary code area 0x01: Page 0 reserved for the proprietary code and read/write protected. 0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected. Refer to Proprietary code area (PCODE) section in the STM8L reference manual (RM0031) for more details.				
	IWDG_HW: Independent watchdog 0: Independent watchdog activated by software 1: Independent watchdog activated by hardware IWDG_HALT: Independent watchdog off in Halt/Active-halt 0: Independent watchdog continues running in Halt/Active-halt mode 1: Independent watchdog stopped in Halt/Active-halt mode				
OPT3	WWDG_HW: Window watchdog 0: Window watchdog activated by software 1: Window watchdog activated by hardware WWDG_HALT: Window window watchdog reset on Halt/Active-halt 0: Window watchdog stopped in Halt mode 1: Window watchdog generates a reset when MCU enters Halt mode				
OPT4	HSECNT: Number of HSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles				
OPT4	LSECNT: Number of LSE oscillator stabilization clock cycles 0x00 - 1 clock cycle 0x01 - 16 clock cycles 0x10 - 512 clock cycles 0x11 - 4096 clock cycles				

Table 13. Option byte description

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	
I _{IO}	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	mA
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	- 5 / +0	
I _{INJ(PIN)}	Injected current on five-volt tolerant (FT) pins ⁽¹⁾	- 5 / +0	
	Injected current on any other pin ⁽²⁾	- 5 / +5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) $^{(3)}$	± 25	

Table 16. Current characteris	stics
-------------------------------	-------

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 15.* for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 15*. for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG} Storage temperature range		-65 to +150	°C
TJ	Maximum junction temperature	150	C

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

9.3.1 General operating conditions

Table 18. General operating conditions									
Symbol	Parameter	Conditions		Min.	Max.	Unit			
f _{SYSCLK} ⁽¹⁾	System clock frequency	1.65 V ≤V _{DD} < 3.6 V		0	16	MHz			
V _{DD}	Standard operating	BOR detector di (D suffix version		1.65	3.6	V			
	voltage	BOR detector er	nabled	1.8 ⁽²⁾					
V	Analog operating	ADC and DAC not used	Must be at the same	1.65	3.6	V			
V _{DDA}	voltage	ADC or DAC used	potential as V _{DD}	1.8	3.6	V			
		L	_QFP80	-	526				
	Power dissipation at T _A = 85 °C for suffix 6 devices	LQFP64		-	416	mW			
		UFQFPN48		-	625				
		LQFP48		-	307				
$P_D^{(3)}$		WLCSP32		-	317				
	Power dissipation at T_A = 125 °C for suffix 3 devices and at T_A = 105 °C for suffix 7 devices	LQFP80		-	131				
		LQFP64		-	104				
		UFQFPN48		-	156				
		LQFP48		-	77				
		1.65 V ≤V _{DD} < 3.6 V (6 suffix version)		-40	85				
T _A	Temperature range	1.65 V ≤V _{DD} < 3.6 V (7 suffix version)		-40	105				
		$1.65 \text{ V} \leq V_{DD} < 3.6 \text{ V}$ (3 suffix version)		-40	125				
TJ		-40 °C ≤T _A < 85 °C (6 suffix version)		-40	105	°C			
	Junction temperature range	-40 °C ≤ T _A < 105 °C (7 suffix version)		-40	110 ⁽⁴⁾				
			≤ T _A < 125 °C ffix version)	-40	130 ⁽⁴⁾				

Table 18	General	operating	conditions
----------	---------	-----------	------------

