

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 29x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gc006t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24FJ64GC010	PIC24FJ128GC010				
Operating Frequency	DC – 32	2 MHz				
Program Memory (bytes)	64K	128K				
Program Memory (instructions)	22,016	44,032				
Data Memory (bytes)	8K					
Interrupt Sources (soft vectors/ NMI traps)	66 (6	2/4)				
I/O Ports	Ports A, B, C	, D, E, F, G				
Total I/O Pins	85	5				
Remappable Pins	44 (32 I/Os, 1	2 input only)				
Timers:						
Total Number (16-bit)	5 ⁽¹)				
32-Bit (from paired 16-bit timers)	2					
Input Capture w/Timer Channels	9(1)				
Output Compare/PWM Channels	9(1)				
Input Change Notification Interrupt	82	2				
Serial Communications:						
UART	4(1)					
SPI (3-wire/4-wire)	2 ⁽¹⁾					
l ² C	2					
Digital Signal Modulator	Ye	S				
Parallel Communications (EPMP/PSP)	Ye	S				
JTAG Boundary Scan	Ye	s				
12-Bit Pipeline Analog-to-Digital Converter (A/D) (input channels)	50)				
Sigma-Delta Analog-to-Digital Converter (A/D) (differential channels)	2					
Digital-to-Analog Converter (DAC)	2					
Operational Amplifiers	2					
Analog Comparators	3					
CTMU Interface	Ye	S				
LCD Controller (available pixels)	472 (59 SEG	G x 8 COM)				
Resets (and delays)	Core <u>POR,</u> VDD POR, VBAT PO MCLR, WDT, Illegal Opco Hardware Traps, Configu (OST, PL	DR, BOR, RESET Instruction, ide, REPEAT Instruction, uration Word Mismatch L Lock)				
Instruction Set	76 Base Instructions, Multiple	Addressing Mode Variations				
Packages	100-Pin TQFP ar	nd 121-Pin BGA				

TABLE 1-2: DEVICE FEATURES FOR THE PIC24FJ128GC010 FAMILY: 100/121-PIN DEVICES

Note 1: Peripherals are accessible through remappable pins.

Din	Pin Num	ber/Grid L	ocator		Innut	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
PMA8	32	50	L11	0	_	Parallel Master Port Address (bits<22:2>).
PMA9	31	49	L10	0	_	
PMA10	28	42	L7	0	_	
PMA11	27	41	J7	0	_	
PMA12	33	51	K10	0	—	
PMA13	42	68	E9	0	_	
PMA14	45	71	C11	0	_	
PMA15	44	70	D11	0	_	
PMA16	_	95	C4	0	_	
PMA17	_	92	B5	0	_	
PMA18	_	40	K6	0	_	
PMA19	_	19	G2	0	_	
PMA20	_	59	G10	0	_	
PMA21	_	60	G11	0	_	
PMA22	_	66	E11	0	_	
PMACK1	50	77	A10	I	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMACK2	43	69	E10	I	ST/TTL	Parallel Master Port Acknowledge Input 2.
PMBE0	51	78	B9	0	_	Parallel Master Port Byte Enable 0 Strobe.
PMBE1	_	67	E8	0	_	Parallel Master Port Byte Enable 1 Strobe.
PMCS1	_	18	G1	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.
PMCS2	_	9	K10	0	_	Parallel Master Port Chip Select 2 Strobe.
PMD0	60	93	A4	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode)
PMD1	61	94	B4	I/O	ST/TTL	or Address/Data (Multiplexed Master modes).
PMD2	62	98	B3	I/O	ST/TTL	
PMD3	63	99	A2	I/O	ST/TTL	
PMD4	64	100	A1	I/O	ST/TTL	
PMD5	1	3	D3	I/O	ST/TTL	
PMD6	2	4	C1	I/O	ST/TTL	
PMD7	3	5	D2	I/O	ST/TTL	
PMD8		90	A5	I/O	ST/TTL	
PMD9		89	E6	I/O	ST/TTL	
PMD10		88	A6	I/O	ST/TTL	
PMD11	_	87	B6	I/O	ST/TTL	
PMD12	_	79	A9	I/O	ST/TTL	
PMD13	_	80	D8	I/O	ST/TTL	
PMD14	_	83	D7	I/O	ST/TTL	
PMD15	_	84	C7	I/O	ST/TTL	
PMRD	53	82	B8	0	_	Parallel Master Port Read Strobe.
PMWR	52	81	C8	0	_	Parallel Master Port Write Strobe.
PWRLCLK	48	74	B11	Ι	ST/TTL	Power Line (50 Hz/60 Hz) External Clock Input for RTCC.

