

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 50x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128gc010t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din	Pin Num	ber/Grid L	ocator		Innut	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
AN41	44	70	D11	I	ANA	12-Bit Pipeline A/D Converter Inputs.
AN42	45	71	C11	I	ANA	
AN43	46	72	D9	I	ANA	
AN44	51	78	B9	I	ANA	
AN45	—	79	A9	I	ANA	
AN46	—	80	D8	I	ANA	
AN47	52	81	C8	I	ANA	
AN48	53	82	B8	I	ANA	
AN49	8	14	F3	I	ANA	
AVDD	19	30	J4	Р	—	Positive Supply for Analog modules.
AVREF+	16	25, 29	K2, K3	I	ANA	Pipeline A/D Reference Voltage (high) Input.
AVREF-	15	24, 28	K1, L2	I	ANA	Pipeline A/D Reference Voltage (low) Input.
AVss	20	31	L3	Р	—	Ground Reference for Analog modules.
BGBUF1	16	25	K2	0	_	Buffered Band Gap Reference 1 Voltage Output.
BGBUF2	4	10	E3	0	_	Buffered Band Gap Reference 2 Voltage Output.
C1INA	11	20	H1	Ι	ANA	Comparator 1 Input A.
C1INB	12	21	H2	-	ANA	Comparator 1 Input B.
C1INC	5	11	F4	Ι	ANA	Comparator 1 Input C.
C1IND	4	10	E3	Ι	ANA	Comparator 1 Input D.
C2INA	13	22	J1	Ι	ANA	Comparator 2 Input A.
C2INB	14	23	J2	Ι	ANA	Comparator 2 Input B.
C2INC	8	14	F3	Ι	ANA	Comparator 2 Input C.
C2IND	6	12	F2	Ι	ANA	Comparator 2 Input D.
C3INA	55	84	C7	Ι	ANA	Comparator 3 Input A.
C3INB	54	83	D7	Ι	ANA	Comparator 3 Input B.
C3INC	45	71	C11	Ι	ANA	Comparator 3 Input C.
C3IND	44	70	D11	Ι	ANA	Comparator 3 Input D.
CH0+	22	33	L4	Ι	ANA	Sigma-Delta A/D Converter Channel 0 Non-Inverting Analog Input.
CH0-	23	34	H5	I	ANA	Sigma-Delta A/D Converter Channel 0 Inverting Analog Input.
CH1+	24	35	K5	Ι	ANA	Sigma-Delta A/D Converter Channel 1 Non-Inverting Analog Input.
CH1-	25	36	L5	I	ANA	Sigma-Delta A/D Converter Channel 1 Inverting Analog Input.
CH1SE	25	36	L5	Ι	ANA	Sigma-Delta A/D Converter Single-Ended Channel 1 Analog Input.
CLKI	39	63	F9	I	ANA	Main Clock Input Connection.
CLKO	40	64	F11	0	_	System Clock Output.

TABLE 1-3: PIC24FJ128GC010 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

Dia	Pin Num	ber/Grid L	ocator		Innert	uput Description				
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description				
RPI32	_	40	K6	-	ST	Remappable Peripherals (input only).				
RPI33	—	18	G1	I	ST					
RPI34	—	19	G2	I	ST					
RPI35	_	67	E8	-	ST					
RPI36	_	66	E11	_	ST					
RPI37	48	74	B11	-	ST					
RPI38	_	6	D1	-	ST					
RPI39	—	7	E4	I	ST					
RPI40	_	8	E2	_	ST					
RPI41	_	9	E1	-	ST					
RPI42	—	79	A9	I	ST					
RPI43	_	47	L9	_	ST					
RTCC	42	68	E9	0		Real-Time Clock Alarm/Seconds Pulse Output.				
SCL1	44	66	E11	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.				
SCL2	32	50, 58	H11, L11	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.				
SCLKI	48	74	B11	-	ST	Secondary Oscillator Digital Clock Input.				
SDA1	43	67	E8	I/O	l ² C	I2C1 Data Input/Output.				
SDA2	31	49, 59	G10, L10	I/O	l ² C	I2C2 Data Input/Output.				
SEG0	4	10	E3	0		LCD Driver Segment Outputs.				
SEG1	8	14	F3	0	_					
SEG2	11	20	H1	0	_					
SEG3	12	21	H2	0	_					
SEG4	13	22	J1	0	_					
SEG5	14	23	J2	0	—					
SEG6	15	24	K1	0	_					
SEG7	16	25	K2	0	_					
SEG8	29	43	K7	0	_					
SEG9	30	44	L8	0	_					
SEG10	31	49	L10	0	—					
SEG11	32	50	L11	0	_					
SEG12	33	51	K10	0						
SEG13	42	68	E9	0						
SEG14	43	69	E10	0	_					
SEG15	44	70	D11	0	_					
SEG16	45	71	C11	0	—					
SEG17	46	72	D9	0	_					
SEG18	27	41	J7	0]				
SEG19	28	42	L7	0]				
SEG20	49	76	A11	0	_					