1. $f_{SYSCLK} = f_{CPU}$

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled by option byte

3. To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

4. T_{Jmax} is given by the test limit. Above this value the product behavior is not guaranteed.

9.3.2 Embedded reset and power control block characteristics

Table 19. Embedded reset and power control block characteristics								
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	V _{DD} rise time rate	BOR detector enabled	0 ⁽¹⁾	-	_∞ (1)	µs/V		
	VDD lise time rate	BOR detector disabled	0 ⁽¹⁾	-	1 ⁽¹⁾	ms/V		
t _{VDD}	V _{DD} fall time rate	BOR detector enabled	20 ⁽¹⁾	-	_∞ (1)	µs/V		
		BOR detector disabled	Reset below	voltage func	tional range			
4	Depart release delay	V _{DD} rising BOR detector enabled	-	3	-			
t _{TEMP}	Reset release delay	V _{DD} rising BOR detector disabled	-	1	-	ms		
V _{POR}	Power-on reset threshold	Rising edge	1.3 ⁽²⁾	1.5	1.65			
V _{PDR}	Power-down reset threshold	Falling edge	1.3 ⁽²⁾	1.5	1.65			
V	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74			
V _{BOR0}	(BOR_TH[2:0]=000)	Rising edge	1.69	1.75	1.80			
V	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97			
V _{BOR1}	(BOR_TH[2:0]=001)	Rising edge	1.96	2.04	2.07	v		
M	Brown-out reset threshold 2	Falling edge	2.22	2.3	2.35	v		
V _{BOR2}	(BOR_TH[2:0]=010)	Rising edge	2.31	2.41	2.44			
M	Brown-out reset threshold 3	Falling edge	2.45	2.55	2.60			
V _{BOR3}	(BOR_TH[2:0]=011)	Rising edge	2.54	2.66	2.7			
V.	Brown-out reset threshold 4	Falling edge	2.68	2.80	2.85			
V _{BOR4}	(BOR_TH[2:0]=100)	Rising edge	2.78	2.90	2.95			

Table 19. Embedded reset and power control block characteristics

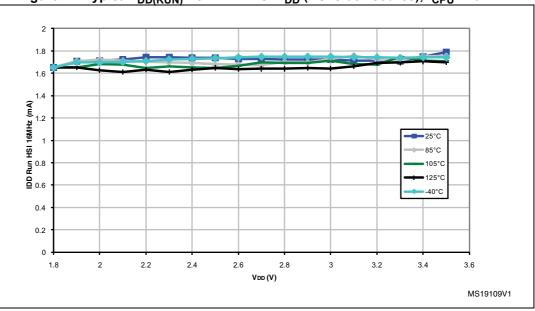


Figure 14. Typical I_{DD(RUN)} from RAM vs. V_{DD} (HSI clock source), f_{CPU} =16 MHz

1. Typical current consumption measured with code executed from RAM.

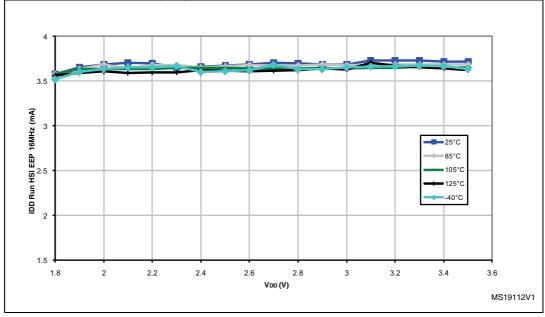


Figure 15. Typical $I_{DD(RUN)}$ from Flash vs. V_{DD} (HSI clock source), f_{CPU} = 16 MHz

1. Typical current consumption measured with code executed from Flash.

		Conditions ⁽¹⁾		Тур	Мах					
Symbol	Parameter				55°C	85 °C (2)	105 °C (3)	125 °C (4)	Unit	
				f _{CPU} = 125 kHz	0.27	0.36	0.42	0.46	0.51	
				f _{CPU} = 1 MHz	0.29	0.38	0.44	0.48	0.53	
			HSI	f _{CPU} = 4 MHz	0.37	0.46	0.52	0.56	0.61	
				f _{CPU} = 8 MHz	0.45	0.55	0.61	0.65	0.7	- - - mA
		CPU not clocked, all peripherals OFF, code executed from		f _{CPU} = 16 MHz	0.69	0.79	0.85	0.89	0.94	
			HSE ⁽⁷⁾ external clock	f _{CPU} = 125 kHz	0.23	0.29	0.32	0.4	0.47	
	Supply			f _{CPU} = 1 MHz	0.24	0.31	0.34	0.41	0.48	
I _{DD(Wait)}	current in Wait mode			f _{CPU} = 4 MHz	0.32	0.39	0.42	0.49	0.56	
		Flash, V _{DD} from	(f _{CPU} = HSE)	f _{CPU} = 8 MHz	0.42	0.49	0.51	0.59	0.66	
		1.65 V to 3.6 V	,	f _{CPU} = 16 MHz	0.7	0.77	0.79	0.87	0.94	
		5.0 V	LSI	f _{CPU} = f _{LSI}	0.037	0.085	0.105	0.123	0.153	
		e C	LSE ⁽⁸⁾ external clock (32.768 kHz)	f _{CPU} = f _{LSE}	0.036	0.082	0.095	0.119	0.133	

Table 21. Total current consumption in Wait mode (continued)

