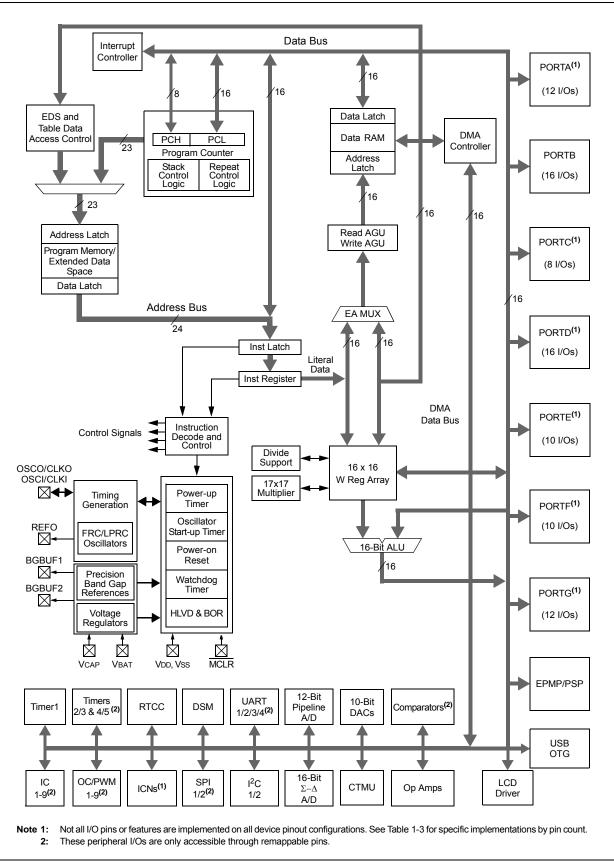


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 29x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gc006t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-1: PIC24FJ128GC010 FAMILY GENERAL BLOCK DIAGRAM

TABLE 4-3: CPU CORE REGISTERS MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working R	egister 0								0000
WREG1	0002		Working Register 1													0000		
WREG2	0004								Working R	egister 2								0000
WREG3	0006		Working Register 3												0000			
WREG4	0008								Working R	egister 4								0000
WREG5	000A								Working R	egister 5								0000
WREG6	000C								Working R	egister 6								0000
WREG7	000E								Working R	egister 7								0000
WREG8	0010								Working R	egister 8								0000
WREG9	0012								Working R	egister 9								0000
WREG10	0014		Working Register 10										0000					
WREG11	0016		Working Register 11										0000					
WREG12	0018								Working Re	egister 12								0000
WREG13	001A								Working Re	egister 13								0000
WREG14	001C								Working Re	egister 14								0000
WREG15	001E								Working Re	egister 15								0800
SPLIM	0020							Stack	Pointer Lim	it Value Reg	gister							xxxx
PCL	002E							Progran	n Counter L	ow Word R	egister							0000
PCH	0030	_	_	_	_	_	_	_	_			Progran	n Counter F	Register Hig	h Byte			0000
DSRPAG	0032	_	_	_	_	_	_			Exte	nded Data	Space Rea	d Page Ado	dress Regis	ter			0000
DSWPAG	0034	_	_	_	_	_	_	_			Extended	Data Space	e Write Pag	e Address	Register			0000
RCOUNT	0036		REPEAT Loop Counter Register										xxxx					
SR	0042	_	_	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	—	—	_	—	—		_	—	—	_	IPL3	r	—	—	0004
DISICNT	0052	— — Disable Interrupts Counter Register x										xxxx						
TBLPAG	0054	_	_	_	_	_		—	_			Table Me	emory Page	Address R	legister			0000

Legend: - = unimplemented, read as '0'; x = unknown value on Reset; r = reserved, do not modify. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

