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Chapter 2 Pins and Connections
Figure 2-2 shows the 48-pin QFN pin assignments for the MC9S08AC60 Series device.

Figure 2-2. MC9S08AC60 Series in 48-Pin QFN Package
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Chapter 4  
Memory

4.1 MC9S08AC60 Series Memory Map
As shown in Figure 4-1, on-chip memory in the MC9S08AC60 Series series of MCUs consists of RAM, 
FLASH program memory for nonvolatile data storage, plus I/O and control/status registers. The registers 
are divided into three groups:

• Direct-page registers ($0000 through $006F)

• High-page registers ($1800 through $185F)

• Nonvolatile registers ($FFB0 through $FFBF)
MC9S08AC60 Series Data Sheet, Rev. 3
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Chapter 5 Resets, Interrupts, and System Configuration
Either RTI clock source can be used when the MCU is in run, wait or stop3 mode. When using the external 
oscillator in stop3, it must be enabled in stop (OSCSTEN = 1) and configured for low bandwidth operation 
(RANGE = 0). Only the internal 1-kHz clock source can be selected to wake the MCU from stop2 mode.

The SRTISC register includes a read-only status flag, a write-only acknowledge bit, and a 3-bit control 
value (RTIS2:RTIS1:RTIS0) used to disable the clock source to the real-time interrupt or select one of 
seven wakeup periods. The RTI has a local interrupt enable, RTIE, to allow masking of the real-time 
interrupt. The RTI can be disabled by writing each bit of RTIS to zeroes, and no interrupts will be 
generated. See Section 5.9.7, “System Real-Time Interrupt Status and Control Register (SRTISC),” for 
detailed information about this register.

5.8 MCLK Output
The PTC2 pin is shared with the MCLK clock output. Setting the pin enable bit, MPE, causes the PTC2 
pin to output a divided version of the internal MCU bus clock. The divide ratio is determined by the 
MCSEL bits. When MPE is set, the PTC2 pin is forced to operate as an output pin regardless of the state 
of the port data direction control bit for the pin. If the MCSEL bits are all 0s, the pin is driven low. The 
slew rate and drive strength for the pin are controlled by PTCSE2 and PTCDS2, respectively. The 
maximum clock output frequency is limited if slew rate control is enabled, see the electrical chapter for 
pin rise and fall times with slew rate enabled.

5.9 Reset, Interrupt, and System Control Registers and Control Bits
One 8-bit register in the direct page register space and eight 8-bit registers in the high-page register space 
are related to reset and interrupt systems. 

Refer to the direct-page register summary in Chapter 4, “Memory,” of this data sheet for the absolute 
address assignments for all registers. This section refers to registers and control bits only by their names. 
A Freescale-provided equate or header file is used to translate these names into the appropriate absolute 
addresses.

Some control bits in the SOPT and SPMSC2 registers are related to modes of operation. Although brief 
descriptions of these bits are provided here, the related functions are discussed in greater detail in 
Chapter 3, “Modes of Operation.”
MC9S08AC60 Series Data Sheet, Rev. 3
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Chapter 6 Parallel Input/Output
7 6 5 4 3 2 1 0

R 0
PTCDS6 PTCDS5 PTCDS4 PTCDS3 PTCDS2 PTCDS1 PTCDS0

W

Reset 0 0 0 0 0 0 0 0

Figure 6-16. Output Drive Strength Selection for Port C (PTCDS)

Table 6-15. PTCDS Register Field Descriptions 

Field Description

6:0
PTCDS[6:0]

Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high 
output drive for the associated PTC pin.
0 Low output drive enabled for port C bit n.
1 High output drive enabled for port C bit n.
MC9S08AC60 Series Data Sheet, Rev. 3
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Analog-to-Digital Converter (S08ADC10V1) 
9.5.4.2 Completing Conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, 
ADCRH and ADCRL. This is indicated by the setting of COCO. An interrupt is generated if AIEN is high 
at the time that COCO is set.

A blocking mechanism prevents a new result from overwriting previous data in ADCRH and ADCRL if 
the previous data is in the process of being read while in 10-bit MODE (the ADCRH register has been read 
but the ADCRL register has not). When blocking is active, the data transfer is blocked, COCO is not set, 
and the new result is lost. In the case of single conversions with the compare function enabled and the 
compare condition false, blocking has no effect and ADC operation is terminated. In all other cases of 
operation, when a data transfer is blocked, another conversion is initiated regardless of the state of ADCO 
(single or continuous conversions enabled). 

If single conversions are enabled, the blocking mechanism could result in several discarded conversions 
and excess power consumption. To avoid this issue, the data registers must not be read after initiating a 
single conversion until the conversion completes.

9.5.4.3 Aborting Conversions

Any conversion in progress will be aborted when:

• A write to ADCSC1 occurs (the current conversion will be aborted and a new conversion will be 
initiated, if ADCH are not all 1s).

• A write to ADCSC2, ADCCFG, ADCCVH, or ADCCVL occurs. This indicates a mode of 
operation change has occurred and the current conversion is therefore invalid.

• The MCU is reset.

• The MCU enters stop mode with ADACK not enabled.

When a conversion is aborted, the contents of the data registers, ADCRH and ADCRL, are not altered but 
continue to be the values transferred after the completion of the last successful conversion. In the case that 
the conversion was aborted by a reset, ADCRH and ADCRL return to their reset states.

9.5.4.4 Power Control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the 
conversion clock source, the ADACK clock generator is also enabled.

Power consumption when active can be reduced by setting ADLPC. This results in a lower maximum 
value for fADCK (see the electrical specifications).

9.5.4.5 Total Conversion Time

The total conversion time depends on the sample time (as determined by ADLSMP), the MCU bus 
frequency, the conversion mode (8-bit or 10-bit), and the frequency of the conversion clock (fADCK). After 
the module becomes active, sampling of the input begins. ADLSMP is used to select between short and 
long sample times.When sampling is complete, the converter is isolated from the input channel and a 
successive approximation algorithm is performed to determine the digital value of the analog signal. The 
MC9S08AC60 Series Data Sheet, Rev. 3
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Inter-Integrated Circuit (S08IICV2) 
Table 11-4. IIC Divider and Hold Values 

ICR
(hex)

SCL 
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SDA Hold
(Stop) 
Value

ICR
(hex)

SCL 
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SCL Hold
(Stop) 
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

16 104 21 46 53 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 1022 1025

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3E 3072 513 1534 1537

1F 240 33 118 121 3F 3840 513 1918 1921
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Inter-Integrated Circuit (S08IICV2) 
11.4 Functional Description
This section provides a complete functional description of the IIC module.

11.4.1 IIC Protocol

The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices 
connected to it must have open drain or open collector outputs. A logic AND function is exercised on both 
lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: 

• Start signal

• Slave address transmission

• Data transfer

• Stop signal 

The stop signal should not be confused with the CPU stop instruction. The IIC bus system communication 
is described briefly in the following sections and illustrated in Figure 11-9.

 

Figure 11-9. IIC Bus Transmission Signals

11.4.1.1 Start Signal

When the bus is free, no master device is engaging the bus (SCL and SDA lines are at logical high), a 
master may initiate communication by sending a start signal. As shown in Figure 11-9, a start signal is 
defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new 
data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle 
states.
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Inter-Integrated Circuit (S08IICV2) 
11.6.2 Address Detect Interrupt

When the calling address matches the programmed slave address (IIC address register) or when the 
GCAEN bit is set and a general call is received, the IAAS bit in the status register is set. The CPU is 
interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode accordingly.

11.6.3 Arbitration Lost Interrupt

The IIC is a true multi-master bus that allows more than one master to be connected on it. If two or more 
masters try to control the bus at the same time, the relative priority of the contending masters is determined 
by a data arbitration procedure. The IIC module asserts this interrupt when it loses the data arbitration 
process and the ARBL bit in the status register is set.

Arbitration is lost in the following circumstances:

• SDA sampled as a low when the master drives a high during an address or data transmit cycle.

• SDA sampled as a low when the master drives a high during the acknowledge bit of a data receive 
cycle.

• A start cycle is attempted when the bus is busy.

• A repeated start cycle is requested in slave mode.

• A stop condition is detected when the master did not request it.

This bit must be cleared by software writing a 1 to it.
MC9S08AC60 Series Data Sheet, Rev. 3
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Serial Communications Interface (S08SCIV4) 
13.2 Register Definition
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for 
transmit/receive data. 

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address 
assignments for all SCI registers. This section refers to registers and control bits only by their names. 

13.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBDL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud 
rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write 
to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.

SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first 
time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).

 7 6 5 4 3 2 1 0

R
LBKDIE RXEDGIE

0
SBR12 SBR11 SBR10 SBR9 SBR8

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-4. SCI Baud Rate Register (SCIxBDH)

Table 13-1. SCIxBDH Field Descriptions 

Field Description

7
LBKDIE

LIN Break Detect Interrupt Enable (for LBKDIF)
0 Hardware interrupts from LBKDIF disabled (use polling).
1 Hardware interrupt requested when LBKDIF flag is 1.

6
RXEDGIE

RxD Input Active Edge Interrupt Enable (for RXEDGIF)
0 Hardware interrupts from RXEDGIF disabled (use polling).
1 Hardware interrupt requested when RXEDGIF flag is 1.

4:0
SBR[12:8]

Baud Rate Modulo Divisor — The 13 bits in SBR[12:0] are referred to collectively as BR, and they set the 
modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to 
reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16BR). See also BR bits in 
Table 13-2.

 7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

Figure 13-5. SCI Baud Rate Register (SCIxBDL)
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Serial Communications Interface (S08SCIV4) 
Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity 
that is in progress must first be completed. This includes data characters in progress, queued idle 
characters, and queued break characters.

13.3.2.1 Send Break and Queued Idle

The SBK control bit in SCIxC2 is used to send break characters which were originally used to gain the 
attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times 
including the start and stop bits). A longer break of 13 bit times can be enabled by setting BRK13 = 1. 
Normally, a program would wait for TDRE to become set to indicate the last character of a message has 
moved to the transmit shifter, then write 1 and then write 0 to the SBK bit. This action queues a break 
character to be sent as soon as the shifter is available. If SBK is still 1 when the queued break moves into 
the shifter (synchronized to the baud rate clock), an additional break character is queued. If the receiving 
device is another SCI, the break characters will be received as 0s in all eight data bits and a framing error 
(FE = 1) occurs.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake 
up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last 
character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This 
action queues an idle character to be sent as soon as the shifter is available. As long as the character in the 
shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD pin. If 
there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin 
that is shared with TxD is an output driving a logic 1. This ensures that the TxD line will look like a normal 
idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.

The length of the break character is affected by the BRK13 and M bits as shown below.

13.3.3 Receiver Functional Description

In this section, the receiver block diagram (Figure 13-3) is used as a guide for the overall receiver 
functional description. Next, the data sampling technique used to reconstruct receiver data is described in 
more detail. Finally, two variations of the receiver wakeup function are explained.

The receiver input is inverted by setting RXINV = 1. The receiver is enabled by setting the RE bit in 
SCIxC2. Character frames consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop 
bit of logic 1. For information about 9-bit data mode, refer to Section 13.3.5.1, “8- and 9-Bit Data Modes.” 
For the remainder of this discussion, we assume the SCI is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already 
full, the data character is transferred to the receive data register and the receive data register full (RDRF) 

Table 13-8. Break Character Length

BRK13 M Break Character Length

0 0 10 bit times

0 1 11 bit times

1 0 13 bit times

1 1 14 bit times
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Timer/PWM Module (S08TPMV3) 
• Edge-aligned PWM mode

The value of a 16-bit modulo register plus 1 sets the period of the PWM output signal. The channel 
value register sets the duty cycle of the PWM output signal. The user may also choose the polarity 
of the PWM output signal. Interrupts are available at the end of the period and at the duty-cycle 
transition point. This type of PWM signal is called edge-aligned because the leading edges of all 
PWM signals are aligned with the beginning of the period, which is the same for all channels within 
a TPM.

• Center-aligned PWM mode

Twice the value of a 16-bit modulo register sets the period of the PWM output, and the 
channel-value register sets the half-duty-cycle duration. The timer counter counts up until it 
reaches the modulo value and then counts down until it reaches zero. As the count matches the 
channel value register while counting down, the PWM output becomes active. When the count 
matches the channel value register while counting up, the PWM output becomes inactive. This type 
of PWM signal is called center-aligned because the centers of the active duty cycle periods for all 
channels are aligned with a count value of zero. This type of PWM is required for types of motors 
used in small appliances.

This is a high-level description only. Detailed descriptions of operating modes are in later sections. 

15.3.4 Block Diagram

The TPM uses one input/output (I/O) pin per channel, TPMxCHn (timer channel n) where n is the channel 
number (1-8). The TPM shares its I/O pins with general purpose I/O port pins (refer to I/O pin descriptions 
in full-chip specification for the specific chip implementation).

Figure 15-2 shows the TPM structure. The central component of the TPM is the 16-bit counter that can 
operate as a free-running counter or a modulo up/down counter. The TPM counter (when operating in 
normal up-counting mode) provides the timing reference for the input capture, output compare, and 
edge-aligned PWM functions. The timer counter modulo registers, TPMxMODH:TPMxMODL, control 
the modulo value of the counter (the values 0x0000 or 0xFFFF effectively make the counter free running). 
Software can read the counter value at any time without affecting the counting sequence. Any write to 
either half of the TPMxCNT counter resets the counter, regardless of the data value written.
MC9S08AC60 Series Data Sheet, Rev. 3
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Timer/PWM Module (S08TPMV3) 
When the TPM is configured for center-aligned PWM (and ELSnB:ELSnA not = 0:0), the data direction 
for all channels in this TPM are overridden, the TPMxCHn pins are forced to be outputs controlled by the 
TPM, and the ELSnA bits control the polarity of each TPMxCHn output. If ELSnB:ELSnA=1:0, the 
corresponding TPMxCHn pin is cleared when the timer counter is counting up, and the channel value 
register matches the timer counter; the TPMxCHn pin is set when the timer counter is counting down, and 
the channel value register matches the timer counter. If ELSnA=1, the corresponding TPMxCHn pin is set 
when the timer counter is counting up and the channel value register matches the timer counter; the 
TPMxCHn pin is cleared when the timer counter is counting down and the channel value register matches 
the timer counter.

Figure 15-5. High-True Pulse of a Center-Aligned PWM

Figure 15-6. Low-True Pulse of a Center-Aligned PWM

CHnF BIT

TOF BIT

... 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 ...

TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005

TPMxCNTH:TPMxCNTL

TPMxCHn

CHnF BIT

TOF BIT

... 7 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 7 6 5 ...

TPMxMODH:TPMxMODL = 0x0008
TPMxMODH:TPMxMODL = 0x0005

TPMxCNTH:TPMxCNTL

TPMxCHn
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Timer/PWM Module (S08TPMV3) 
When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register) 
such that the buffer latches remain in the state they were in when the BDM became active, even if one or 
both halves of the modulo register are written while BDM is active. Any write to the modulo registers 
bypasses the buffer latches and directly writes to the modulo register while BDM is active.

Reset the TPM counter before writing to the TPM modulo registers to avoid confusion about when the first 
counter overflow will occur.

15.5.4 TPM Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel-interrupt-status flag and control bits used to configure the interrupt 
enable, channel configuration, and pin function.

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 15-10. TPM Counter Modulo Register High (TPMxMODH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 15-11. TPM Counter Modulo Register Low (TPMxMODL)

7 6 5 4 3 2 1 0

R CHnF
CHnIE MSnB MSnA ELSnB ELSnA

0 0

W 0

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-12. TPM Channel n Status and Control Register (TPMxCnSC)
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Development Support 
Figure 16-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU. 
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge 
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target 
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin 
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD 
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal 
during this period.

Figure 16-2. BDC Host-to-Target Serial Bit Timing
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Development Support 
Figure 16-4 shows the host receiving a logic 0 from the target HCS08 MCU. Because the host is 
asynchronous to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on 
BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time but the 
target HCS08 finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low 
for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit 
level about 10 cycles after starting the bit time.

Figure 16-4. BDM Target-to-Host Serial Bit Timing (Logic 0)
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Development Support 
A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint 
request. The usual action in response to a breakpoint is to go to active background mode rather than 
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to 
breakpoint requests from the debug module to the CPU. The second refers to match signals from the 
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is 
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the 
CPU will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active 
background mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT 
register is set to select tag-type operation, the output from comparator A or B is qualified by a block of 
logic in the debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at 
the compare address is actually executed. There is separate opcode tracking logic for each comparator so 
more than one compare event can be tracked through the instruction queue at a time.

16.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register 
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator 
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in 
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace), 
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected 
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and 
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets 
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually 
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only 
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO. 

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type 
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons 
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be 
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally 
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger. 
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the 
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with 
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines 
whether the CPU request will be a tag request or a force request.
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Appendix A Electrical Characteristics and Timing Specifications
The average chip-junction temperature (TJ) in C can be obtained from:

TJ = TA + (PD  JA) Eqn. A-1

where:

TA = Ambient temperature, C
JA = Package thermal resistance, junction-to-ambient, C/W
PD = Pint PI/O
Pint = IDD  VDD, Watts — chip internal power
PI/O = Power dissipation on input and output pins — user determined

For most applications, PI/O  Pint and can be neglected. An approximate relationship between PD and TJ 
(if PI/O is neglected) is:

PD = K  (TJ + 273C) Eqn. A-2

Solving equations 1 and 2 for K gives:

K = PD   (TA + 273C) + JA  (PD)2 Eqn. A-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring 
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by 
solving equations 1 and 2 iteratively for any value of TA.

A.5 ESD Protection and Latch-Up Immunity
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early 
CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. 
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels 
of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade 
Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the 
device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model 
(MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device 
specification. Complete DC parametric and functional testing is performed per the applicable device 
specification at room temperature followed by hot temperature, unless specified otherwise in the device 
specification.

Table A-4. ESD and Latch-up Test Conditions

Model Description Symbol Value Unit

Human Body

Series Resistance R1 1500 
Storage Capacitance C 100 pF

Number of Pulse per pin – 3
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Appendix A Electrical Characteristics and Timing Specifications
Figure A-3. Typical IOH (Low Drive) vs VDD–VOH at VDD = 5 V

Figure A-4. Typical IOH (High Drive) vs VDD–VOH at VDD = 5 V
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