

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, IR, LCD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8l152m8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high-density and medium+ density STM8L15xx6/8x devices feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

		Register label	Register label Register name	
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x00
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C	_	PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port F data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0xXX
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0xXX
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

 Table 8. I/O port hardware register map (continued)

Table 9. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status	
0x00 509D		SYSCFG_RMPCR3	Remapping register 3	0x00	
0x00 509E	SYSCFG	SYSCFG_RMPCR1	Remapping register 1	0x00	
0x00 509F		SYSCFG_RMPCR2	Remapping register 2	0x00	
0x00 50A0		EXTI_CR1	External interrupt control register 1	0x00	
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00	
0x00 50A2	ITC - EXTI	EXTI_CR3	External interrupt control register 3	0x00	
0x00 50A3		EXTI_SR1	External interrupt status register 1	0x00	
0x00 50A4		EXTI_SR2	External interrupt status register 2	0x00	
0x00 50A5		EXTI_CONF1	External interrupt port select register 1	0x00	
0x00 50A6		WFE_CR1	WFE control register 1	0x00	
0x00 50A7		WFE_CR2	WFE control register 2	0x00	
0x00 50A8	WFE	WFE_CR3	WFE control register 3	0x00	
0x00 50A9		WFE_CR4	WFE control register 4	0x00	
0x00 50AA		EXTI_CR4	External interrupt control register 4	0x00	
0x00 50AB	ITC - EXTI	EXTI_CONF2	External interrupt port select register 2	0x00	
0x00 50A9 to 0x00 50AF			Reserved area (7 byte)		
0x00 50B0		RST_CR	Reset control register	0x00	
0x00 50B1	RST	RST_SR	Reset status register	0x01	
0x00 50B2		PWR CSR1	Power control and status register 1	0x00	
0x00 50B3	PWR	PWR CSR2	Power control and status register 2	0x00	
0x00 50B4 to 0x00 50BF			Reserved area (12 byte)		
0x00 50C0		CLK_CKDIVR	Clock master divider register	0x03	
0x00 50C1		CLK_CRTCR	Clock RTC register	0x00 ⁽¹⁾	
0x00 50C2		CLK_ICKCR	Internal clock control register	0x11	
0x00 50C3		CLK_PCKENR1	Peripheral clock gating register 1	0x00	
0x00 50C4		CLK_PCKENR2	Peripheral clock gating register 2	0x00	
0x00 50C5	- CLK	CLK_CCOR	Configurable clock control register	0x00	
0x00 50C6		CLK_ECKCR	External clock control register	0x00	
0x00 50C7		CLK_SCSR	System clock status register	0x01	
0x00 50C8		CLK_SWR	System clock switch register	0x01	
0x00 50C9		CLK_SWCR	Clock switch control register	0xX0	

Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status		
0x00 5148		RTC_CR1	Control register 1	0x00 ⁽¹⁾		
0x00 5149		RTC_CR2	Control register 2	0x00 ⁽¹⁾		
0x00 514A	- DTO	RTC_CR3	Control register 3	0x00 ⁽¹⁾		
0x00 514B	RTC		Reserved area (1 byte)			
0x00 514C		RTC_ISR1	Initialization and status register 1	0x01		
0x00 514D		RTC_ISR2	Initialization and Status register 2	0x00		
0x00 514E 0x00 514F			Reserved area (2 byte)			
0x00 5150		RTC_SPRERH	Synchronous prescaler register high	0x00 ⁽¹⁾		
0x00 5151	RTC	RTC_SPRERL	Synchronous prescaler register low	0xFF ⁽¹⁾		
0x00 5152		RTC_APRER	Asynchronous prescaler register	0x7F ⁽¹⁾		
0x00 5153			Reserved area (1 byte)	•		
0x00 5154	RTC	RTC_WUTRH	Wakeup timer register high	0xFF ⁽¹⁾		
0x00 5155		RTC_WUTRL	Wakeup timer register low	0xFF ⁽¹⁾		
0x00 5156		Reserved area (1 byte)				
0x00 5157		RTC_SSRL	Subsecond register low	0x00		
0x00 5158		RTC_SSRH	Subsecond register high	0x00		
0x00 5159		RTC_WPR	Write protection register	0x00		
0x00 5158		RTC_SSRH	Subsecond register high	0x00		
0x00 5159		RTC_WPR	Write protection register	0x00		
0x00 515A	RTC	RTC_SHIFTRH	Shift register high	0x00		
0x00 515B		RTC_SHIFTRL	Shift register low	0x00		
0x00 515C		RTC_ALRMAR1	Alarm A register 1	0x00 ⁽¹⁾		
0x00 515D		RTC_ALRMAR2	Alarm A register 2	0x00 ⁽¹⁾		
0x00 515E		RTC_ALRMAR3	Alarm A register 3	0x00 ⁽¹⁾		
0x00 515F		RTC_ALRMAR4	Alarm A register 4	0x00 ⁽¹⁾		
0x00 5160 to 0x00 5163		Reserved area (4 byte)				
0x00 5164		RTC_ALRMASSRH	Alarm A subsecond register high	0x00 ⁽¹⁾		
0x00 5165	RTC	RTC_ALRMASSRL	Alarm A subsecond register low	0x00 ⁽¹⁾		
0x00 5166		RTC_ALRMASSMS KR	Alarm A masking register	0x00 ⁽¹⁾		
0x00 5167 to 0x00 5169			Reserved area (3 byte)			

Table 9. General hardware register map (continued)

Table 9. General	hardware regist	ter map (continued)
	naranaro rogio	

	Table 9. General hardware register map (continued)					
Address	Block	Register label	Register name	Reset status		
0x00 516A		RTC_CALRH	Calibration register high	0x00 ⁽¹⁾		
0x00 516B	RTC	RTC_CALRL	Calibration register low	0x00 ⁽¹⁾		
0x00 516C	RIC	RTC_TCR1	Tamper control register 1	0x00 ⁽¹⁾		
0x00 516D		RTC_TCR2	Tamper control register 2	0x00 ⁽¹⁾		
0x00 516E to 0x00 518A			Reserved area			
0x00 5190	CSSLSE	CSSLSE_CSR	CSS on LSE control and status register	0x00 ⁽¹⁾		
0x00 519A to 0x00 51FF			Reserved area			
0x00 5200		SPI1_CR1	SPI1 control register 1	0x00		
0x00 5201		SPI1_CR2	SPI1 control register 2	0x00		
0x00 5202		SPI1_ICR	SPI1 interrupt control register	0x00		
0x00 5203	0.514	SPI1_SR	SPI1 status register	0x02		
0x00 5204	SPI1	SPI1_DR	SPI1 data register	0x00		
0x00 5205		SPI1_CRCPR	SPI1 CRC polynomial register	0x07		
0x00 5206		SPI1_RXCRCR	SPI1 Rx CRC register	0x00		
0x00 5207		SPI1_TXCRCR	SPI1 Tx CRC register	0x00		
0x00 5208			L			
to 0x00 520F			Reserved area (8 byte)			
0x00 5210		I2C1_CR1	I2C1 control register 1	0x00		
0x00 5211		I2C1_CR2	I2C1 control register 2	0x00		
0x00 5212		I2C1_FREQR	I2C1 frequency register	0x00		
0x00 5213		I2C1_OARL	I2C1 own address register low	0x00		
0x00 5214		I2C1_OARH	I2C1 own address register high	0x00		
0x00 5215		I2C1_OARH	I2C1 own address register for dual mode	0x00		
0x00 5216		I2C1_DR	I2C1 data register	0x00		
0x00 5217	I2C1	I2C1_SR1	I2C1 status register 1	0x00		
0x00 5218		I2C1_SR2	I2C1 status register 2	0x00		
0x00 5219		I2C1_SR3	I2C1 status register 3	0x0X		
0x00 521A		I2C1_ITR	I2C1 interrupt control register	0x00		
0x00 521B		I2C1_CCRL	I2C1 clock control register low	0x00		
0x00 521C		I2C1_CCRH	I2C1 clock control register high	0x00		
0x00 521D		I2C1_TRISER	I2C1 TRISE register	0x02		
0x00 521E	1	I2C1_PECR	I2C1 packet error checking register	0x00		