IADEE																		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	—	—	_	_	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144			•				I	nput Capture	e 1 Buffer Reg	gister				•			0000
IC1TMR	0146								Timer Va	lue 1 Registe	r							xxxx
IC2CON1	0148	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	-	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	_	—	—	_		—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C														0000			
IC2TMR	014E		Timer Value 2 Register											xxxx				
IC3CON1	0150	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	—	—	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154							I	nput Capture	e 3 Buffer Reg	gister							0000
IC3TMR	0156								Timer Va	lue 3 Registe	r		-					xxxx
IC4CON1	0158	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A	—	_	—	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C							I	nput Capture	e 4 Buffer Reg	gister							0000
IC4TMR	015E			1	1				Timer Va	lue 4 Registe	r		1	-	1	1		xxxx
IC5CON1	0160	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2	0162	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC5BUF	0164							I	nput Capture	e 5 Buffer Reg	gister							0000
IC5TMR	0166								Timer Va	lue 5 Registe					1	1		xxxx
IC6CON1	0168	_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC6CON2	016A	—	—	—	—	—	—		IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC6BUF	016C							I		e 6 Buffer Reg	•							0000
IC6TMR	016E								Timer Va	lue 6 Registe	r				1	1		xxxx
IC7CON1	0170	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC7CON2	0172	—	_	_	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC7BUF	0174							I		e 7 Buffer Reg								0000
IC7TMR	0176			1	1	-			Timer Va	lue 7 Registe	r		r	r	1	1	r	XXXX
IC8CON1	0178	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_		ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC8CON2	018A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC8BUF	018C							I		e 8 Buffer Reg	•							0000
IC8TMR	018E			1	1		I I		Timer Va	lue 8 Registe			r	r	1	1	r	xxxx
IC9CON1	0180	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC9CON2	0182	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC9BUF	0184											0000						
IC9TMR	0186								Timer Va	lue 9 Registe	r							xxxx

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
			_		FSTIE	SDA1IE	AMP2IE
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0
AMP1IE	—	—	LCDIE	_		—	
bit 7							bit 0
Legend:							
R = Readab		W = Writable			mented bit, rea		
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplement						
bit 10			rupt Enable bit	t			
	1 = Interrupt						
bit 9	0 = Interrupt	•		rupt Enable bit			
DIL	1 = Interrupt						
	0 = Interrupt						
bit 8	AMP2IE: Op /	Amp 2 Interrup	ot Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	•					
bit 7	AMP1IE: Op /						
	1 = Interrupt						
	0 = Interrupt	•					
bit 6-5							
bit 4			rrupt Enable bi	t			
	1 = Interrupt	•					
bit 3-0	Unimplement	•					
			•				

REGISTER 8-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

REGISTER 8-42: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—						—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC9IP2	IC9IP1	IC9IP0	—	OC9IP2	OC9IP1	OC9IP0
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimple	mented: Read as '0'		
bit 6-4		0>: Input Capture Channel 9 errupt is Priority 7 (highest p	1 ,	

	•
	•
	•
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled
L:1.0	
bit 3	Unimplemented: Read as '0'
bit 2-0	OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24 devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features with Deep Sleep" (DS39727) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GC010 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked reduces consumed power.

PIC24FJ128GC010 family devices manage power consumption with five strategies:

- Instruction-Based Power Reduction modes
- Hardware-Based Power Reduction Features
- Clock Frequency Control
- Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Overview of Power-Saving Modes

In addition to full-power operation, otherwise known as Run mode, the PIC24FJ128GC010 family of devices offers three instruction-based power-saving modes and one hardware-based mode:

- Idle/Doze
- Sleep (Sleep and Low-Voltage Sleep)
- Deep Sleep (with and without retention)
- VBAT (with and without RTCC)

These four power modes offer different current consumption levels and have different degrees of functionality. Table 10-1 lists all of the operating modes in order of increasing power savings. Table 10-2 summarizes how the microcontroller exits the different modes. Specific information is provided in the following sections.

				Active Systems	5	
Mode	Entry	Core	Peripherals	Data RAM Retention	RTCC ⁽¹⁾	DSGPR0/ DSGPR1 Retention
Run (default)	N/A	Y	Y	Y	Y	Y
Idle	Instruction	Ν	Y	Y	Y	Y
Sleep:						
Sleep	Instruction	Ν	S ⁽²⁾	Y	Y	Y
Low-Voltage Sleep	Instruction + RETEN bit	Ν	S ⁽²⁾	Y	Y	Y
Deep Sleep:						
Retention Deep Sleep	Instruction + DSEN bit + RETEN bit	Ν	N	Y	Y	Y
Deep Sleep	Instruction + DSEN bit	Ν	Ν	Ν	Y	Y
VBAT:	·					
with RTCC	Hardware	Ν	N	Ν	Y	Y
w/o RTCC	Hardware + RTCBAT Config. bit	Ν	N	N	Ν	Y

TABLE 10-1: OPERATING MODES FOR PIC24FJ128GC010 FAMILY DEVICES

Note 1: If RTCC is otherwise enabled in firmware.