TABLE 1-3: PIC24FJ128GC010 FAMILY PINOUT DESCRIPTION (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

TABLE 4-12: OP AMP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP1CON	024A	AMPEN		AMPSIDL	AMPSLP	INTPOL1	INTPOL0	CMOUT	CMPSEL	SPDSEL	AMPOE	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000
AMP2CON	024C	AMPEN	—	AMPSIDL	AMPSLP	INTPOL1	INTPOL0	CMOUT	CMPSEL	SPDSEL	AMPOE	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000
1 I							1											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA<	<15:14>	_	_		TRISA	<10:9>	—				TRISA	\<7:0>				C6FF
PORTA	02C2	RA<1	5:14>	_	_	_	RA<′	10:9>	— RA<7:0>						xxxx			
LATA	02C4	LATA<	15:14>	_	_	_	LATA<	<10:9>	—		LATA<7:0>						xxxx	
ODCA	02C6	ODA<	15:14>	—	_		ODA<	<10:9>	—	- ODA<7:0>					0000			

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal. Reset values shown are for 100/121-pin devices.

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices.

TABLE 4-14: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB	<15:12>		—	-	—	—	TRISB<7:0>						FOFF		
PORTB	02CA		RB<1	5:12>		_	_	_	_	RB<7:0>						xxxx		
LATB	02CC		LATB<	:15:12>		_	—	_	_	LATB<7:0>						xxxx		
ODCB	02CE		ODB<	15:12>		_	—	_	_	ODB<7:0>						0000		

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-22: DAC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON	0440	DACEN	_	DACSIDL	DACSLP	DACFM	_	-	DACTRIG	—	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
DAC1DAT	0442	DAC1 Input Value Register											0000					
DAC2CON	0444	DACEN	_	DACSIDL	DACSLP	DACFM	_	_	DACTRIG	_	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
DAC2DAT	0446								DAC2	Input Value	e Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: SIGMA-DELTA A/D REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SD1CON1	04D0	SDON	—	SDSIDL	SDRST	r	SDGAIN2	SDGAIN1	SDGAIN0	DITHER1	DITHER0		VOSCAL	_	SDREFN	SDREFP	PWRLVL	0000
SD1CON2	04D2	CHOP1	CHOP0	SDINT1	SDINT0	_	_	SDWM1	SDWM0	_	—	—	RNDRES1	RNDRES0	—	-	SDRDY	0000
SD1CON3	04D4	SDDIV2	SDDIV1	SDDIV0	SDOSR2	SDOSR1	SDOSR0	SDCS1	SDCS0	_	—	—	_	-	SDCH2	SDCH1	SDCH0	0000
SD1RESH	04D6	Sigma-Delta A/D Result Register (bits<31-16>) 0000									0000							
SD1RESL	04D8	Sigma-Delta A/D Result Register (bits<15-0>) 0000										0000						

Legend: — = unimplemented, read as '0'; r = reserved, do not modify. Reset values are shown in hexadecimal.