DocID17943 Rev 10

Address	Block	Register label	Register name	Reset status	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF	
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF	
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF	
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF	
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF	
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF	
0x00 7F96		DM_CR1	DM Debug module control register 1	0x00	
0x00 7F97		DM_CR2	DM Debug module control register 2	0x00	
0x00 7F98		DM_CSR1	DM Debug module control/status register 1	0x10	
0x00 7F99		DM_CSR2	DM Debug module control/status register 2	0x00	
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF	
0x00 7F9B to 0x00 7F9F	Reserved area (5 byte)				

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits							
Address	description	7	6	5	4	3	2	1	0
0x4926	X co-ordinate on				U	_ID[7:0]		<u>.</u>	
0x4927	the wafer				U_	ID[15:8]			
0x4928	Y co-ordinate on				U_I	D[23:16]			
0x4929	the wafer		U_ID[31:24]						
0x492A	Wafer number	U_ID[39:32]							
0x492B		U_ID[47:40]							
0x492C		U_ID[55:48] U_ID[63:56]							
0x492D									
0x492E	Lot number	U_ID[71:64]							
0x492F	1	U_ID[79:72] U_ID[87:80]							
0x4930	1								
0x4931	1		U_ID[95:88]						

Table 14. Unique ID registers (96 bits)

9 Electrical parameters

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

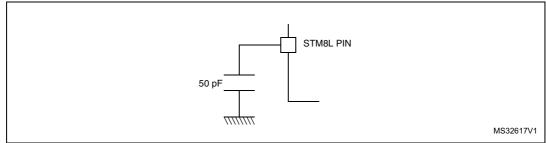
9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A = 25 °C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25 \degree C$, $V_{DD} = 3 \lor V$. They are given only as design guidelines and are not tested.


Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

Symbol	Ratings	Max.	Unit
I _{VDD}	Total current into V _{DD} power line (source)	80	
I _{VSS}	Total current out of V _{SS} ground line (sink)	80	
	Output current sunk by IR_TIM pin (with high sink LED driver capability)	80	
I _{IO}	Output current sunk by any other I/O and control pin	25	
	Output current sourced by any I/Os and control pin	- 25	mA
	Injected current on true open-drain pins (PC0 and PC1) ⁽¹⁾	- 5 / +0	
I _{INJ(PIN)}	Injected current on five-volt tolerant (FT) pins ⁽¹⁾	- 5 / +0	
	Injected current on any other pin ⁽²⁾	- 5 / +5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) $^{(3)}$	± 25	

Table 16. Current characteris	stics
-------------------------------	-------

 Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 15.* for maximum allowed input voltage values.

2. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 15*. for maximum allowed input voltage values.

3. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	C

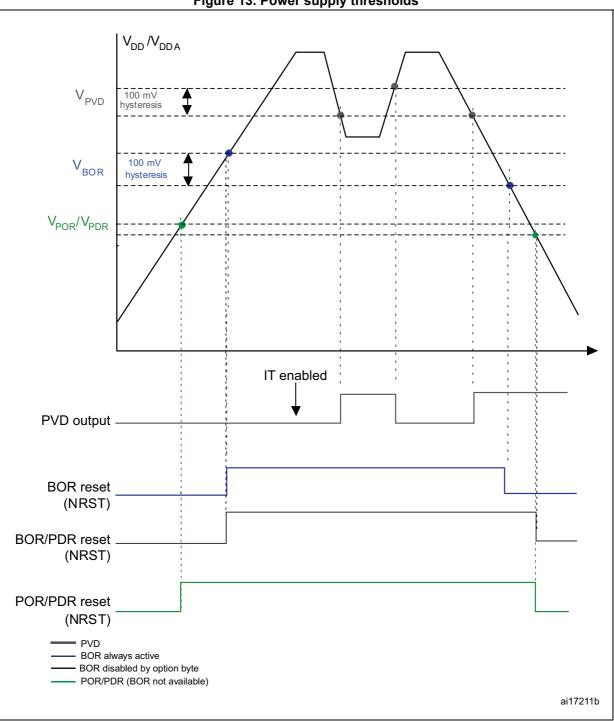


Figure 13. Power supply thresholds

In the following table, data are based on characterization results, unless otherwise specified.

	Parameter	Conditions ⁽¹⁾		Тур	Max					
Symbol					55°C	85 °C (2)	105 °C (3)	125 °C (4)	Unit	
				f _{CPU} = 125 kHz	0.21	0.29	0.33	0.36	0.43	
				f _{CPU} = 1 MHz	0.25	0.33	0.37	0.4	0.47	
	Supply current in Wait mode	HSI CPU not	HSI	f _{CPU} = 4 MHz	0.32	0.4	0.44	0.47	0.54	
			f _{CPU} = 8 MHz	0.42	0.496	0.54	0.56	0.64		
		clocked,	locked,	f _{CPU} = 16 MHz	0.66	0.736	0.78 ⁽⁶⁾	0.8 ⁽⁶⁾	0.88 ⁽⁶⁾	mA
		all peripherals OFF,		f _{CPU} = 125 kHz	0.19	0.21	0.3	0.35	0.41	
		Vait mode RAM Vait mode RAM Vait mode P_{DDQ} mode, ⁽⁵⁾ V _{DD} from 1.65 V to 3.6 V LSI LSE ⁽⁸⁾ external		f _{CPU} = 1 MHz	0.2	0.23	0.32	0.36	0.43	
I _{DD(Wait)}			clock f	f _{CPU} = 4 MHz	0.27	0.3	0.39	0.43	0.5	
				f _{CPU} = 8 MHz	0.37	0.4	0.49	0.53	0.6	
				f _{CPU} = 16 MHz	0.63	0.66	0.75 ⁽⁶⁾	0.79 ⁽⁶⁾	0.86 ⁽⁶⁾	
			LSI	f _{CPU} = f _{LSI}	0.028	0.037	0.039	0.044	0.054	
			f _{CPU} = f _{LSE}	0.027	0.035	0.038	0.042	0.051		

Table 21. Total current consumption in Wait mode

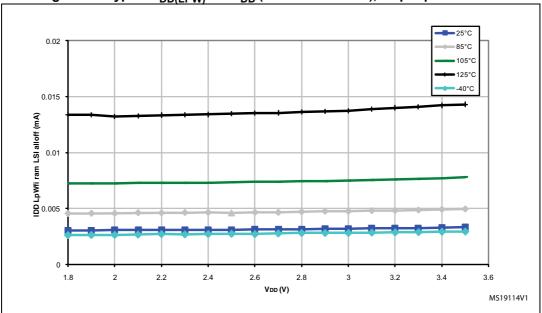
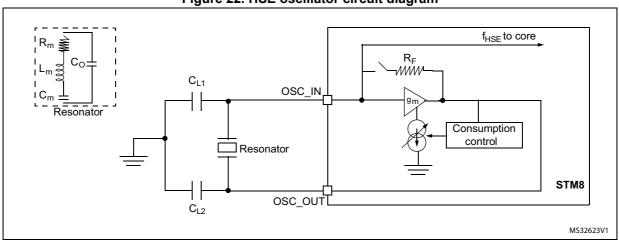



Figure 19. Typical $I_{DD(LPW)}$ vs. V_{DD} (LSI clock source), all peripherals OFF

1. Typical current consumption measured with code executed from RAM.

Figure 22. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 R_m : Motional resistance (see crystal specification), L_m : Motional inductance (see crystal specification), C_m : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification), $C_{L1}=C_{L2}=C$: Grounded external capacitance $g_m >> g_{mcrit}$

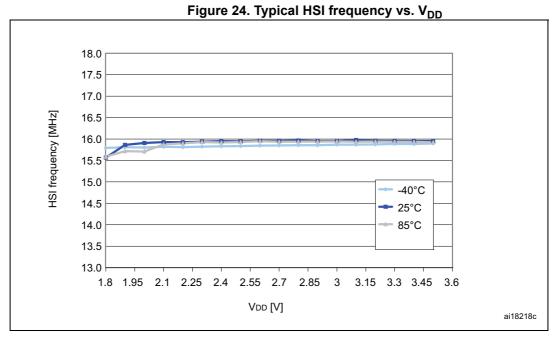
LSE crystal/ceramic resonator oscillator

The LSE is available on STM8L151x6/8 and STM8L152x6/8 devices.