2: A select peripheral can operate during this mode from LPRC or some external clock.

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

R/W-0	U-0						
DSEN	—	—	—	—	—	_	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/C-0, HS
—	—	—	—	—	—	DSBOR ⁽²⁾	RELEASE
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read	as '0'
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	r = Reserved bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 DSEN: Deep Sleep Enable bit	
---	--

- 1 = Enters Deep Sleep on execution of PWRSAV #0
- 0 = Enters normal Sleep on execution of PWRSAV #0
- bit 14-3 Unimplemented: Read as '0'
- bit 2 Reserved: Maintain as '0'
- bit 1 DSBOR: Deep Sleep BOR Event bit⁽²⁾
 - 1 = The DSBOR was active and a BOR event was detected during Deep Sleep
 - 0 = The DSBOR was not active or was active but did not detect a BOR event during Deep Sleep

bit 0 RELEASE: I/O Pin State Release bit

- 1 = Upon waking from Deep Sleep, I/O pins maintain their states previous to Deep Sleep entry
- 0 = Releases I/O pins from their state previous to Deep Sleep entry, and allows their respective TRISx and LATx bits to control their states
- Note 1: All register bits are reset only in the case of a POR event outside of Deep Sleep mode.
 - **2:** Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

REGISTER 10-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER⁽¹⁾

			-						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS		
—	—	—	—	—	—	—	DSINT0		
bit 15							bit 8		
R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0		
DSFLT	—	—	DSWDT	DSRTCC	DSMCLR	—	—		
bit 7							bit 0		
Logondi			re Settable bit						
Legend:	I					L = = (O)			
R = Readab		W = Writable		•	nented bit, read				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15-9	•	ted: Read as '							
bit 8		ep Sleep Interru							
		on-change was on-change was							
bit 7	-	o Sleep Fault D		iuning Deep Sie	eeh				
		occurred during		nd some Deep	Sleep configura	ation settings	may have beer		
	0 = No Fault	was detected	during Deep Sle	еер					
bit 6-5	Unimplemer	nted: Read as '	0'						
bit 4	DSWDT: Dee	ep Sleep Watch	dog Timer Time	e-out bit					
		o Sleep Watcho o Sleep Watcho)			
bit 3	DSRTCC: De	eep Sleep Real	-Time Clock an	d Calendar Ala	ırm bit				
		DSRTCC: Deep Sleep Real-Time Clock and Calendar Alarm bit 1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep 0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep							
bit 2	DSMCLR: De	eep Sleep MCL	R Event bit						
		.R pin was activ R pin was not a				Deep Sleep			
bit 1-0		nted: Read as '			U U	•••			
Note 1. A	Il register bite e	ro alcorod when			t is set				

Note 1: All register bits are cleared when the DSEN (DSCON<15>) bit is set.

REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER

	R/W-1	U-0	U-0	U-0	R/W-1	R/W-1	U-0
ANSA	<15:14> ⁽¹⁾	—	—	—	ANSA	<10:9> ⁽¹⁾	_
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	U-0
	ANSA	<7:4> ⁽¹⁾		—	_	ANSA1 ⁽¹⁾	—
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	ıd as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn
	$\pm - 1 1113 001$	iliyuleu ili Alla	log mode; I/O	port read is disa	abled		
bit 13-11 bit 10-9	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor	nfigured in Digit ted: Read as '(: Analog Functi nfigured in Anal	tal mode; I/O o' ion Selection I log mode; I/O	port read is enab	abled		
	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen	nfigured in Digit ted: Read as '(: Analog Functi nfigured in Anal nfigured in Digit ted: Read as '(tal mode; I/O j o' ion Selection I log mode; I/O tal mode; I/O j o'	port read is enab bits ⁽¹⁾ port read is disa port read is enab	abled		
bit 10-9	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA<7:4>:	nfigured in Digit ted: Read as '(: Analog Functin figured in Anal nfigured in Digit ted: Read as '(Analog Functic	tal mode; I/O o' log mode; I/O tal mode; I/O o' Selection bi	port read is enal bits ⁽¹⁾ port read is disa port read is enal its ⁽¹⁾	bled abled bled		
bit 10-9	 0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA<7:4>: 1 = Pin is cor 	nfigured in Digit ted: Read as '(: Analog Functin figured in Anal nfigured in Digit ted: Read as '(Analog Functio nfigured in Anal	tal mode; I/O p ion Selection I log mode; I/O tal mode; I/O p on Selection bi log mode; I/O	port read is enab bits ⁽¹⁾ port read is disa port read is enab	abled abled bled		
bit 10-9	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA<7:4>: 1 = Pin is cor 0 = Pin is cor	nfigured in Digit ted: Read as '(: Analog Functin figured in Anal nfigured in Digit ted: Read as '(Analog Functio nfigured in Anal	tal mode; I/O p ion Selection I log mode; I/O tal mode; I/O p or Selection bi log mode; I/O tal mode; I/O p	port read is enab bits ⁽¹⁾ port read is disa port read is enab its ⁽¹⁾ port read is disa	abled abled bled		
bit 10-9 bit 8 bit 7-4	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA<7:4>: 1 = Pin is cor 0 = Pin is cor Unimplemen	nfigured in Digit ted: Read as '(: Analog Functin figured in Anal figured in Digit ted: Read as '(Analog Function figured in Anal figured in Digit	tal mode; I/O j o' log mode; I/O tal mode; I/O j o' on Selection bi log mode; I/O tal mode; I/O j o'	port read is enab bits ⁽¹⁾ port read is disa port read is enab its ⁽¹⁾ port read is disa	abled abled bled		
bit 10-9 bit 8 bit 7-4 bit 3-2	0 = Pin is cor Unimplemen ANSA<10:9> 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA<7:4>: 1 = Pin is cor 0 = Pin is cor Unimplemen ANSA1: Anal 1 = Pin is cor	nfigured in Digit ted: Read as '(: Analog Functin figured in Anal figured in Digit ted: Read as '(Analog Function figured in Anal figured in Digit ted: Read as '(og Function Se figured in Anal	tal mode; I/O p ion Selection I log mode; I/O p tal mode; I/O p on Selection bit log mode; I/O p election bit ⁽¹⁾ log mode; I/O	port read is enab bits ⁽¹⁾ port read is disa port read is enab its ⁽¹⁾ port read is disa	abled bled abled bled		

Note 1: These bits are not available in 64-pin devices.

REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER

	-	-				-	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			ANSD	<15:8> ⁽¹⁾			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1
		ANSE)<7:2>			—	ANSD0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-2	ANSD<15:2	>: Analog Funct	ion Selection I	bits ⁽¹⁾			
		onfigured in Anal					
bit 1	Unimpleme	nted: Read as '	כ'				
bit 0	ANSD0: An	alog Function Se	election bit				
	1 = Pin is co	onfigured in Analonfigured in Digit	og mode; I/O j				
Note 1: T	he ANSD<15:	12> bits are not a	available in 64	-pin devices.			

REGISTER 11-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0
	—	—	—	—	—	ANSE9	_
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSE<7:4>				<u> </u>		—	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	ANSE9: Anal	og Function Se	lection bit				
				port read is disa ort read is enat			
bit 8	Unimplemen	ted: Read as '	כי				
bit 7-4	ANSE<7:4>:	Analog Functio	n Selection bit	S			
				port read is disa ort read is enat			
bit 3-0	Unimplemen	ted: Read as '	כ'				
Note 1: ⊺	his register is no	ot available in 6	4-pin devices.				

Note 1: This register is not available in 64-pin devices.