TABLE 4-24: ANALOG CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANCFG	04DE	_	_	_	_	—	_	_	_	_	_	_	_	—	VBG2EN	—		0000
ANSA	04E0	ANSA<1	5:14> ⁽¹⁾	_	_	_	ANSA-	<10:9> ⁽¹⁾	_		ANSA	<7:4> ⁽¹⁾	-	_	_	ANSA1 ⁽¹⁾		C6F2
ANSB	04E2		ANSB<	:15:12>		_	—	_	_	ANSB<7:0>							FOFF	
ANSC	04E4	_	_	_	_	_	_	_	_	_	_	_	ANSC<	<4:3> ⁽¹⁾	—	ANSC1 ⁽¹⁾		001A
ANSD	04E6					-	-	ANSD<15	5:2> ⁽¹⁾	-		-	-			_	ANSD0	FFFD
ANSE ⁽²⁾	04E8	_	_	_	_	_	_	ANSE9	_		ANSE	<7:4>		_	_	_	_	02F0
ANSF	04EA	_	_	ANSF13 ⁽¹⁾		_	_	_	ANSF<	(1)			ANSF<	<5:2> ⁽¹⁾		_	ANSF0	21BD
ANSG	04EC	ANSG15 ⁽¹⁾		_		_	_		ANSG	<9:6>	-	_	_	_	_	_	_	83C0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The ANSAx, ANSCx, ANSD<15:12>, ANSF<13,8,2> and ANSG15 bits are unimplemented in 64-pin devices, read as '0'.

2: This register is not available in 64-pin devices.

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> bit decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-43 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAG (Data Space Read Register)	Source Address While Indirect Addressing	23-Bit EA Pointing to EDS	Comment
200h		000000h to 007FFEh	Lower words of 4M program
•		•	instructions; (8 Mbytes) for
•		•	read operations only.
•		•	
2FFh		7F8000h to 7FFFFEh	
300h	8000h to FFFFh	000001h to 007FFFh	Upper words of 4M program
•		•	instructions (4 Mbytes remaining,
•		•	4 Mbytes are phantom bytes); for
•		•	read operations only.
3FFh		7F8001h to 7FFFFFh	
000h		Invalid Address	Address error trap ⁽¹⁾

TABLE 4-43: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

; Set the EDS pa	ge from where the data	a to be read
mov #0x02	202, w0	
mov w0, D	SRPAG	;page 0x202, consisting lower words, is selected for read
mov #0x00)0A, w1	;select the location (0x0A) to be read
bset w1, #	ŧ15	;set the MSB of the base address, enable EDS mode
;Read a byte from	m the selected location	on
mov.b [w1++	-], w2	;read Low byte
mov.b [w1++	-], w3	;read High byte
;Read a word from	m the selected location	on
mov [w1],	w2	;
;Read Double - w	ord from the selected	location
mov.d [w1],	w2	;two word read, stored in w2 and w3

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0					
DAC2IE	DAC1IE	CTMUIE	—	—	—	—	HLVDIE					
bit 15							bit 8					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0					
—	—	—	—	CRCIE	U2ERIE	U1ERIE						
bit 7							bit 0					
Legend:												
R = Readat	ole bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
bit 15	DAC2IE: DAC	C Converter 2 Ir	nterrupt Enable	e bit								
	1 = Interrupt	request is enab	led									
h:t d d		request is not e		- h:4								
DIT 14	DAC1IE: DAC Converter 1 Interrupt Enable bit											
	1 = Interrupt 0 = Interrupt	request is enab	nabled									
bit 13	CTMUIE: CT	MU Interrupt En	able bit									
	1 = Interrupt	request is enab	led									
	0 = Interrupt	request is not e	nabled									
bit 12-9	Unimplemen	ted: Read as '0	,									
bit 8	HLVDIE: High	n/Low-Voltage E	Detect Interrup	t Enable bit								
	1 = Interrupt	request is enab	led									
	0 = Interrupt	request is not e	nabled									
bit 7-4	Unimplemen	ted: Read as '0)'									
bit 3	CRCIE: CRC	Generator Inter	rupt Enable bi	it								
	1 = Interrupt	request is enab	led									
hit 2		RT2 Error Interri	int Enable bit									
		request is enab										
	0 = Interrupt	request is not e	nabled									
bit 1	U1ERIE: UAF	RT1 Error Interro	upt Enable bit									
	1 = Interrupt	request is enab	led									
	0 = Interrupt	request is not e	nabled									
bit 0	Unimplemen	ted: Read as '0) [*]									

REGISTER 8-17: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description		
PORTA<15:14,7:0> ⁽¹⁾				
PORTB<15:14,12,7,4,2>				
PORTC<4:1> ⁽¹⁾				
PORTD<15:0> ⁽¹⁾	5.5V	for most standard logic.		
PORTE<9:8,4:0> ⁽¹⁾				
PORTF<13:12,8:7,5:0> ⁽¹⁾				
PORTG<15:12,1:0> ⁽¹⁾				
PORTA<10:9>				
PORTB<13,6:5,3,1:0>				
PORTC<15:12> ⁽¹⁾	VDD	Only VDD input levels are tolerated.		
PORTE<7:5>				
PORTG<9:6,3:2>				

Note 1: Not all of these pins are implemented in 64-pin devices. Refer to **Section 1.0 "Device Overview"** for a complete description of port pin implementation.

R/W-1	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
ANSG15 ⁽¹⁾	_	—	_	—	—	ANSO	6<9:8>
bit 15		•					bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSC	G<7:6>	—	—	—	—	—	
bit 7			•	•	•	•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	eared x = Bit is unknown		
bit 15	ANSG15: Ana	alog Function S	Selection bit ⁽¹⁾				
	1 = Pin is cor	nfigured in Ana	log mode; I/O p	port read is disa	abled		
	0 = Pin is cor	nfigured in Digi	tal mode; I/O p	ort read is enal	bled		
bit 14-10	Unimplemen	ted: Read as '	D'				
bit 9-6	ANSG<9:6>: Analog Function Selection bits						
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled 						
bit 5-0	Unimplemented: Read as '0'						

REGISTER 11-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

Note 1: This bit is not available in 64-pin devices.

REGISTER 11-8: ANCFG: ANALOG CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0			
_	—		—	—	VBG2EN		—			
bit 7	bit 7 bit 0									
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-3	Unimplemen	ted: Read as 'd)'							
bit 2	VBG2EN: VB	G/2 Enable bit								
	 1 = Band gap voltage reference VBG/2 is enabled 0 = Band gap voltage reference VBG/2 is disabled 									
bit 1-0	Unimplemen	ted: Read as 'o)'							

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)} \right)}{\log_{10}^{(2)}} bits$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

$$TCY = 2 * TOSC = 62.5$$
 ns

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \text{ ms} = (PR2 + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

```
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.
```

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	, 125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

REGISTER 19-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x, HSC					
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15	UOWN: USB Own bit
	 1 = The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or the buffer
bit 14	DTS: Data Toggle Packet bit
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-10	PID<3:0>: Packet Identifier bits (written by the USB module)
	In Device mode:
	Represents the PID of the received token during the last transfer.
	In Host mode:
	Represents the last returned PID or the transfer status indicator.
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.

REGISTER 21-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

R-0, HSC	R/W-0, HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
IBF	IBOV	_	_	IB3F ⁽¹⁾	IB2F ⁽¹⁾	IB1F ⁽¹⁾	IB0F ⁽¹⁾			
bit 15						•	bit 8			
R-1, HSC	R/W-0, HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC			
OBE	OBUF			OB3E	OB2E	OB1E	OB0E			
bit 7							bit 0			
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/C	learable bit				
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	IBF: Input Bu	ffer Full Status b	bit							
	1 = All writab	1 = All writable Input Buffer registers are full								
	0 = Some or	all of the writab		registers are er	npty					
DIT 14			Status Dit			(ft				
	1 = A write a 0 = No overfl	ow occurred	iput register of	ccurred (must b		ntware)				
bit 13-12	Unimplemen	ted: Read as '0	,							
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	tus Full bits ⁽¹⁾							
	1 = Input Buf	fer x contains u	nread data (rea	ading the buffer	will clear this b	pit)				
	0 = Input Buf	fer x does not c	ontain unread	data						
bit 7	OBE: Output	Buffer Empty S	tatus bit							
	1 = All reada	ble Output Buffe	er registers are	empty	£11					
hit C		all of the redual		er registers are	TUI					
DILO			ow Status bit	Duffer register	(must be alcored	din coffuero)				
	1 = A read od 0 = No under	flow occurred		Buller register	(must be cleare	eu in soltware)				
bit 5-4	Unimplemen	ted: Read as '0	,							
bit 3-0	OB3E:OB0E:	Output Buffer	Status Empty	bit						
	1 = Output B	uffer x is empty	(writing data to	the buffer will	clear this bit)					
	0 = Output B	uffer x contains	untransmitted	data						
–										

Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1 or Byte 2 and 3) get cleared, even on byte reading.