1. All peripherals OFF, V_{DD} from 1.65 V to 3.6 V, HSI internal RC osc., $\rm f_{CPU}$ = $\rm f_{SYSCLK}$

2. For devices with suffix 6.

3. For devices with suffix 7.

4. For devices with suffix 3.

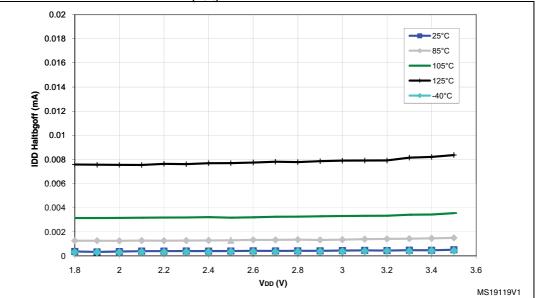
5. Flash is configured in I_{DDQ} mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.

6. Tested in production.

 Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption (I_{DD HSE}) must be added. Refer to Table 31.

 Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD HSE}) must be added. Refer to Table 32

In the following table, data are based on characterization results, unless otherwise specified.


Symbol	Parameter	Condition ⁽¹⁾	Тур.	Max.	Unit
		T_A = -40 °C to 25 °C	400	1600 ⁽²⁾	
	Supply surrent in Helt made	T _A = 55 °C	810	2400	
I _{DD(Halt)}	Supply current in Halt mode (Ultra-low-power ULP bit =1 in	T _A = 85 °C	1600	4500 ⁽²⁾	nA
	the PWR_CSR2 register)	T _A = 105 °C	2900	7700 ⁽²⁾	
		T _A = 125 °C	5.6	18 ⁽²⁾	μA
I _{DD(WUHalt)}	Supply current during wakeup time from Halt mode (using HSI)		2.4		mA
t _{WU_HSI(Halt)} ⁽³⁾⁽⁴⁾	Wakeup time from Halt to Run mode (using HSI)		4.7	7	μs
t _{WU_LSI(Halt)} ⁽³⁾⁽⁴⁾	Wakeup time from Halt mode to Run mode (using LSI)		150		μs

1. T_A = -40 to 125 °C, no floating I/O, unless otherwise specified

2. Tested in production

3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register

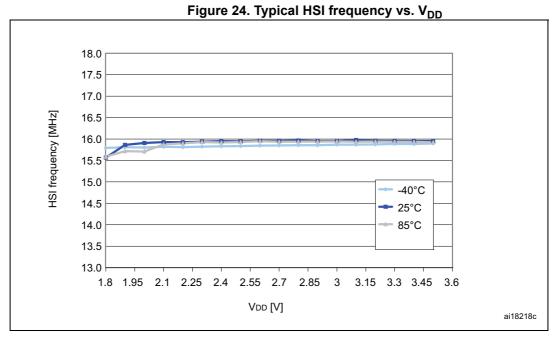

4. Wakeup time until start of interrupt vector fetch. The first word of interrupt routine is fetched 4 CPU cycles after t_{WU}

Figure 21. Typical I_{DD(Halt)} vs. V_{DD} (internal reference voltage OFF)

4. Guaranteed by design.

Low speed internal RC oscillator (LSI)

In the following table, data are based on characterization results.

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
f _{LSI}	Frequency		26	38	56	kHz
t _{su(LSI)}	LSI oscillator wakeup time				200 ⁽²⁾	μs
D _(LSI)	LSI oscillator frequency drift ⁽³⁾	0 °C ≤T _A ≤ 85 °C	-12		11	%

1. V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. This is a deviation for an individual part, once the initial frequency has been measured.

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on true open-drain pins	-5	+0	
I _{INJ}	Injected current on all 5 V tolerant (FT) pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

Table 37. I/O current injection susceptibility

9.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

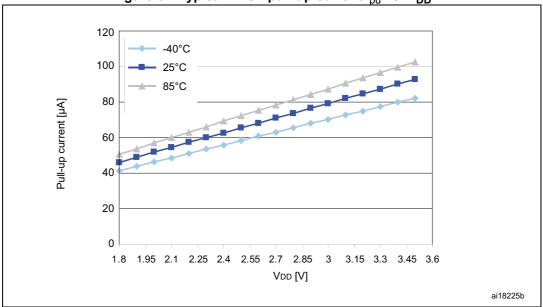


Figure 37. Typical NRST pull-up current I_{pu} vs. V_{DD}

The reset network shown in *Figure 38* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 42*. Otherwise the reset is not taken into account internally. For power consumption-sensitive applications, the capacity of the external reset capacitor can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF.

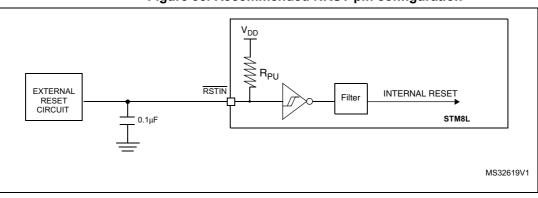


Figure 38. Recommended NRST pin configuration

9.3.10 Embedded reference voltage

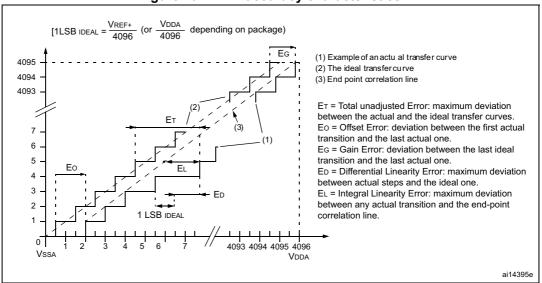
In the following table, data are based on characterization results unless otherwise specified.

Parameter	Conditions	Min.	Тур.	Max.	Unit		
Internal reference voltage consumption	-		1.4		μΑ		
ADC sampling time when reading the internal reference voltage	-		5	10	μs		
Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μΑ		
Reference voltage output	-	1.202 (3)	1.224	1.242 (3)	V		
Internal reference voltage low-power buffer consumption (used for comparators or output)	-	-	730	1200	nA		
Buffer output current	-	-		1	μA		
Reference voltage output load	-	-		50	pF		
Internal reference voltage startup time	-	-	2	3	ms		
Internal reference voltage buffer startup time once enabled	-	-		10	μs		
Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte	-	-		± 5	mV		
Stability of V _{REFINT} over temperature	-40 °C \leq T _A \leq 125 °C	-	20	50	ppm/°C		
Stability of V_{REFINT} over temperature	$0 \ ^{\circ}C \leq T_A \leq 50 \ ^{\circ}C$	-	-	20	ppm/°C		
Stability of V_{REFINT} after 1000 hours	-	-	-	1000	ppm		
	ParameterInternal reference voltage consumptionADC sampling time when reading the internal reference voltageInternal reference voltage buffer consumption (used for ADC)Reference voltage outputInternal reference voltage low-power buffer consumption (used for comparators or output)Buffer output currentReference voltage output loadInternal reference voltage output loadInternal reference voltage buffer startup time once enabledAccuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byteStability of V _{REFINT} over temperature	ParameterConditionsInternal reference voltage consumption-ADC sampling time when reading the internal reference voltage-Internal reference voltage buffer consumption (used for ADC)-Reference voltage output-Internal reference voltage low-power buffer consumption (used for comparators or output)-Buffer output current-Reference voltage output-Internal reference voltage low-power buffer consumption (used for 	ParameterConditionsMin.Internal reference voltage consumptionADC sampling time when reading the internal reference voltageInternal reference voltage buffer consumption (used for ADC)Reference voltage output-1.202 (3)Internal reference voltage low-power buffer consumption (used for comparators or output)Buffer output currentReference voltage output loadInternal reference voltage startup timeInternal reference voltage buffer startup time once enabledAccuracy of VREFINT stored in the VREFINT_Factory_CONV byte-40 °C ≤TA ≤ 125 °C-Stability of VREFINT over temperature0 °C ≤TA ≤ 50 °C-	ParameterConditionsMin.Typ.Internal reference voltage consumption1.4ADC sampling time when reading the internal reference voltage5Internal reference voltage buffer consumption (used for ADC)13.5Reference voltage output-1.202 (3)1.224Internal reference voltage low-power buffer consumption (used for comparators or output)730Buffer output current2Internal reference voltage output load2Internal reference voltage buffer startup time once enabled2Internal reference voltage buffer startup time once enabled2Stability of VREFINT over temperature-40 °C ≤TA ≤ 125 °C-20Stability of VREFINT over temperature0 °C ≤TA ≤ 50 °C-20	ParameterConditionsMin.Typ.Max.Internal reference voltage consumption1.4-ADC sampling time when reading the internal reference voltage510Internal reference voltage buffer consumption (used for ADC)13.525Reference voltage output-1.202 (3)1.2241.242 (3)Internal reference voltage low-power buffer consumption (used for comparators or output)7301200Buffer output current111Reference voltage output load11Internal reference voltage buffer startup time once enabled110Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte2050Stability of V _{REFINT} over temperature0 °C <t_a 50="" <="" td="" °c<="">-2050</t_a>		

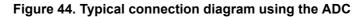
Table 46. Reference voltage characteristics

1. Guaranteed by design.

2. Defined when ADC output reaches its final value $\pm 1/2LSB$


3. Tested in production at V_{DD} = 3 V ±10 mV.

4. To guarantee less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation


5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

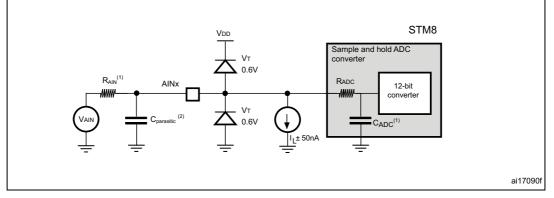
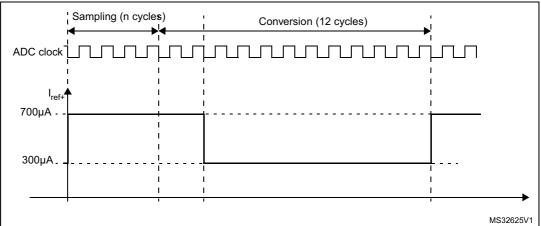


Figure 43. ADC1 accuracy characteristics



Refer to Table 53 for the values of $\mathsf{R}_{\mathsf{AIN}}$ and $\mathsf{C}_{\mathsf{ADC}}.$ 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Figure 45. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

		R _{AIN} max (kohm)						
-	Ts (μs)	Slow channels 2.4 V < V _{DDA} < 3.6 V 1.8 V < V _{DDA} < 2.4 V		Fast cl	hannels			
	. ,			2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V			
4	0.25	Not allowed	Not allowed	0.7	Not allowed			
9	0.5625	0.8	Not allowed	2.0	1.0			
16	1	2.0	0.8	4.0	3.0			
24	1.5	3.0	1.8	6.0	4.5			
48	3	6.8	4.0	15.0	10.0			
96	6	15.0	10.0	30.0	20.0			
192	12	32.0	25.0	50.0	40.0			
384	24	50.0	50.0	50.0	50.0			

Table 57. R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 46* or *Figure 47*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC61967-2 which specifies the board and the loading of each pin.

		Table	Monitored Max vs. If frequency band 16 MHz		
Symbol	Devenueter	Conditions	Monitored	Max vs.	Unit
Symbol	Parameter	Conditions	s frequency hand	16 MHz	
		$\begin{array}{c} V_{DD} = 3.0 \text{ v}, \\ T_{A} = +25 \text{ °C}, \\ LQFP80 \\ conforming to \\ IECC1067.2 \end{array}$	0.1 MHz to 30 MHz	10	dBμV
S _{EMI}	Peak level I		30 MHz to 130 MHz	4	
			130 MHz to 1 GHz	1	
			SAE EMI Level	1.5	-

Table	59.	EMI	data	(1)
-------	-----	-----	------	-----

1. Not tested in production.

Absolute maximum ratings (electrical sensitivity)

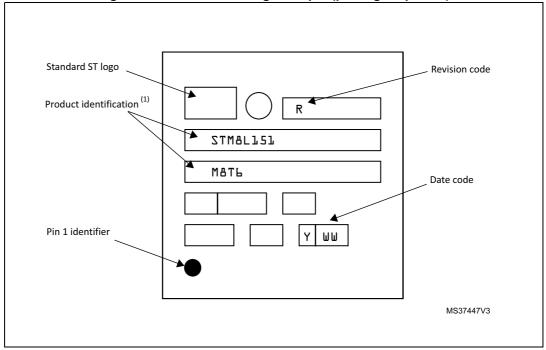
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

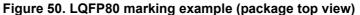
Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: human body model and charge device model. This test conforms to the JESD22-A114A/C101 or ANSI/ESD STM5.3.1 standards.

Symbol	Ratings	Conditions	Package	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A414	All	2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \degree C$, conforming to ANSI/ESD STM5.3.1	WLCSP32	TBD	TBD	V
		$T_A = +25 \degree C$, conforming to JESD22-C101	All other	II	500	

Table 60. ESI) absolute	maximum	ratings
---------------	------------	---------	---------


1. Data based on characterization results.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