REGISTER 19-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	r-0	r-0	R/W-x	R/W-x	R/W-x, HSC	R/W-x, HSC
UOWN	DTS ⁽¹⁾	—	—	DTSEN	BSTALL	BC9	BC8
bit 15							bit 8

| R/W-x, HSC |
|------------|------------|------------|------------|------------|------------|------------|------------|
| BC7 | BC6 | BC5 | BC4 | BC3 | BC2 | BC1 | BC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'r' = Reserved bit	x = Bit is unknown		

bit 15	UOWN: USB Own bit
	 0 = The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all other fields in the BD
bit 14	DTS: Data Toggle Packet bit ⁽¹⁾
	1 = Data 1 packet
	0 = Data 0 packet
bit 13-12	Reserved: Maintain as '0'
bit 11	DTSEN: Data Toggle Synchronization Enable bit
	 1 = Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored 0 = No data toggle synchronization is performed
bit 10	BSTALL: Buffer STALL Enable bit
	 1 = Buffer STALL is enabled; STALL handshake issued if a token is received that would use the BD in the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit will get set on any STALL handshake 0 = Buffer STALL is disabled
bit 9-0	BC<9:0>: Byte Count bits
	This represents the number of bytes to be transmitted or the maximum number of bytes to be received during a transfer. Upon completion, the byte count is updated by the USB module with the actual number of bytes transmitted or received.
Note 1: ⊤	his bit is ignored unless DTSEN = 1.

REGISTER 19-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	_	—
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 Unimplemented: Read as '0'

bit 7-4	ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.)
	1111 = Endpoint 15
	1110 = Endpoint 14
	•
	•
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX)
	0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

NOTES:

REGISTER 22-3: LCDPS: LCD PHASE REGISTER

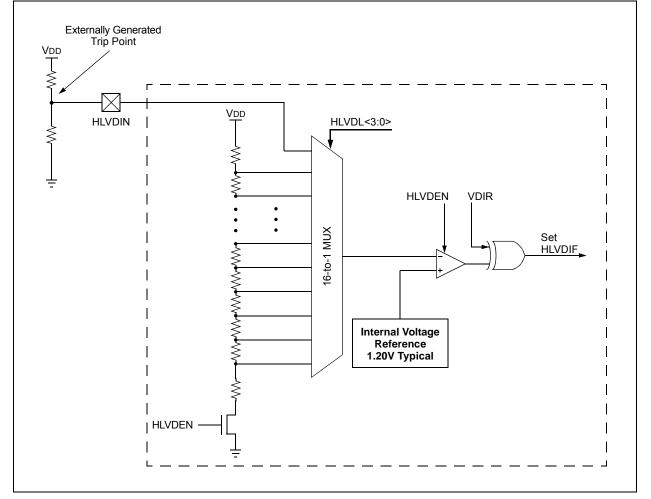
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	—	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15-8	-	ted: Read as '0							
bit 7		rm Type Select							
				each frame bou hin each commo					
bit 6		s Mode Select			Sirtype)				
Sit 0		<2:0> = 000 or		11:					
		s mode (do not							
		<2:0> = 001 or	010:						
	1 = 1/2 Bias n								
L:4 C	0 = 1/3 Bias n								
bit 5		Active Status bit er module is act							
		er module is act	-						
bit 4	WA: LCD Wri	te Allow Status	bit						
		the LCDDATA							
bit 3-0	LP<3:0>: LCI	D Prescaler Sel	ect bits						
	1111 = 1:16								
	1110 = 1:15								
	1101 = 1:14 1100 = 1:13								
	1011 = 1:12								
	1010 = 1:11								
	1001 = 1:10								
	1000 = 1:9 0111 = 1:8								
	0111 = 1.8 0110 = 1.7								
	0101 = 1:6								
	0100 = 1:5								
	0011 = 1:4 0010 = 1:3								
	0010 = 1:3 0001 = 1:2								

