

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFBGA, WLCSP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152k8y6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Device overview

Table 2. High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts

Fea	atures	STM8L15xC8	STM8L15xK8	STM8L15xR8	STM8L15xM8	STM8L15xR6
Flash (Kbyte)		64	64	64	64	32
Data EEPROM ((Kbyte)	2	2	2 2		1
RAM (Kbyte)		4	4 4		4	2
LCD		8x24 or 4x28 ⁽¹⁾	4x15 ⁽¹⁾	8x36 or 4x40 ⁽¹⁾	8x40 or 4x44 ⁽¹⁾	8x36 or 4x40 ⁽¹⁾
	Basic	1 (8-bit)	1 (8-bit)	1 (8-bit)	1 (8-bit)	1 (8-bit)
Timers	General purpose	3 (16-bit)	3 (16-bit)	3 (16-bit)	3 (16-bit)	3 (16-bit)
	Advanced control	1 (16-bit)	1 (16-bit)	1 (16-bit)	1 (16-bit)	1 (16-bit)
	SPI	2	1	2	2	2
Communication interfaces	I2C	1	1	1	1	1
interfaces	USART	3	2	3	3	3
GPIOs		41 ⁽²⁾	28 ⁽²⁾	54 ⁽²⁾ 68 ⁽²⁾		54 ⁽²⁾
12-bit synchroniz (number of chan		1 (25)	1 (18)	1 (28)	1 (28)	1 (28)
12-Bit DAC		2	1	2	2	2
Number of chan	nels	2	1	2	2	2
Comparators (C	OMP1/COMP2)	2	2	2	2	2
Others					ndent watchdog and 32-kHz ext	
CPU frequency				16 MHz		
Operating voltag	je	1.8	,	to 1.65 V at pov to 3.6 V without	ver-down) with B BOR	OR
Operating tempe	erature	-	–40 to +85 °C /	–40 to +105 °C	/ -40 to +125 °C	5
Packages		UFQFPN48 LQFP48	WLCSP32	LQFP64	LQFP80	LQFP64

1. STM8L152x6/8 versions only.

2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high-density and medium+ density STM8L15xx6/8x devices feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

3.3.3 Voltage regulator

The high-density and medium+ density STM8L15xx6/8 devices embed an internal voltage regulator for generating the 1.8 V power supply for the core and peripherals.

This regulator has two different modes:

- Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event (WFE) modes.
- Low-power voltage regulator mode (LPVR) for Halt, Active-halt, Low-power run and Low-power wait modes.

When entering Halt or Active-halt modes, the system automatically switches from the MVR to the LPVR in order to reduce current consumption.

3.4 Clock management

The clock controller distributes the system clock (SYSCLK) coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

Features

- Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock sources: 4 different clock sources can be used to drive the system clock:
 - 1-16 MHz High speed external crystal (HSE)
 - 16 MHz High speed internal RC oscillator (HSI)
 - 32.768 Low speed external crystal (LSE) available on STM8L151xx and STM8L152xx devices
 - 38 kHz Low speed internal RC (LSI)
- **RTC and LCD clock sources:** the above four sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- **Clock security system (CSS):** This feature can be enabled by software. If a HSE clock failure occurs, the system clock is automatically switched to HSI.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

3.6 LCD (Liquid crystal display)

The LCD is only available on STM8L152x6/8 devices.

The liquid crystal display drives up to 8 common terminals and up to 40 segment terminals to drive up to 320 pixels. It can also be configured to drive up to 4 common and 44 segments (up to 176 pixels).

- Internal step-up converter to guarantee contrast control whatever V_{DD}.
- Static 1/2, 1/3, 1/4, 1/8 duty supported.
- Static 1/2, 1/3, 1/4 bias supported.
- Phase inversion to reduce power consumption and EMI.
- Up to 8 pixels which can programmed to blink.
- The LCD controller can operate in Halt mode.

Note: Unnecessary segments and common pins can be used as general I/O pins.

3.7 Memories

The high-density and medium+ density STM8L15xx6/8 devices have the following main features:

- Up to 4 Kbyte of RAM
- The non-volatile memory is divided into three arrays:
 - Up to 64 Kbyte of medium-density embedded Flash program memory
 - Up to 2 Kbyte of Data EEPROM
 - Option bytes.

The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while programming/erasing the data matrix.

The option byte protects part of the Flash program memory from write and readout piracy.

3.8 DMA

A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and peripherals-from/to-memory transfer capability. The 4 channels are shared between the following IPs with DMA capability: ADC1, DAC1, DAC2, I2C1, SPI1, SPI2, USART1, USART2, USART3, and the 5 Timers.

Pi	n nı			5. High-density and med				npu			utpu			
LQFP80	LQFP64	UFQFPN48 and LQFP48	WLCSP32	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function
11	7	7	_(4)	PA6/ADC1_TRIG/ LCD_COM2 ⁽³⁾ /ADC1_IN0/ <i>[COMP1_INP]</i>	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port A6	ADC1 - trigger / LCD_COM2 / ADC1 input 0/ [Comparator 1 positive input]
12	8	8	_(4)	PA7/LCD_SEG0 ⁽³⁾ / TIM5_CH1	I/O	FT ⁽⁶⁾	x	х	х	HS	х	х	Port A7	LCD segment 0 / TIM5 channel 1
39	31	24	E3	PB0 ^{(5)/} TIM2_CH1/ LCD_SEG10 ⁽³⁾ /ADC1_IN18 / [COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	x	Port B0	Timer 2 - channel 1 /LCD segment 10/ ADC1_IN18/ [Comparator 1 positive input]
40	32	25	G1	PB1/TIM3_CH1/ LCD_SEG11 ⁽³⁾ /ADC1_IN17 / [COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port B1	Timer 3 - channel 1 / LCD segment 11 / ADC1_IN17/ [Comparator 1 positive input]
41	33	26	F2	PB2/ TIM2_CH2/LCD_SEG12 ^{(3)/} ADC1_IN16/ <i>[COMP1_INP]</i>	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port B2	Timer 2 - channel 2 / LCD segment 12 / ADC1_IN16/ [Comparator 1 positive input]
42	34	27	E2	PB3/TIM2_ETR/ LCD_SEG13 ⁽³⁾ /ADC1_IN15 /[COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port B3	Timer 2 - trigger / LCD segment 13 /ADC1_IN15/ [Comparator 1 positive input]
43	35	-		PB4 ⁽⁵⁾ /SPI1_NSS/ LCD_SEG14 ⁽³⁾ /ADC1_IN14 /[COMP1_INP]	I/O	FT ⁽⁶⁾	x	x	x	HS	x	х	Port B4	SPI1 master/slave select / LCD segment 14 / ADC1_IN14/ [Comparator 1 positive input]
-	-	28	D2	PB4 ⁽⁵⁾ /SPI1_NSS/ LCD_SEG14 ⁽³⁾ /ADC1_IN14 /DAC_OUT2/ <i>[COMP1_INP]</i>	I/O	FT ⁽⁶⁾	x	x	x	HS	x	x	Port B4	SPI1 master/slave select / LCD segment 14 / ADC1_IN14 / DAC channel 2 output/ [Comparator 1 positive input]

Address	Block	Register label	Register name	Reset status
0x00 5262		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5263		TIM2_CCR2H	TIM2 capture/compare register 2 high	0x00
0x00 5264	TIM2	TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5265		TIM2_BKR	TIM2 break register	0x00
0x00 5266		TIM2_OISR	TIM2 output idle state register	0x00
0x00 5267 to 0x00 527F			Reserved area (25 byte)	
0x00 5280		TIM3_CR1	TIM3 control register 1	0x00
0x00 5281		TIM3_CR2	TIM3 control register 2	0x00
0x00 5282		TIM3_SMCR	TIM3 Slave mode control register	0x00
0x00 5283		TIM3_ETR	TIM3 external trigger register	0x00
0x00 5284		TIM3_DER	TIM3 DMA1 request enable register	0x00
0x00 5285		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5286		TIM3_SR1	TIM3 status register 1	0x00
0x00 5287		TIM3_SR2	TIM3 status register 2	0x00
0x00 5288		TIM3_EGR	TIM3 event generation register	0x00
0x00 5289		TIM3_CCMR1	TIM3 Capture/Compare mode register 1	0x00
0x00 528A		TIM3_CCMR2	TIM3 Capture/Compare mode register 2	0x00
0x00 528B	TIM3	TIM3_CCER1	TIM3 Capture/Compare enable register 1	0x00
0x00 528C		TIM3_CNTRH	TIM3 counter high	0x00
0x00 528D		TIM3_CNTRL	TIM3 counter low	0x00
0x00 528E		TIM3_PSCR	TIM3 prescaler register	0x00
0x00 528F		TIM3_ARRH	TIM3 Auto-reload register high	0xFF
0x00 5290		TIM3_ARRL	TIM3 Auto-reload register low	0xFF
0x00 5291		TIM3_CCR1H	TIM3 Capture/Compare register 1 high	0x00
0x00 5292		TIM3_CCR1L	TIM3 Capture/Compare register 1 low	0x00
0x00 5293		TIM3_CCR2H	TIM3 Capture/Compare register 2 high	0x00
0x00 5294		TIM3_CCR2L	TIM3 Capture/Compare register 2 low	0x00
0x00 5295		TIM3_BKR	TIM3 break register	0x00
0x00 5296		TIM3_OISR	TIM3 output idle state register	0x00
0x00 5297 to 0x00 52AF			Reserved area (25 byte)	

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5386 to 0x00 5387			Reserved area (2 byte)	
0x00 5388	DAC	DAC_CH1RDHRH	DAC channel 1 right aligned data holding register high	0x00
0x00 5389		DAC_CH1RDHRL	DAC channel 1 right aligned data holding register low	0x00
0x00 538A to 0x00 538B			Reserved area (2 byte)	
0x00 538C	DAC	DAC_CH1LDHRH	DAC channel 1 left aligned data holding register high	0x00
0x00 538D	DAC	DAC_CH1LDHRL	DAC channel 1 left aligned data holding register low	0x00
0x00 538E to 0x00 538F			Reserved area (2 byte)	
0x00 5390	DAC	DAC_CH1DHR8	DAC channel 1 8-bit data holding register	0x00
0x00 5391 to 0x00 5393			Reserved area (3 byte)	
0x00 5394	– DAC	DAC_CH2RDHRH	DAC channel 2 right aligned data holding register high	0x00
0x00 5395	DAC	DAC_CH2RDHRL	DAC channel 2 right aligned data holding register low	0x00
0x00 5396 to 0x00 5397			Reserved area (2 byte)	
0x00 5398	DAC	DAC_CH2LDHRH	DAC channel 2 left aligned data holding register high	0x00
0x00 5399	DAC	DAC_CH2LDHRL	DAC channel 2 left aligned data holding register low	0x00
0x00 539A to 0x00 539B			Reserved area (2 byte)	
0x00 539C	DAC	DAC_CH2DHR8	DAC channel 2 8-bit data holding register	0x00
0x00 539D to 0x00 539F			Reserved area (3 byte)	
0x00 53A0	DAC	DAC_DCH1RDHR H	DAC channel 1 right aligned data holding register high	0x00
0x00 53A1		DAC_DCH1RDHRL	DAC channel 1 right aligned data holding register low	0x00
0x00 53A2 to 0x00 53AB			Reserved area (3 byte)	•

 Table 9. General hardware register map (continued)

6 Interrupt vector mapping

	Table 11. Interrupt mapping									
IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address			
-	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000			
-	TRAP	Software interrupt	-	-	-	-	0x00 8004			
0	TLI ⁽²⁾	External Top level Interrupt	-	-	-	-	0x00 8008			
1	FLASH	EOP/WR_PG_DIS	-	-	Yes	Yes ⁽³⁾	0x00 800C			
2	DMA1 0/1	DMA1 channels 0/1	-	-	Yes	Yes ⁽³⁾	0x00 8010			
3	DMA1 2/3	DMA1 channels 2/3	-	-	Yes	Yes ⁽³⁾	0x00 8014			
4	RTC/LSE_ CSS	RTC alarm interrupt/LSE CSS interrupt	Yes	Yes	Yes	Yes	0x00 8018			
5	EXTI E/F/PVD ⁽⁴⁾	PortE/F interrupt/PVD interrupt	Yes	Yes	Yes	Yes ⁽³⁾	0x00 801C			
6	EXTIB/G	External interrupt port B/G	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8020			
7	EXTID/H	External interrupt port D/H	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8024			
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8028			
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes ⁽³⁾	0x00 802C			
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8030			
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8034			
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8038			
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes ⁽³⁾	0x00 803C			
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8040			
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8044			
16	LCD	LCD interrupt	-	-	Yes	Yes	0x00 8048			
17	CLK/ TIM1/ DAC	System clock switch/CSS interrupt/TIM1 break/DAC	-	-	Yes	Yes	0x00 804C			
18	COMP1/ COMP2 ADC1	Comparator 1 and 2 interrupt/ADC1	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8050			
19	TIM2/ USART2	TIM2 update /overflow/trigger/break/ USART2 transmission complete/transmit data register empty interrupt	-	-	Yes	Yes ⁽³⁾	0x00 8054			

Table 11. Interrupt mapping

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address		
20	TIM2/ USART2	Capture/Compare/USART 2 interrupt	-	-	Yes	Yes ⁽³⁾	0x00 8058		
21	TIM3/ USART3	TIM3 Update /Overflow/Trigger/Break/ USART3 transmission complete/transmit data register empty interrupt	-	-	Yes	Yes ⁽³⁾	0x00 805C		
22	TIM3/ USART3	TIM3 Capture/Compare/ USART3 Receive register data full/overrun/idle line detected/parity error/ interrupt	-	-	Yes	Yes ⁽³⁾	0x00 8060		
23	TIM1	Update /overflow/trigger/ COM	-	-	-	Yes ⁽³⁾	0x00 8064		
24	TIM1	Capture/Compare	-	-	-	Yes ⁽³⁾	0x00 8068		
25	TIM4	Update/overflow/trigger	-	-	Yes	Yes ⁽³⁾	0x00 806C		
26	SPI1	End of Transfer	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8070		
27	USART 1/ TIM5	USART1 transmission complete/transmit data register empty/ TIM5 update/overflow/ trigger/break	-	-	Yes	Yes ⁽³⁾	0x00 8074		
28	USART 1/ TIM5	USART1 Receive register data full/overrun/idle line detected/parity error/ TIM5 capture/compare	-	-	Yes	Yes ⁽³⁾	0x00 8078		
29	I ² C1/SPI2	I ² C1 interrupt ⁽⁵⁾ / SPI2	Yes	Yes	Yes	Yes ⁽³⁾	0x00 807C		

Table 11. Interrupt mapping (continued)

1. The Low-power wait mode is entered when executing a WFE instruction in Low-power run mode.

2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.

3. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.

4. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port E and Port F interrupt (see *External interrupt port select register (EXTI_CONF)* in the RM0031).

5. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

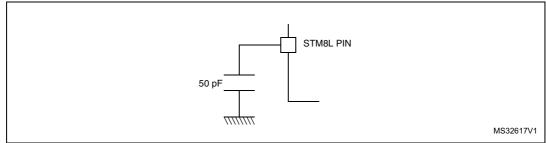
9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25 \degree C$, $V_{DD} = 3 \lor V$. They are given only as design guidelines and are not tested.

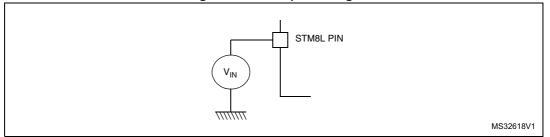

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.



9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

9.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Device mission profile(application conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit
V _{DD} - V _{SS}	External supply voltage (including V _{DDA}) ⁽¹⁾	- 0.3	4.0	
	Input voltage on true open-drain pins (PC0 and PC1)	V _{SS} - 0.3	V _{DD} + 4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant (FT) pins	V _{SS} - 0.3	V _{DD} +4.0	V
	Input voltage on any other pin	V _{ss} - 0.3	4.0	
V _{ESD}	Electrostatic discharge voltage	see Absolut ratings (electri on pag		

Table 15. Voltage characteristics

1. All power (V_{DD1}, V_{DD2}, V_{DD3}, V_{DD4}, V_{DD4}) and ground (V_{SS1}, V_{SS2}, V_{SS3}, V_{SS4}, V_{SSA}) pins must always be connected to the external power supply.

2. V_{IN} maximum must always be respected. Refer to Table 16. for maximum allowed injected current values.

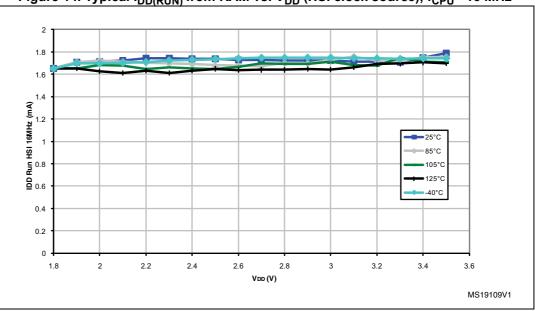


Figure 14. Typical I_{DD(RUN)} from RAM vs. V_{DD} (HSI clock source), f_{CPU} =16 MHz

1. Typical current consumption measured with code executed from RAM.

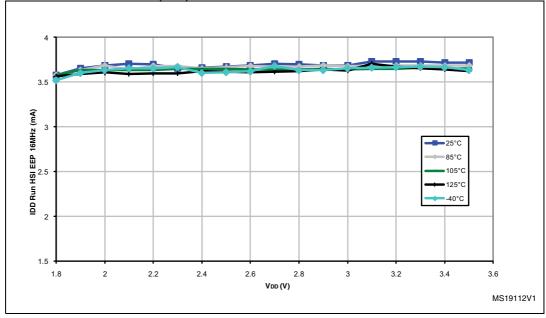


Figure 15. Typical $I_{DD(RUN)}$ from Flash vs. V_{DD} (HSI clock source), f_{CPU} = 16 MHz

1. Typical current consumption measured with code executed from Flash.

In the following table, data are based on characterization results, unless otherwise specified.

				-			N	lax		
Symbol	Parameter	Conditions ⁽¹⁾		Тур	55°C	85 °C (2)	105 °C (3)	125 °C (4)	Unit	
				f _{CPU} = 125 kHz	0.21	0.29	0.33	0.36	0.43	
				f _{CPU} = 1 MHz	0.25	0.33	0.37	0.4	0.47	
			HSI	f _{CPU} = 4 MHz	0.32	0.4	0.44	0.47	0.54	
		CPU not		f _{CPU} = 8 MHz	0.42	0.496	0.54	0.56	0.64	
	Supply	clocked, all peripherals OFF, code executed from		f _{CPU} = 16 MHz	0.66	0.736	0.78 ⁽⁶⁾	0.8 ⁽⁶⁾	0.88 ⁽⁶⁾	mA
			HSE external clock (f _{CPU} =f _{HSE}) (7)	f _{CPU} = 125 kHz	0.19	0.21	0.3	0.35	0.41	
				f _{CPU} = 1 MHz	0.2	0.23	0.32	0.36	0.43	
I _{DD(Wait)}	current in Wait mode	RAM with Flash in		f _{CPU} = 4 MHz	0.27	0.3	0.39	0.43	0.5	
		I _{DDQ} mode, ⁽⁵⁾		f _{CPU} = 8 MHz	0.37	0.4	0.49	0.53	0.6	
		V _{DD} from 1.65 V to		f _{CPU} = 16 MHz	0.63	0.66	0.75 ⁽⁶⁾	0.79 ⁽⁶⁾	0.86 ⁽⁶⁾	
		3.6 V	LSI	f _{CPU} = f _{LSI}	0.028	0.037	0.039	0.044	0.054	
		LSE ⁽⁸⁾ external clock (32.768 kHz)	external clock (32.768	f _{CPU} = f _{LSE}	0.027	0.035	0.038	0.042	0.051	

Table 21. Total current consumption in Wait mode

9.3.6 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error, out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation, LCD levels, etc.).

The test results are given in the following table.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on true open-drain pins	-5	+0	
I _{INJ}	Injected current on all 5 V tolerant (FT) pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

Table 37. I/O current injection susceptibility

9.3.7 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

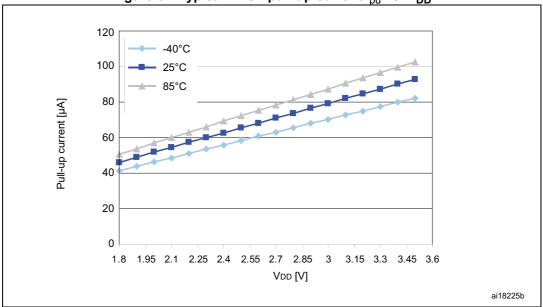


Figure 37. Typical NRST pull-up current I_{pu} vs. V_{DD}

The reset network shown in *Figure 38* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 42*. Otherwise the reset is not taken into account internally. For power consumption-sensitive applications, the capacity of the external reset capacitor can be reduced to limit the charge/discharge current. If the NRST signal is used to reset the external circuitry, the user must pay attention to the charge/discharge time of the external capacitor to meet the reset timing conditions of the external devices. The minimum recommended capacity is 10 nF.

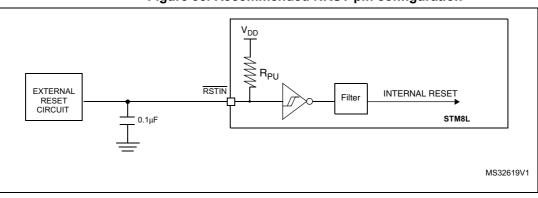


Figure 38. Recommended NRST pin configuration

I²C - Inter IC control interface

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{SYSCLK}},$ and T_{A} unless otherwise specified.

The STM8L I²C interface (I2C1) meets the requirements of the Standard I²C communication protocol described in the following table with the restriction mentioned below:

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard	mode I ² C	Fast mo	de l ² C ⁽¹⁾	Unit		
Symbol	Falameter	Min. ⁽²⁾	Max. ⁽²⁾	Min. ⁽²⁾	Max. ⁽²⁾	Unit		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-			
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs		
t _{su(SDA)}	SDA setup time	250	-	100	-			
t _{h(SDA)}	SDA data hold time	0	-	0	900			
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns		
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300			
t _{h(STA)}	START condition hold time	4.0	-	0.6	-			
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs		
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs		
Cb	Capacitive load for each bus line	_	400	-	400	pF		

Table 44. I2C characteristics

1. f_{SYSCLK} must be at least equal to 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I^2C protocol requirement, not tested in production.

Note: For speeds around 200 kHz, the achieved speed can have a \pm 5% tolerance. For other speed ranges, the achieved speed can have a \pm 2% tolerance. The above variations depend on the accuracy of the external components used.

Static latch-up

• LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Table	61	Electrical	sensitivities
Iabic	U I.	LIECUICAI	36113111411163

Symbol	Parameter	Class
LU	Static latch-up class	II

9.4 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 70.*

The maximum chip-junction temperature, T_{Jmax}, in degree Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{IA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
ΘJA	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	65		
	Thermal resistance junction-ambient UFQFPN 48 - 7 x 7mm	32		
	Thermal resistance junction-ambient WLCSP32	63	°C/W	
	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	48		
	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38		

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

10.2 LQFP64 package information

SEATING PLANE С 0.25 mm GAUGE PLANE ¥ G 7 D K D1 L1 D3 48 33 32 49 <u>A A A A A A A A A A A A A</u> b E3 Ш ш 64 17 ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ 16 PIN 1 IDENTIFICATION 1 ⊾e 5W_ME_V3

Figure 51. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 64. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
Е	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

10.3 LQFP48 package information

SEATING PLANE A2 ŨŦŨŦŨŦŨŦĬĦŮŸŨŦŨŦŨŦŨŦŎŹ F 0.25 mm GAUGE PLANE ĸ D A1 D1 L1 D3 24 37 Œ b

8 E ш

13

12 e

CHE

Ē ----------

48

PIN 1 IDENTIFICATION 1

€

5B_ME_V2

^{1.} Drawing is not to scale.

Date	Revision	Changes
15-Feb-2017	10	Updated value of feature 12-bit synchronized ADC (number of channels) for STM8L15xK8 on <i>Table 2: High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts</i> .

Table 70. Document revision history (continued)

