

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l151m8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	TS characteristics	 111
Table 48.	Comparator 1 characteristics	 111
Table 49.	Comparator 2 characteristics	 112
Table 50.	DAC characteristics	 113
Table 51.	DAC accuracy	 114
Table 52.	DAC output on PB4-PB5-PB6	 114
Table 53.	ADC1 characteristics	 115
Table 54.	ADC1 accuracy with VDDA = 3.3 V to 2.5 V.	 117
Table 55.	ADC1 accuracy with VDDA = 2.4 V to 3.6 V.	 117
Table 56.	ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V.	 117
Table 57.	R _{AIN} max for f _{ADC} = 16 MHz	 119
Table 58.	EMS data	 121
Table 59.	EMI data	 122
Table 60.	ESD absolute maximum ratings	 122
Table 61.	Electrical sensitivities	 123
Table 62.	Thermal characteristics.	 123
Table 63.	LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package	
	mechanical data	 125
Table 64.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat	
	package mechanical data	 128
Table 65.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
	mechanical data	 132
Table 66.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	 136
Table 67.	WLCSP32 - 32-ball, 1.913 x 3.329 mm, 0.4 mm pitch wafer level chip scale	
	package mechanical data	 139
Table 68.	WLCSP32 recommended PCB design rules	 140
Table 69.	Ordering information scheme	 141
Table 70.	Document revision history	 142

1 Introduction

This document describes the features, pinout, mechanical data and ordering information for: devices.

- High-density STM8L15xxx devices: STM8L151x8 and STM8L152x8 microcontrollers with a Flash memory density of 64 Kbyte.
- Medium+ density STM8L15xxx devices: STM8L151R6 and STM8L152R6 microcontrollers with Flash memory density of 32 Kbyte.

For further details on the STMicroelectronics ultra-low-power family please refer to *Section 2.3: Ultra-low-power continuum on page 12.*

For detailed information on device operation and registers, refer to the reference manual (RM0031).

For information on to the Flash program memory and data EEPROM, refer to the programming manual (PM0054).

For information on the debug module and SWIM (single wire interface module), refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).

For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).

2 Description

The high-density and medium+ density STM8L15xx6/8 ultra-low-power devices feature an enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of a CISC architecture with improved code density, a 24-bit linear addressing space and an optimized architecture for low-power operations.

The family includes an integrated debug module with a hardware interface (SWIM) which allows non-intrusive in-application debugging and ultrafast Flash programming.

All high-density and medium+ density STM8L15xx6/8 microcontrollers feature embedded data EEPROM and low-power low-voltage single-supply program Flash memory.

The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit ADC, two DACs, two comparators, a real-time clock, four 16-bit timers, one 8-bit timer, as well as standard communication interfaces such as two SPIs, an I²C interface, and three USARTs. A 8x40 or 4x44-segment LCD is available on the STM8L152x8 devices. The modular design of the peripheral set allows the same peripherals to be found in different ST microcontroller families including 32-bit families. This makes any transition to a different family very easy, and simplified even more by the use of a common set of development tools.

3.6 LCD (Liquid crystal display)

The LCD is only available on STM8L152x6/8 devices.

The liquid crystal display drives up to 8 common terminals and up to 40 segment terminals to drive up to 320 pixels. It can also be configured to drive up to 4 common and 44 segments (up to 176 pixels).

- Internal step-up converter to guarantee contrast control whatever V_{DD}.
- Static 1/2, 1/3, 1/4, 1/8 duty supported.
- Static 1/2, 1/3, 1/4 bias supported.
- Phase inversion to reduce power consumption and EMI.
- Up to 8 pixels which can programmed to blink.
- The LCD controller can operate in Halt mode.

Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The high-density and medium+ density STM8L15xx6/8 devices have the following main features:

- Up to 4 Kbyte of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 64 Kbyte of medium-density embedded Flash program memory
 - Up to 2 Kbyte of Data EEPROM
 - Option bytes.

The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.

The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC1, DAC2, I2C1, SPI1, SPI2, USART1, USART2, USART3, and the 5 Timers.

Address	Block	Register label	Register name	Reset status		
0x00 5148		RTC_CR1	Control register 1	0x00 ⁽¹⁾		
0x00 5149		RTC_CR2	Control register 2	0x00 ⁽¹⁾		
0x00 514A	БТО	RTC_CR3	Control register 3	0x00 ⁽¹⁾		
0x00 514B	RIC		Reserved area (1 byte)			
0x00 514C		RTC_ISR1	Initialization and status register 1	0x01		
0x00 514D		RTC_ISR2	0x00			
0x00 514E 0x00 514F			Reserved area (2 byte)			
0x00 5150		RTC_SPRERH	RTC_SPRERH Synchronous prescaler register high			
0x00 5151	RTC	RTC_SPRERL	RTC_SPRERL Synchronous prescaler register low			
0x00 5152		RTC_APRER	Asynchronous prescaler register	0x7F ⁽¹⁾		
0x00 5153			Reserved area (1 byte)			
0x00 5154	PTC	RTC_WUTRH	RTC_WUTRH Wakeup timer register high			
0x00 5155	RIC	RTC_WUTRL	Wakeup timer register low	0xFF ⁽¹⁾		
0x00 5156		Reserved area (1 byte)				
0x00 5157		RTC_SSRL	Subsecond register low	0x00		
0x00 5158		RTC_SSRH	Subsecond register high	0x00		
0x00 5159		RTC_WPR	Write protection register	0x00		
0x00 5158		RTC_SSRH	Subsecond register high	0x00		
0x00 5159		RTC_WPR	Write protection register	0x00		
0x00 515A	RTC	RTC_SHIFTRH	Shift register high	0x00		
0x00 515B		RTC_SHIFTRL	Shift register low	0x00		
0x00 515C		RTC_ALRMAR1	Alarm A register 1	0x00 ⁽¹⁾		
0x00 515D		RTC_ALRMAR2	Alarm A register 2	0x00 ⁽¹⁾		
0x00 515E		RTC_ALRMAR3	Alarm A register 3	0x00 ⁽¹⁾		
0x00 515F		RTC_ALRMAR4	Alarm A register 4	0x00 ⁽¹⁾		
0x00 5160 to 0x00 5163			Reserved area (4 byte)			
0x00 5164		RTC_ALRMASSRH	Alarm A subsecond register high	0x00 ⁽¹⁾		
0x00 5165	RTC	RTC_ALRMASSRL	Alarm A subsecond register low	0x00 ⁽¹⁾		
0x00 5166		RTC_ALRMASSMS KR	Alarm A masking register	0x00 ⁽¹⁾		
0x00 5167 to 0x00 5169			Reserved area (3 byte)			

Table 9. General hardware register map (continued)

Table 9. General hardware register map (continued)						
Address	Block	Register label	Register name	Reset status		
0x00 5310		TIM5_ARRL	TIM5 Auto-reload register low	0xFF		
0x00 5311		TIM5_CCR1H	TIM5 Capture/Compare register 1 high	0x00		
0x00 5312		TIM5_CCR1L	TIM5 Capture/Compare register 1 low	0x00		
0x00 5313	TIM5	TIM5_CCR2H	TIM5 Capture/Compare register 2 high	0x00		
0x00 5314		TIM5_CCR2L	TIM5 Capture/Compare register 2 low	0x00		
0x00 5315		TIM5_BKR	TIM5 break register	0x00		
0x00 5316		TIM5_OISR	TIM5 output idle state register	0x00		
0x00 5317 to			Reserved area			
0x00 533F				0.00		
0x00 5340		ADC1_CR1	ADC1 configuration register 1	0x00		
0x00 5341		ADC1_CR2	ADC1 configuration register 2	0x00		
0x00 5342		ADC1_CR3	ADC1 configuration register 3	0x1F		
0x00 5343		ADC1_SR	ADC1 status register	0x00		
0x00 5344		ADC1_DRH	ADC1 data register high	0x00		
0x00 5345		ADC1_DRL	ADC1 data register low	0x00		
0x00 5346		ADC1_HTRH	ADC1 high threshold register high	0x0F		
0x00 5347		ADC1_HTRL	ADC1 high threshold register low	0xFF		
0x00 5348	ADC1	ADC1_LTRH	ADC1 low threshold register high	0x00		
0x00 5349		ADC1_LTRL ADC1 low threshold register low		0x00		
0x00 534A		ADC1_SQR1	ADC1 channel sequence 1 register	0x00		
0x00 534B		ADC1_SQR2	ADC1 channel sequence 2 register	0x00		
0x00 534C		ADC1_SQR3	ADC1 channel sequence 3 register	0x00		
0x00 534D		ADC1_SQR4	ADC1 channel sequence 4 register	0x00		
0x00 534E		ADC1_TRIGR1	ADC1 trigger disable 1	0x00		
0x00 534F		ADC1_TRIGR2	ADC1 trigger disable 2	0x00		
0x00 5350		ADC1_TRIGR3	ADC1 trigger disable 3	0x00		
0x00 5351		ADC1_TRIGR4	ADC1 trigger disable 4	0x00		
0x00 5352 to 0x00 537F			Reserved area (46 byte)			
0x00 5380		DAC_CH1CR1	DAC channel 1 control register 1	0x00		
0x00 5381]	DAC_CH1CR2	DAC channel 1 control register 2	0x00		
0x00 5382		DAC_CH2CR1	DAC channel 2 control register 1	0x00		
0x00 5383	DAC	DAC_CH2CR2	DAC channel 2 control register 2	0x00		
0x00 5384	1	DAC_SWTRIG	DAC software trigger register	0x00		
0x00 5385		DAC_SR	DAC status register	0x00		

			register map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 5400		LCD_CR1	LCD control register 1	0x00
0x00 5401	1	LCD_CR2	LCD control register 2	0x00
0x00 5402	-	LCD_CR3	LCD control register 3	0x00
0x00 5403	1	LCD_FRQ	LCD frequency selection register	0x00
0x00 5404		LCD_PM0	LCD Port mask register 0	0x00
0x00 5405		LCD_PM1	LCD Port mask register 1	0x00
0x00 5406	1	LCD_PM2	LCD Port mask register 2	0x00
0x00 5407		LCD_PM3	LCD Port mask register 3	0x00
0x00 5408		LCD_PM4	LCD Port mask register 4	0x00
0x00 5409		LCD_PM5	LCD Port mask register 5	0x00
0x00 540A to 0x00 540B			Reserved area (2 byte)	
0x00 540C		LCD_RAM0	LCD display memory 0	0x00
0x00 540D	1	LCD_RAM1	LCD display memory 1	0x00
0x00 540E		LCD_RAM2	LCD display memory 2	0x00
0x00 540F		LCD_RAM3	LCD display memory 3	0x00
0x00 5410		LCD_RAM4	LCD display memory 4	0x00
0x00 5411		LCD_RAM5	LCD display memory 5	0x00
0x00 5412		LCD_RAM6	LCD display memory 6	0x00
0x00 5413		LCD_RAM7	LCD display memory 7	0x00
0x00 5414		LCD_RAM8	LCD display memory 8	0x00
0x00 5415		LCD_RAM9	LCD display memory 9	0x00
0x00 5416	LCD	LCD_RAM10	LCD display memory 10	0x00
0x00 5417		LCD_RAM11	LCD display memory 11	0x00
0x00 5418		LCD_RAM12	LCD display memory 12	0x00
0x00 5419		LCD_RAM13	LCD display memory 13	0x00
0x00 541A		LCD_RAM14	LCD display memory 14	0x00
0x00 541B		LCD_RAM15	LCD display memory 15	0x00
0x00 541C		LCD_RAM16	LCD display memory 16	0x00
0x00 541D		LCD_RAM17	LCD display memory 17	0x00
0x00 541E		LCD_RAM18	LCD display memory 18	0x00
0x00 541F]	LCD_RAM19	LCD display memory 19	0x00
0x00 5420		LCD_RAM20	LCD display memory 20	0x00
0x00 5421	LCD	LCD_RAM21	LCD display memory 21	0x00

Table 9. General hardware register map (continued)

DocID17943 Rev 10

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25 \degree C$, $V_{DD} = 3 \lor V$. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

9.3 Operating conditions

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

9.3.1 General operating conditions

Symbol	Parameter	C	onditions	Min.	Max.	Unit
fsysclk ⁽¹⁾	System clock frequency	1.65 V ≤V _{DD} < 3.6 V		0	16	MHz
V _{DD}	Standard operating	BOR detector di (D suffix version	sabled)	1.65	3.6	V
	voltage	BOR detector e	nabled	1.8 ⁽²⁾		
	Analog operating	ADC and DAC not used	Must be at the same	1.65	3.6	V
♥ DDA	voltage	ADC or DAC used	potential as V_{DD}	1.8	3.6	V
		l	_QFP80	-	526	
P _D ⁽³⁾	Power dissipation at T _A = 85 °C for suffix 6 devices	LQFP64		-	416	mW
		UFQFPN48		-	625	
		LQFP48		-	307	
		WLCSP32		-	317	
	Power dissipation at T_A = 125 °C for suffix 3 devices and at T_A = 105 °C for suffix 7	LQFP80		-	131	
		LQFP64		-	104	
		UFQFPN48		-	156	
	devices	LQFP48		-	77	
		1.65 V ≤V _{DD} < 3.6 V (6 suffix version)		-40	85	
T _A	Temperature range	1.65 V ≤V _{DD} < 3	3.6 V (7 suffix version)	-40	105	
		1.65 V ≤V _{DD} < 3.6 V (3 suffix version)		-40	125	
TJ		-40 °C ≤T _A < 85 °C (6 suffix version)		-40	105	°C
	Junction temperature range	-40 °C (7 su	≤ T _A < 105 °C ffix version)	-40	110 ⁽⁴⁾	
		-40 °C (3 su	≤ T _A < 125 °C ffix version)	-40	130 ⁽⁴⁾	

Table 18.	General	operating	conditions
-----------	---------	-----------	------------

1. $f_{SYSCLK} = f_{CPU}$

2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled by option byte

3. To calculate $P_{Dmax}(T_A)$, use the formula $P_{Dmax}=(T_{Jmax} - T_A)/\Theta_{JA}$ with T_{Jmax} in this table and Θ_{JA} in "Thermal characteristics" table.

4. T_{Jmax} is given by the test limit. Above this value the product behavior is not guaranteed.

Figure 13. Power supply thresholds

Figure 16. Typical I_{DD(Wait)} from RAM vs. V_{DD} (HSI clock source), f_{CPU} = 16 MHz

1. Typical current consumption measured with code executed from RAM.

Figure 17. Typical $I_{DD(Wait)}$ from Flash (HSI clock source), f_{CPU} = 16 MHz

1. Typical current consumption measured with code executed from Flash.

Symbol	Parameter		ns ⁽¹⁾	Тур.	Max.	Unit	
				T _A = -40 °C to 25 °C	0.54	1.35	
				T _A = 55 °C	0.61	1.44	
			LCD OFF ⁽⁷⁾	T _A = 85 °C	0.91	2.27	
				T _A = 105 °C	2.24	5.42	
				T _A = 125 °C	5.03	12	
				$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.91	2.13	
			LCD ON	T _A = 55 °C	1.05	2.55	
			external	T _A = 85 °C	1.42	3.65	
		I SE external	V _{LCD}) ⁽³⁾	T _A = 105 °C	2.63	6.35	
	Supply current in	clock		T _A = 125 °C	5.24	13.15	- μΑ
'DD(AH)	Active-halt mode	(32.768 kHz) (6)	LCD ON (1/4 duty/ external V _{LCD}) ⁽⁴⁾	$T_A = -40 \text{ °C to } 25 \text{ °C}$	1.6	2.84	
				T _A = 55 °C	1.76	4.37	
				T _A = 85 °C	2.14	5.23	
				T _A = 105 °C	3.37	8.5	
				T _A = 125 °C	5.92	15.19	
			LCD ON (1/4 duty/ internal V _{LCD}) ⁽⁵⁾	T_A = -40 °C to 25 °C	3.89	9.15	
				T _A = 55 °C	3.89	9.15	
				T _A = 85 °C	4.25	10.49	
				T _A = 105 °C	5.42	16.31	
				T _A = 125 °C	6.58	16.6	
I _{DD(WUFAH)}	Supply current during wakeup time from Active-halt mode (using HSI)	-	-	-	2.4	-	mA
t _{wu_HSI(AH)} ⁽⁸⁾⁽⁹⁾	Wakeup time from Active-halt mode to Run mode (using HSI)	-	-	-	4.7	7	μs
t _{WU_LSI(AH)} ⁽⁸⁾⁽⁹⁾	Wakeup time from Active-halt mode to Run mode (using LSI)	-	-	-	150	-	μs

Table 24. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V (continued)

1. No floating I/O, unless otherwise specified.

2. RTC enabled. Clock source = LSI

- 3. RTC enabled, LCD enabled with external V_{LCD} = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
- 4. RTC enabled, LCD enabled with external V_{LCD} , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
- LCD enabled with internal LCD booster V_{LCD} = 3 V, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
- Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the LSE consumption (I_{DD LSE}) must be added. Refer to Table 32

DocID17943 Rev 10

Figure 28. Typical pull-up resistance R_{PU} vs. V_{DD} with $V_{IN}=V_{SS}$

Output driving current

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

I²C - Inter IC control interface

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{SYSCLK}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard	mode l ² C	Fast mo	Unit	
Symbol	Farameter	Min. ⁽²⁾	Max. ⁽²⁾	Min. ⁽²⁾	Max. ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	-	0	900	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 44. I2C characteristics

1. f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I^2C protocol requirement, not tested in production.

Note: For speeds around 200 kHz, the achieved speed can have a \pm 5% tolerance. For other speed ranges, the achieved speed can have a \pm 2% tolerance. The above variations depend on the accuracy of the external components used.

9.3.10 Embedded reference voltage

In the following table, data are based on characterization results unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4		μΑ
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽¹⁾	Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μΑ
V _{REFINT out}	Reference voltage output	-	1.202 (3)	1.224	1.242 (3)	V
I _{LPBUF} ⁽¹⁾	Internal reference voltage low-power buffer consumption (used for comparators or output)	-	-	730	1200	nA
I _{REFOUT} ⁽¹⁾⁽⁴⁾	Buffer output current	-	-		1	μA
C _{REFOUT}	Reference voltage output load	-	-		50	pF
t _{VREFINT} ⁽¹⁾	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} ⁽¹⁾⁽²⁾	Internal reference voltage buffer startup time once enabled	-	-		10	μs
ACC _{VREFINT} ⁽⁵⁾	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte	-	-		± 5	mV
STAR	Stability of V_{REFINT} over temperature	-40 °C \leq T _A \leq 125 °C	-	20	50	ppm/°C
VREFINT	Stability of V _{REFINT} over temperature	$0 \degree C \le T_A \le 50 \degree C$	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	1000	ppm

Table 46. Reference voltage characteristics	cs
---	----

1. Guaranteed by design.

2. Defined when ADC output reaches its final value $\pm 1/2LSB$

3. Tested in production at V_{DD} = 3 V ±10 mV.

4. To guarantee less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation

5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
t _S	Sampling time	V _{AIN} PF0/1/2/3 fast channels V _{DDA} < 2.4 V	0.43 ⁽³⁾⁽⁴⁾	-	-	μs	
		V _{AIN} PF0/1/2/3 fast channels 2.4 V ≤V _{DDA} ≤ 3.6 V	0.22 ⁽³⁾⁽⁴⁾	-	-		
		V _{AIN} on slow channels V _{DDA} < 2.4 V	0.86 ⁽³⁾⁽⁴⁾	-	-		
		V_{AIN} on slow channels 2.4 V \leq V_{DDA} \leq 3.6 V	0.41 ⁽³⁾⁽⁴⁾	-	-		
+	12 hit conversion time	-		12 + t _S		1/f _{ADC}	
CONV		16 MHz		1 ⁽³⁾		μs	
t _{WKUP}	Wakeup time from OFF state	-	-	-	3	μs	
t _{IDLE} ⁽⁵⁾	Time before a new conversion	-	-	-	∞	s	
t _{VREFINT}	Internal reference voltage startup time	-	-	-	refer to Table 46	ms	

Table 53. ADC1 characteristics (continued)

The current consumption through V_{REF} is composed of two parameters:

 one constant (max 300 μA)
 one variable (max 400 μA), only during sampling time + 2 first conversion pulses.
 So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

2. V_{REF-} must be tied to ground.

3. Minimum sampling and conversion time is reached for maximum $R_{AIN}\text{=}$ 0.5 k $\Omega.$

4. Value obtained for continuous conversion on fast channel.

5. The time between 2 conversions, or between ADC ON and the first conversion must be lower than $t_{\text{IDLE.}}$

Figure 45. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

	Τs (µs)	R _{AIN} max (kohm)			
Ts (cycles)		Slow channels		Fast channels	
		2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V
4	0.25	Not allowed	Not allowed	0.7	Not allowed
9	0.5625	0.8	Not allowed	2.0	1.0
16	1	2.0	0.8	4.0	3.0
24	1.5	3.0	1.8	6.0	4.5
48	3	6.8	4.0	15.0	10.0
96	6	15.0	10.0	30.0	20.0
192	12	32.0	25.0	50.0	40.0
384	24	50.0	50.0	50.0	50.0

Table 57. R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

1. Guaranteed by design.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 46* or *Figure 47*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

9.3.15 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditio	ons	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{CPU} = 16 MHz, conforms to IEC 61000		2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f_{CPU} = 16 MHz, conforms to IEC 61000	Using HSI	4A
			Using HSE	2B

Table 58. EMS data

Static latch-up

• LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table	61	Electrical	sensitivities
Table	U I.	LICCUICAI	30113111411103

Symbol	Parameter	Class
LU	Static latch-up class	II

9.4 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 70.*

The maximum chip-junction temperature, T_{Jmax}, in degree Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	65	
	Thermal resistance junction-ambient UFQFPN 48 - 7 x 7mm	32	
Θ_{JA}	Thermal resistance junction-ambient WLCSP32	63	°C/W
	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	48	
	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 56. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

	0
Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm typical (depending on the solder mask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Table 68. WLCSP32 recommended PCB design rules