23.3.3 ALRMVAL REGISTER MAPPINGS

REGISTER 23-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	—		MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0			
bit 15							bit 8			
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
_	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
DIT 15-13	Unimplement	ed: Read as 10								
bit 12	MTHTEN0: B	inary Coded De	ecimal Value of	f Month's Tens	Digit bit					
	Contains a va	lue of '0' or '1'.								
bit 11-8	MTHONE<3:	0>: Binary Cod	ed Decimal Va	lue of Month's (Ones Digit bits					
	Contains a va	lue from 0 to 9								
bit 7-6	Unimplemen	ted: Read as '	כ'							
bit 5-4	DAYTEN<1:0	>: Binary Code	d Decimal Val	ue of Day's Ten	is Digit bits					
	Contains a va	lue from 0 to 3								
bit 3-0	DAYONE<3:0	>: Binary Code	ed Decimal Val	ue of Day's On	es Digit bits					
		-		-	-					

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 23-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11 bit 10-8	Unimplemented: Read as '0' WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

bit 7

bit 0

REGISTER 26-9: ADLnPTR: A/D SAMPLE LIST n POINTER REGISTER (n = 0 to 3)

U-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0
_				ADNEXT<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	_	_	_	
bit 7			•			•	bit 0
Legend:		U = Unimplem	nented bit read	1 as '0'			

Legena:	U = Unimplemented bit, read as U				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	learable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-8 **ADNEXT<6:0>:** Pointer to Next Entry on A/D Sample List to be Converted bits This value is added to the start of the sample list to determine the ADTBLn register to be used for the next trigger event.

bit 7-0 Unimplemented: Read as '0'

REGISTER 26-10: ADTBLn: A/D SAMPLE TABLE ENTRY n REGISTER (n = 0 to 31)

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
UCTMU	DIFF	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0						
	ADCH6	ADCH5	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UCTMU: Enable CTMU During Entry Conversion bit
	 1 = CTMU is enabled during channel conversion for this entry 0 = CTMU is disabled during channel conversion for this entry
bit 14	DIFF: Differential Inputs Select bit
	1 = Analog inputs are sampled as differential pairs for this entry0 = Analog inputs are sampled as single-ended for this entry
bit 13-7	Unimplemented: Read as '0'
bit 6-0	ADCH<6:0>: A/D Channel Entry Select bits
	See Table 26-1 for a complete description.

Γ.

REGISTER 26-11: ACCONH: A/D ACCUMULATOR CONTROL HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15							bit 8		
R/W-0, HC	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
ACEN ⁽¹⁾	ACIE	—	—	—	—	—	—		
bit 7							bit 0		
Legend:	HC = Hardware Clearable bit								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown		
bit 15-8	Unimplemen	ted: Read as ')'						
bit 7	ACEN: Accur	nulator Enable	bit ⁽¹⁾						
	1 = Accumula	ation is enabled	l; sample and c	onvert the curre	ent sample list	entry on the trig	ger event and		
	add to the	e contents of A	CRESH/L	•					
	0 = The accu COUNTx	bits decremen	ss has not star t to zero)	ted or is comple	ete (cleared in l	naroware when	accumulation		
bit 6	ACIE: Accumulator Interrupt Enable bit								
	1 = An interrupt event is generated when the accumulator decrements to zero								
	0 = Accumula	ator interrupt ev	ents are disab	led					
bit 5-0	Unimplemen	ted: Read as ')'						

Note 1: To avoid unexpected or erroneous results, do not write to ACCONH or ACCONL while ACEN is set.

REGISTER 26-12: ACCONL: A/D ACCUMULATOR CONTROL LOW REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TBLSEL5	TBLSEL4	TBLSEL3	TBLSEL2	TBLSEL1	TBLSEL0
bit 15							bit 8

| R/W-0, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| COUNT7 | COUNT6 | COUNT5 | COUNT4 | COUNT3 | COUNT2 | COUNT1 | COUNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **TBLSEL<5:0>:** Pointer to ADTBLn Used to Select ANx Channel to be Accumulated bits The ANx channel is designated by the ADTBLn register (where n = TBLSEL<5:0> value).

bit 7-0 **COUNT<7:0>**: Accumulations to be Completed Counter bits Decrements on each accumulated sample. Before starting the accumulation process, preload the COUNTx bits field with the number of samples to accumulate (ex: To get a 9 sample sum, load COUNT with 9). Starting with a COUNT value of 0 will result in 256 samples being accumulated.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
HLVDEN	—	LSIDL	—	—	—	_	—		
bit 15	•	•					bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0		
bit 7							bit 0		
r									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown						
bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled									
bit 14	Unimplemented: Read as '0'								
bit 13	LSIDL: HLVD	Stop in Idle Mo	ode bit						
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								
bit 12-8	Unimplemented: Read as '0'								
bit 7	VDIR: Voltage Change Direction Select bit								
	 1 = Event occurs when voltage equals or exceeds the trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below the trip point (HLVDL<3:0>) 								
bit 6	BGVST: Band Gap Voltage Stable Flag bit								
	 1 = Indicates that the band gap voltage is stable 0 = Indicates that the band gap voltage is unstable 								
bit 5	IRVST: Internal Reference Voltage Stable Flag bit								
	1 = Internal reference voltage is stable; the High-Voltage Detect logic generates the interrupt flag at the								
	 specified voltage range 0 = Internal reference voltage is unstable; the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled 								
bit 4	Unimplement	ted: Read as ')'						
bit 3-0	HIVDI <3:0>: High/Low-Voltage Detection Limit bits								
	1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1 ⁽¹⁾ 1101 = Trip Point 2 ⁽¹⁾ 1100 = Trip Point 3 ⁽¹⁾								
	• 0100 = Trip P 00xx = Unuse	Point 11 ⁽¹⁾ ed							

REGISTER 33-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

TABLE 36-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{ }	Optional field or operation			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double-Word mode selection			
.S	Shadow register select			
.w	Word mode selection (default)			
bit4	4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0000h1FFFh}			
lit1	1-bit unsigned literal $\in \{0,1\}$			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal ∈ {031}			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016383}			
lit16	16-bit unsigned literal $\in \{065535\}$			
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'			
None	Field does not require an entry, may be blank			
PC	Program Counter			
Slit10	10-bit signed literal \in {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal \in {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)			
Wn	One of 16 Working registers ∈ {W0W15}			
Wnd	One of 16 destination Working registers ∈ {W0W15}			
Wns	One of 16 source Working registers ∈ {W0W15}			
WREG	W0 (Working register used in file register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			

DC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss		0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss		0.15 VDD	V	
DI15		MCLR	Vss		0.2 VDD	V	
DI16		OSCI (XT mode)	Vss		0.2 VDD	V	
DI17		OSCI (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C Buffer	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: without 5V Tolerance with 5V Tolerance	0.65 Vdd 0.65 Vdd		Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: without 5V Tolerance with 5V Tolerance	0.25 VDD + 0.8 0.25 VDD + 0.8	—	Vdd 5.5	V V	
DI25		MCLR	0.8 Vdd		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C Buffer	0.7 Vdd		5.5	V	
DI29		I/O Pins with SMBus Buffer	2.1		5.5	V	SMBus enabled
DI30	ICNPU	CNx Pull-up Current	150	290	550	μA	VDD = 3.3V, VPIN = VSS
DI30a	ICNPD	CNx Pull-Down Current	150	260	550	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽²⁾					
DI50		I/O Ports	—	_	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		Analog Input Pins	—	_	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	—	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI/CLKI	—	_	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &E{\sf C}, X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$

TABLE 37-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pin buffer types.

© 2012-2016 Microchip Technology Inc.

DS30009312D-page 451

FIGURE 38-47: 10-BIT DAC OFFSET vs. TEMPERATURE

FIGURE 38-48: 10-BIT DAC GAIN vs. TEMPERATURE

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B