The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{LSE}	Low speed external oscillator frequency			32.768		kHz
R _F	Feedback resistor	∆V = 200 mV		1.2		MΩ
C ⁽¹⁾⁽²⁾	Recommended load capacitance			8		pF
		V _{DD} = 1.8 V		450		
I _{DD(LSE)}	LSE oscillator power consumption	V _{DD} = 3 V		600		nA
		V _{DD} = 3.6 V		750		
9 _m	Oscillator transconductance		3 ⁽³⁾			µA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized		1		S

Table 32. LSE oscilla	tor characteristics
-----------------------	---------------------


1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

3. Guaranteed by design.

^{2.} The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

4. Guaranteed by design.

Low speed internal RC oscillator (LSI)

In the following table, data are based on characterization results.

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
f _{LSI}	Frequency		26	38	56	kHz
t _{su(LSI)}	LSI oscillator wakeup time				200 ⁽²⁾	μs
D _(LSI)	LSI oscillator frequency drift ⁽³⁾	0 °C ≤T _A ≤ 85 °C	-12		11	%

1. V_{DD} = 1.65 V to 3.6 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. This is a deviation for an individual part, once the initial frequency has been measured.

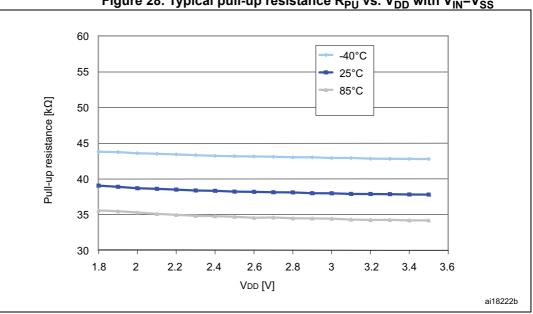
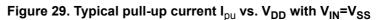
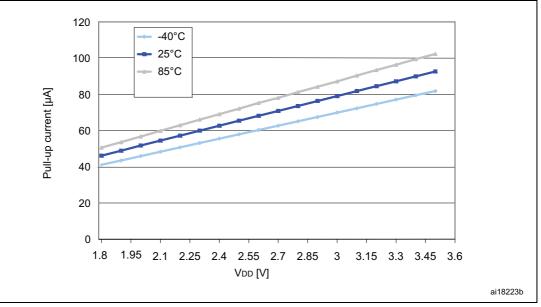




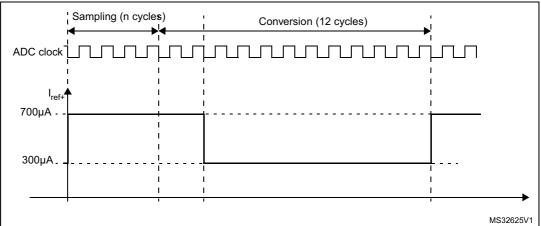
Figure 28. Typical pull-up resistance R_{PU} vs. V_{DD} with $V_{IN}=V_{SS}$

Output driving current

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.65		3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0		V_{DDA}	V	
t	Comparator startup time	Fast mode	-	15	20		
t _{START}		Slow mode	-	20	25		
t	Propagation delay ⁽²⁾ in slow mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	1.8	3.5	μs	
t _{d slow}	Propagation delay. In slow mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6		
+	Propagation delay ⁽²⁾ in fast mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2		
t _{d fast}	Propagation delay. In fast mode	$2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	<u>+2</u> 0	mV	
d _{Threshold} /dt	Threshold voltage temperature coefficient	$\begin{split} V_{DDA} &= 3.3V \\ T_A &= 0 \text{ to } 50 ^{\circ}\text{C} \\ V &= V_{REF+}, 3/4 \\ V_{REF+}, \\ 1/2 V_{REF+}, 1/4 V_{REF+}. \end{split}$	-	15	30	ppm /°C	
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	μA	
ICOMP2		Slow mode	-	0.5	2	μΛ	

Table 49. Comparator 2 characteristics


1. Based on characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

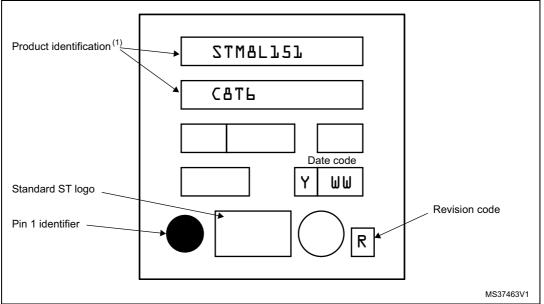
Figure 45. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

	Ts (µs)	R _{AIN} max (kohm)					
Ts (cycles)		Slow cl	hannels	Fast channels			
	. ,	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.3 V	1.8 V < V _{DDA} < 2.4 V		
4	0.25	Not allowed	Not allowed	0.7	Not allowed		
9	0.5625	0.8	Not allowed	2.0	1.0		
16	1	2.0	0.8	4.0	3.0		
24	1.5	3.0	1.8	6.0	4.5		
48	3	6.8	4.0	15.0	10.0		
96	6	15.0	10.0	30.0	20.0		
192	12	32.0	25.0	50.0	40.0		
384	24	50.0	50.0	50.0	50.0		

Table 57. R_{AIN} max for $f_{ADC} = 16 \text{ MHz}^{(1)}$

1. Guaranteed by design.

General PCB design guidelines


Power supply decoupling should be performed as shown in *Figure 46* or *Figure 47*, depending on whether V_{REF+} is connected to V_{DDA} or not. Good quality ceramic 10 nF capacitors should be used. They should be placed as close as possible to the chip.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 56. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	70. Document revision history (continued) Changes
Date	Revision	-
		 Updated Table 63: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data, Figure 48: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
		package outline, – Figure 49: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat
		 – Table 64: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
		mechanical data,
		 Figure 51: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline,
		 Figure 52: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint,
19-Feb-2015	7	 Table 65: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data,
		 Figure 54: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline.
		 Table 66: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data,
		 Figure 57: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline,
		– Figure 58: UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin
		fine pitch quad flat package recommended footprint. Added:
		 Figure 50: LQFP80 marking example (package top view)
		 Figure 53: LQFP64 marking example (package top view)
		 Figure 56: LQFP48 marking example (package top view)
		 Figure 59: UFQFPN48 marking example (package top view)
		Added
		- Figure 9: STM8L152K8 32-ball ballout and the related warning,
		 Section 10.5: WLCSP32 package information.
		Updated:
		- Table 1: Device summary,
07-Sep-2015	8	 Table 2: High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts,
07-36p-2013	0	- Table 5: High-density and medium+ density STM8L15x pin
		description,
		 Table 18: General operating conditions,
		 Table 60: ESD absolute maximum ratings,
		 Table 62: Thermal characteristics,
		 Table 69: Ordering information scheme.
08-Dec-2016	9	Updated TIM3 channel 3 to TIM3 channel 1 (LQFP80 pin 77) and SPI2 clock to SPI1 clock (LQFP80 pin 51) in <i>Table 5: High-density and medium+ density STM8L15x pin description</i> .
		Updated BOR_TH reference (OPT5) in <i>Table 13: Option byte description</i> .

Date	Revision Changes		
15-Feb-2017	10	Updated value of feature 12-bit synchronized ADC (number of channels) for STM8L15xK8 on <i>Table 2: High-density and medium+ density STM8L15xx6/8 low power device features and peripheral counts</i> .	

Table 70. Document revision history (continued)