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	r-1	r-1	
PVCFG1	PVCFG0	—	NVCFG0		BUFORG		_	
bit 15	·				•		bit 8	
- 0	- 0					DAMO	- 0	
r-0	r-0	U-0	U-0	U-0	U-0	R/W-0	r-0	
 bit 7		_	_	_	_	RFPUMP		
							Dit t	
Legend:		r = Reserved	bit					
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'		
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkno	wn	
bit 15-14			-	e Configuration	n for ADREF+ b	oits		
	10 = BGBUF		erence ⁽¹⁾					
	01 = External 00 = AVDD	VREF+						
bit 13	Unimplement	ted: Read as	0'					
bit 12				onfiguration for	ADREF- bit			
	1 = External V 0 = AVss	•		0				
bit 11	Unimplement	ted: Read as	0'					
bit 10	BUFORG: ADRES Result Buffer Organization Control bit							
	1 = Result buffer is organized as an indexed buffer; ADTBLn conversion result is stored in ADRESr							
	(where n is the same number between 0-31) 0 = Result buffer is organized as a 32 result deep FIFO-like buffer; results get stored in the sequenti							
		t they are gen			ke bullel, lesul	is get stored in t	ne sequentia	
bit 9-8	Reserved: Al	ways write '11	' to these bits for	or normal A/D o	operation			
bit 7-6	Reserved: Always write '00' to these bits for normal A/D operation							
bit 5-2	Unimplemented: Read as '0'							
bit 1	RFPUMP: Internal Reference Bias Control bit							
	1 = Internal bi 0 = Normal op		d for operation	with small refer	ence voltage (e.g., < (0.65 * AV	(DD))	
bit 0	Reserved: Al	ways write '0'	to this bit for no	ormal A/D opera	ation			
	n order to use the uffer through the			for the A/D, firm	nware must als	o configure and	enable the	

REGISTER 26-2: ADCON2: A/D CONTROL REGISTER 2

NOTES:

33.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

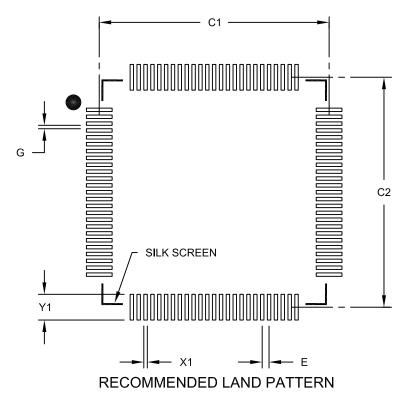

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 33-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 33-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM



Operatir	ng Conditi	ons: -40°C < TA < +85°C, 2.0V	< (A)VDD < 3.	6V			
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
Op Amp	Mode Sp	ecifications					
CM20a	SR	Slew Rate	_	1.2	_	V/µs	SPDSEL = 1
CM20b			_	0.4	_	V/µs	SPDSEL = 0
CM23	GBW	Gain Bandwidth Product	_	2.5	_	MHz	SPDSEL = 1
			_	0.5	_	MHz	SPDSEL = 0
CM33	Vgain	DC Open-Loop Gain	_	80	_	dB	
CM40	VOFFSET	Input Offset Voltage	_	±2	±14	mV	
CM42	VCMR	Common-Mode Input Voltage Range	AVss	—	AVDD	V	
CM45	Ів	Input Bias Current	_	_	_	nA	(Note 1)
CM52	VOAMAX	Maximum Output Voltage Swing	AVss + 50	—	AVDD – 50	mV	0.5V input overdrive, no output loading
CM53	ΙΟΑ	Maximum Continuous Output Current Rating (DC or RMS AC)	—	_	±6	mA	This value is not tested in production
CM54a	IQOA	AVDD Quiescent Current	_	190	—	μA	Module enabled, SPDSEL = 1, no output load
CM54b			—	40	—	μA	Module enabled, SPDSEL = 0, no output load
Compar	ator Mode	Specifications					·
CM10a	TRESPL	Large Signal Comparator Response Time	—	500	—	ns	SPDSEL = 1, 3V step with 1.5V input overdrive
			—	2.6	—	μs	SPDSEL = 0, 3V step with 1.5V input overdrive
CM10b	TRESPS	Small Signal Comparator Response Time	—	1.6	—	μs	SPDSEL = 1, 50 mV step with 15 mV input overdrive
			—	4.6	_	μs	SPDSEL = 0, 50 mV step with 15 mV input overdrive
CM15	VCMCR	Common-Mode Input Voltage Range	AVss	_	AVdd	V	
CM16	TRF	Rise/Fall Time	_	20	_	ns	SPDSEL = 1

Note 1: The op amps use CMOS input circuitry with negligible input bias current. The maximum "effective bias current" is the I/O pin leakage specified by electrical Parameter DI51.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.40 BSC		
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

NOTES: