

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 50x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gc010-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space (DS) during code execution.

4.1 **Program Memory Space**

The program address memory space of the PIC24FJ128GC010 family devices is 4M instructions. The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in **Section 4.3** "Interfacing **Program and Data Memory Spaces**".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FJ128GC010 family of devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ128GC010 FAMILY DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	-	—	—	C3EVT	C2EVT	C1EVT	—	—	—	—	_	C3OUT	C2OUT	C10UT	0000
CVRCON	0632	_	_	_	_	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3CON	0638	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	—	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
CRCCON1	0640	CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	0040
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644		X<15:1> —											0000				
CRCXORH	0646		X<31:16>										0000					
CRCDATL	0648							CRC	C Data Input	Register L	ow							0000
CRCDATH	064A		CRC Data Input Register High									0000						
CRCWDATL	064C		CRC Result Register Low									0000						
CRCWDATH	064E		CRC Result Register High 0										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: BAND GAP BUFFER INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BUFCON0	0670	BUFEN	—	BUFSIDL	BUFSLP	—	—	_	—	_	BUFSTBY	—	—	—	—	BUFREF1	BUFREF0	0000
BUFCON1	0672	BUFEN	_	BUFSIDL	BUFSLP	_	—	_	_	BUFOE	BUFSTBY	—	—	—	_	BUFREF1	BUFREF0	0000
BUFCON2	0674	BUFEN	_	BUFSIDL	BUFSLP	_	—	_	_	BUFOE	BUFSTBY	—	—	—	_	BUFREF1	BUFREF0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

9.6.1 CONSIDERATIONS FOR USB OPERATION

When using the USB On-The-Go module in PIC24FJ128GC010 family devices, users must always observe these rules in configuring the system clock:

- The oscillator modes listed in Table 9-3 are the only oscillator configurations that permit USB operation. There is no provision to provide a separate external clock source to the USB module.
- For USB operation, the selected clock source (EC, HS or XT) must meet the USB clock tolerance requirements.
- When the FRCPLL Oscillator mode is used for USB applications, the FRC self-tune system should be used as well. While the FRC is accurate, the only two ways to ensure the level of accuracy required by the *"USB 2.0 Specification"*, throughout the application's operating range, are either the self-tune system or manually changing the TUN<5:0> bits.
- The user must always ensure that the FRC source is configured to provide a frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001 or 000) and that the USB PLL prescaler is configured appropriately.
- All other oscillator modes are available; however, USB operation is not possible when these modes are selected. They may still be useful in cases where other power levels of operation are desirable and the USB module is not needed (e.g., the application is Sleeping and waiting for a bus attachment).

9.7 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ128GC010 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV<3:0> bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the Primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

9.8 Secondary Oscillator

9.8.1 BASIC SOSC OPERATION

PIC24FJ128GC010 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC, Timer1 or DSWDT) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as 1 second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL bit (CW3<8>) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

9.8.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency:

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 50K; 70K maximum

In addition, the two external crystal loading capacitors should be in the range of 22-27 pF, which will be based on the PC board layout. The capacitors should be COG, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin and is recommended to be in the range of 40-60% and accurate to ± 0.65 Hz.

Note: Do not enable the LCD Segment pin, SEG17, on RD0 when using the 64-pin package if the SOSC is used for timesensitive applications. Avoid high-frequency traces adjacent to the SOSCO and SOSCI pins as this can cause errors in the SOSC frequency and/or duty cycle.

10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintains the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in **Section 10.5 "VBAT Mode"**.

10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ128GC010 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep or Deep Sleep modes are invoked. It is controlled by the LPCFG Configuration bit (CW1<10>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2 Idle Mode

Idle mode provides these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode, if the WDT or RTCC with LPRC as the clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode, with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows Core Digital Logic Voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC, LCD, etc.

10.6 Clock Frequency and Clock Switching

In Run and Idle modes, all PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration**".

10.7 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:8 being the default. A ratio setting of 1:8 means the CPU is running at 1/8th the frequency of the peripherals.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. Operations that immediately follow any manipulations of the DOZE<2:0> or DOZEN bits (CLKDIV<14:11>) should not perform any SFR or data RAM reads or writes as it can result in incorrect results. As a result, any time the DOZEx or DOZEN bits are modified, a NOP instruction should be manually inserted before and after the instructions modifying these bits, as shown in Example 10-3.

FXAMPLE 10-3	ENTERING/EXITING DOZE
LAANIFLL IV-J.	

Entering Doze Mode: NOP(); OSCCONDits.DOZEN = 1; NOP(); Exiting Doze Mode: NOP(); OSCCONDits.DOZEN = 0; NOP();

10.8 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. Setting the disable bit in a peripheral module will still cause that peripheral to draw some quiescent current. Since most applications do not need every peripheral in the chip, there is a mechanism for physically shutting the clocks off to every selected peripheral, thereby reducing the overall current drain of the chip.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers (XXXMD bits are in the PMDx registers shown in Table 4-39).

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS70000352) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GC010 family contain seven independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation, with up to 30 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to 6 Clock Sources Available for Each module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL<4:0> bits determine the sync/trigger source.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1 ⁽²⁾					
bit 15							bit 8					
R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0					
ENFLT0 ⁽²	²⁾ OCFLT2 ^(2,3)	OCFLT1 ^(2,4)	OCFLT0 ^(2,4)	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾					
bit 7		•					bit 0					
Legend:		HSC = Hardw	are Settable/Cl	earable bit								
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15-14	Unimplement	ted: Read as 'd)'									
bit 13	OCSIDL: Out	put Compare x	Stop in Idle Mo	de Control bit								
	1 = Output Co	1 = Output Compare x halts in CPU Idle mode										
	0 = Output Co	0 = Output Compare x continues to operate in CPU Idle mode										
bit 12-10	OCTSEL<2:0	OCTSEL<2:0>: Output Compare x Timer Select bits										
	111 = Periphe	eral clock (FCY))									
	110 = Reserv	ed										
	101 = Reserv 100 = Timer1	clock (only the	svnchronous o	clock is supporte	ed)							
	011 = Timer5	clock	,									
	010 = Timer4	clock										
	$001 = 1 \text{ Imer}^3$	CIOCK										
hit Q	ENELT2: Faul	tiock	o hit(2)									
DIL 9	1 = Fault 2 (C)	Comparator 1/2	/3 out) is enable	ed(3)								
	0 = Fault 2 is	disabled		cu								
bit 8	ENFLT1: Faul	lt Input 1 Enabl	e bit ⁽²⁾									
	1 = Fault 1 (C	CFB pin) is en	abled ⁽⁴⁾									
bit 7	ENELTO: Foul	t Input 0 Enabl	o bit(2)									
	1 = Fault 0 (C))CEA nin) is en	abled(4)									
	0 = Fault 0 (c)	disabled										
bit 6	OCFLT2: PW	M Fault 2 (Com	parator 1/2/3)	Condition Statu	s bit ^(2,3)							
	1 = PWM Fau	ult 2 has occurr	ed									
	0 = No PWM	Fault 2 has oc	curred	(2.4)								
bit 5	OCFLT1: PW	M Fault 1 (OCF	B pin) Conditio	on Status bit ^(2,4))							
	1 = PWM Fat	ult 1 has occurr	red									
		Fault Thas oc	curred									
Note 1:	The OCx output r "Peripheral Pin	nust also be co Select (PPS)"	onfigured to an	available RPn p	oin. For more in	nformation, see	Section 11.4					
2:	The Fault input e	nable and Faul	t status bits are	e valid when OC	CM<2:0> = 111	or 110.						
3:	The Comparator	1 output contro	ols the OC1-OC	3 channels; Co	mparator 2 out	tput controls the	e OC4-OC6					
-	channels; Compa	arator 3 output	controls the OC	C7-OC9 channe	ls.	–	· • ··					
A .				tiou mod to or or		Up pup I or mean						

4: The OCFA/OCFB Fault inputs must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC				
SPIEN ⁽¹)	SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0				
bit 15							bit 8				
R-0, HS0	C R/C-0, HS	R-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC				
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF				
bit 7							bit 0				
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit						
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
HSC = Ha	rdware Settable/C	learable bit									
		(1)									
bit 15	SPIEN: SPIX	Enable bit("				al nant nina					
	1 = Enables	module and cor module	ingures SCKX	, SDOX, SDIX a	ing 55x as sen	ai port pins					
bit 14	Unimplemen	ted: Read as '()'								
bit 13	SPISIDL: SPI	lx Stop in Idle M	lode bit								
	1 = Discontin	ues module op	eration when a	device enters lo	lle mode						
	 0 = Continues module operation in Idle mode 										
bit 12-11	Unimplemen	ted: Read as 'o)'								
bit 10-8	SPIBEC<2:0>	SPIx Buffer E	Element Count	bits (valid in Er	nhanced Buffer	mode)					
	Master mode:	f SDI transform	nonding								
	Slave mode.		penuing.								
	The number of	of SPI transfers	unread.								
bit 7	SRMPT: SPIx	Shift Register	(SPIxSR) Emp	oty bit (valid in E	Enhanced Buffe	er mode)					
	1 = SPIx Shif 0 = SPIx Shif	ft register is em ft register is not	pty and ready empty	to send or rece	eive						
bit 6	SPIROV: SPI	x Receive Over	flow Flag bit								
	1 = A new by	te/word is comp	letely received	and discarded;	the user softw	are has not rea	d the previous				
	data in th	e SPIxBUF reg	jister.								
hit 5			u O Empty bit (y	olid in Enhance	d Buffor mode						
DIUS	1 = Receive l	FIFO is empty)					
	0 = Receive I	FIFO is not emp	oty								
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	its (valid in Enh	anced Buffer m	iode)					
	111 = Interru	pt when the SP	lx transmit but	ffer is full (SPIT	BF bit is set)						
	110 = Interru	110 = Interrupt when the last bit is shifted into SPIxSR; as a result, the TX FIFO is empty									
	101 = Interru 100 = Interru	pt when one da	ata is shifted in	to the SPIXSR;	as a result. the	TX FIFO has	one open spot				
	011 = Interru	pt when the SP	Ix receive buff	fer is full (SPIRI	BF bit is set)						
	010 = Interru	pt when the SP	Ix receive buff	fer is 3/4 or moi	re full						
		pi when the last	available in the	ie receive buffe ceive buffer is re	ad: as a result	3 SEL) the buffer is en	noty (SRXMPT				
	bit is se	et)			aa, ao a rooull,						
							•				

Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

19.1.2 HOST AND OTG MODES

19.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ128GC010 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

19.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the *"USB 2.0 OTG Specification"* requires that the host application should supply power on VBUS. Since the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 19-5). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 19-6.

FIGURE 19-5: USB OTG HOST INTERFACE EXAMPLE

FIGURE 19-6: USB OTG INTERFACE EXAMPLE

REGISTER	19-4: U1C	DTGCON: USB	OTG CONTRO	L REGISTE	R		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_			_	—
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0
DPPULUP	DMPULUP	DPPULDWN ⁽¹⁾	DMPULDWN ⁽¹⁾	_	OTGEN ⁽¹⁾	_	VBUSDIS ⁽¹⁾
bit 7							bit 0
Legend:		r = Reserved bi	t				
R = Readab	le bit	W = Writable bit	t	U = Unimple	mented bit, rea	ad as 'O'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15-8	Unimplemer	nted: Read as '0	3				
bit 7	DPPULUP: [D+ Pull-up Enabl	e bit				
	1 = D+ data	line pull-up resis	tor is enabled				
	0 = D + data	line pull-up resis	tor is disabled				
bit 6	DMPULUP:	D- Pull-up Enable	e bit				
	1 = D-data	line pull-up resist	or is enabled				
hit 5			Enable bit(1)				
DIUS	1 = D + data	line null-down re					
	0 = D + data	line pull-down re	sistor is disabled				
bit 4	DMPULDWN	I: D- Pull-Down I	Enable bit ⁽¹⁾				
	1 = D- data	line pull-down re:	sistor is enabled				
	0 = D- data	line pull-down rea	sistor is disabled				
bit 3	Reserved: N	/laintain as '0'					
bit 2	OTGEN: OT	G Features Enab	ole bit ⁽¹⁾				
	1 = USB OT 0 = USB OT of the He	G is enabled; all G is disabled; D OSTEN and USE	D+/D- pull-up and +/D- pull-up and p BEN (U1CON<3,0	d pull-down bi oull-down bits >) bits	ts are enabled are controlled	in hardware	by the settings
bit 1	Reserved: N	/laintain as '0'					
bit 0	VBUSDIS: V	′в∪s Discharge E	nable bit ⁽¹⁾				
	1 = VBUS line 0 = VBUS line	e is discharged t e is not discharge	hrough a resistor ed				

Note 1: These bits are only used in Host mode; do not use them in Device mode.

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IBF	IBOV	_	_	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾				
bit 15						•	bit 8				
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC				
OBE	OBUF			OB3E	OB2E	OB1E	OB0E				
bit 7							bit 0				
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit					
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	IBF: Input Bu	ffer Full Status b	bit								
	1 = All writab	le Input Buffer r	egisters are fu	ll na sistema ana am	a a ta c						
	0 = Some or	all of the writab		registers are er	npty						
DIT 14			Status Dit			(ft					
	1 = A write a 0 = No overfl	ow occurred	iput register of	ccurred (must b		ntware)					
bit 13-12	Unimplemen	ted: Read as '0	,								
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	tus Full bits ⁽¹⁾								
	1 = Input Buf	fer x contains u	nread data (rea	ading the buffer	will clear this b	pit)					
	0 = Input Buf	fer x does not c	ontain unread	data							
bit 7	OBE: Output	Buffer Empty S	tatus bit								
	1 = All reada	ble Output Buffe	er registers are	empty	£11						
hit C		all of the redual		er registers are	TUI						
DILO			ow Status bit	Duffer register	(must be alcored	din ooffwara)					
	1 = A read od 0 = No under	flow occurred		Buller register	(must be cleare	eu in soltware)					
bit 5-4	Unimplemen	Unimplemented: Read as '0'									
bit 3-0	OB3E:OB0E:	B3E:OB0E: Output Buffer x Status Empty bit									
	1 = Output B	uffer x is empty	(writing data to	the buffer will	clear this bit)						
	0 = Output B	uffer x contains	untransmitted	data							
–											

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1 or Byte 2 and 3) get cleared, even on byte reading.

COMLines		Segn	nents	
COWLINES	0 to 15	16 to 31	32 to 47	48 to 62
0	LCDDATA0	LCDDATA1	LCDDATA2	LCDDATA3
	S00C0:S15C0	S16C0:S31C0	S32C0:S47C0	S48C0:S63C0
1	LCDDATA4	LCDDATA5	LCDDATA6	LCDDATA7
	S00C1:S15C1	S16C1:S31C1	S32C1:S47C1	S48C1:S63C1
2	LCDDATA8	LCDDATA9	LCDDATA10	LCDDATA11
	S00C2:S15C2	S16C2:S31C2	S32C2:S47C2	S48C2:S63C2
3	LCDDATA12	LCDDATA13	LCDDATA14	LCDDATA15
	S00C3:S15C3	S16C3:S31C3	S32C3:S47C3	S48C3:S63C3
4	LCDDATA16	LCDDATA17	LCDDATA18	LCDDATA19
	S00C4:S15C4	S16C4:S31C4	S32C4:S47C4	S48C4:S59C4
5	LCDDATA20	LCDDATA21	LCDDATA22	LCDDATA23
	S00C5:S15C5	S16C5:S31C5	S32C5:S47C5	S48C5:S69C5
6	LCDDATA24	LCDDATA25	LCDDATA26	LCDDATA27
	S00C6:S15C6	S16C6:S31C6	S32C6:S47C6	S48C6:S59C6
7	LCDDATA28	LCDDATA29	LCDDATA30	LCDDATA31
	S00C7:S15C7	S16C7:S31C7	S32C7:S47C7	S48C7:S59C7

TABLE 22-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

23.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 23-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
Contains a value from 0 to 9.bit 3-0YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 23-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x R/W-x		R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE3 MTHONE2		MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	itable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0' bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'. bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9. bit 7-6 Unimplemented: Read as '0' bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3. bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2012-2016 Microchip Technology Inc.

REGISTER 26-9: ADLnPTR: A/D SAMPLE LIST n POINTER REGISTER (n = 0 to 3)

U-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0
_		ADNEXT<6:0>					
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	_	_	_	
bit 7			•			•	bit 0
Legend:		U = Unimplem	nented bit read	1 as '0'			

Legena:	O = Onimplemented bit, read as O				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-8 **ADNEXT<6:0>:** Pointer to Next Entry on A/D Sample List to be Converted bits This value is added to the start of the sample list to determine the ADTBLn register to be used for the next trigger event.

bit 7-0 Unimplemented: Read as '0'

REGISTER 26-10: ADTBLn: A/D SAMPLE TABLE ENTRY n REGISTER (n = 0 to 31)

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
UCTMU	DIFF	—	—	—	—	—	—	
bit 15 bit 8								

U-0	R/W-0						
	ADCH6	ADCH5	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	UCTMU: Enable CTMU During Entry Conversion bit				
	 1 = CTMU is enabled during channel conversion for this entry 0 = CTMU is disabled during channel conversion for this entry 				
bit 14	DIFF: Differential Inputs Select bit				
	1 = Analog inputs are sampled as differential pairs for this entry0 = Analog inputs are sampled as single-ended for this entry				
bit 13-7	Unimplemented: Read as '0'				
bit 6-0	ADCH<6:0>: A/D Channel Entry Select bits				
	See Table 26-1 for a complete description.				

Γ.

FIGURE 32-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 32-4: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

REGISTER 32-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is the Comparator 3 output 1110 = Edge 2 source is the Comparator 2 output 1101 = Edge 2 source is the Comparator 1 output 1100 = Unimplemented, do not use 1011 = Edge 2 source is IC3 1010 = Edge 2 source is IC2 1001 = Edge 2 source is IC1 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11⁽¹⁾ 0101 = Edge 2 source is CTED10⁽¹⁾ 0100 = Edge 2 source is CTED9 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is OC1 0000 = Edge 2 source is Timer1 bit 1-0 Unimplemented: Read as '0'

Note 1: Edge sources, CTED3, CTED7, CTED10 and CTED11, are available in 100-pin devices only.

TABLE 37-22: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 1.97	_	32 48	MHz MHz	EC ECPLL (Note 2)
		Oscillator Frequency	3.5 4 10 12 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	-	—	_	—	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽³⁾	62.5	—	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽⁴⁾	_	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽⁴⁾	_	6	10	ns	

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 37-1.
- 3: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

FIGURE 37-6: 12-BIT A/D INL, 10 ms/s, AVDD = 3.0V, TYPICAL

FIGURE 38-43: 12-BIT PIPELINE A/D OFFSET vs. TEMPERATURE

FIGURE 38-44: 12-BIT PIPELINE A/D GAIN vs. TEMPERATURE