PIC24FJ128GC010 FAMILY PINOUT DESCRIPTION (CONTINUED) **TABLE 1-3:**

TTL = TTL input buffer Legend: ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C = I^2C/SMBus$ input buffer

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
		_	—				DC			
bit 15	•					·	bit 8			
R/W-0 ⁽²	²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0,	R/W-0			
IPL2 ⁽³⁾) IPL1 ⁽³⁾	IPL0 ⁽³⁾	RA	N	OV	Z	С			
bit 7										
Legend:										
R = Read	able bit	W = Writable	oit	U = Unimplen	nented bit, read	l as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-9	Unimplemen	nted: Read as '0)'							
bit 8	DC: ALU Hal	If Carry/Borrow	Dit	h	-t-) oth I					
	⊥ = A carry of the re	out from the 4"	ow-order bit (fo	or byte-sized da	ata) or 8" low-o	order bit (for wo	ord-sized data)			
	0 = No carry	out from the 4 th	ⁿ or 8 th low-ord	ler bit of the res	sult has occurre	ed				
bit 7-5	IPL<2:0>: C	PU Interrupt Prio	ority Level (IPL) Status bits ^{(2,3}	3)					
	111 = CPU I	nterrupt Priority	Level is 7 (15)	; user interrupt	s are disabled					
	110 = CPU I	nterrupt Priority	Level is 6 (14)							
	101 = CPU I 100 = CPU I	nterrupt Priority	Level is 5 (13)							
	011 = CPU I	nterrupt Priority	Level is 3 (11)							
	010 = CPU I	nterrupt Priority	Level is 2 (10)							
	001 = CPU I	nterrupt Priority	Level is 1 (9)							
h :+ 4										
DIT 4	RA: REPEAT	LOOP ACLIVE DI								
	1 = REPEAT 0 = REPEAT	loop is not in progre	ogress							
bit 3	N: ALU Nega	ative bit	0							
	1 = Result wa	as negative								
	0 = Result wa	as not negative	(zero or positiv	ve)						
bit 2	OV: ALU Ove	erflow bit								
	1 = Overflow 0 = No overfl	occurred for sig	ned (2's comp	lement) arithm	etic in this arith	metic operation	n			
bit 1	Z: ALU Zero	bit	~							
	1 = An opera	ation resulted in	the ALU having	g a value of zei	ro.					
	0 = An opera	ation resulted in	the ALU having	g a non-zero va	alue.					
bit 0	C: ALU Carry	y/Borrow bit								
	1 = A carry o	out from the Mos	t Significant bi	t (MSb) of the r	esult occurred					
	0 = No carry	out from the Mo	est Significant t	bit of the result	occurred					
Note 1:	ALU result flags	are not affected	for every oper	ation. See Tabl	le 36-2 for deta	ils.				
2:	The IPLx Status	bits are read-on	ly when NSTD	IS (INTCON1<	15>) = 1.					
3:	The IPLx Status	bits are concate	nated with the	IPL3 (CORCO	N<3>) bit to for	rm the CPU Inte	errupt Prioritv			

Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as '1'

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0						
bit 15							bit 8						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0						
bit 7							bit 0						
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		"0" = Bit is cle	ared	x = Bit is unkr	iown						
bit 15	Unimplomon	ted. Dood oo '	,										
DIL 10		mor1 Interrupt) Driority bito										
DIL 14-12	111 = Interru	nt is Priority 7 (highest priority	v interrunt)									
	•	 111 = Interrupt is Priority 7 (highest priority interrupt) • 											
	•												
	•												
	001 = Interru	pt is Phonty 1 ot source is dis	abled										
bit 11	Unimplemen	ted: Read as ')'										
bit 10-8	OC1IP<2:0>:	Output Compa	re Channel 1	Interrupt Priorit	v bits								
	111 = Interrupt is Priority 7 (highest priority interrupt)												
	•	· · · ·											
	•												
	001 = Interru	ot is Priority 1											
	000 = Interru	pt source is dis	abled										
bit 7	Unimplemen	ted: Read as 'd)'										
bit 6-4	IC1IP<2:0>:	nput Capture C	hannel 1 Inter	rupt Priority bit	s								
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)									
	•												
	•												
	001 = Interru	pt is Priority 1											
	000 = Interru	pt source is dis	abled										
bit 3	Unimplemen	ted: Read as '0)'										
bit 2-0	INT0IP<2:0>:	External Interr	upt 0 Priority k	pits									
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)									
	•												
	•												
	001 = Interru	pt is Priority 1	abled										

REGISTER 8-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

TABLE 10-2: EXITING POWER-SAVING MODES

		Exit Conditions								
Mode	Interrupts		Resets		RTCC		VDD	Code Execution Resumes		
	All	INT0	All	POR	MCLR	Alarm	Alarm	rm WD1	Restore	
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction	
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A		
Deep Sleep	Ν	Y	N	Y	Y	Y	Y(1)	N/A	Reset vector	
Retention Deep Sleep	Ν	Y	N	Y	Y	Y	Y(1)	N/A	Next instruction ⁽²⁾	
VBAT	Ν	N	N	N	N	N	N	Y	Reset vector	

Note 1: Deep Sleep WDT.

2: MCLR assertion always results in a POR Reset (execution from the Reset vector).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0
Legend:							
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

REGISTER 11-42: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

- bit 13-8
 RP29R<5:0>: RP29 Output Pin Mapping bits

 Peripheral Output Number n is assigned to pin, RP29 (see Table 11-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP28R<5:0>: RP28 Output Pin Mapping bits
- Peripheral Output Number n is assigned to pin, RP28 (see Table 11-4 for peripheral function numbers).

REGISTER 11-43: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

- Peripheral Output Number n is assigned to pin, RP31 (see Table 11-4 for peripheral function numbers).
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP30 (see Table 11-4 for peripheral function numbers).

Note 1: These bits are unimplemented in 64-pin devices; read as '0'.

REGISTER 19-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS	—	HOSTEN	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-7	Unimplemented: Read as '0'
bit 6	SE0: Live Single-Ended Zero Flag bit
	1 = Single-ended zero is active on the USB bus0 = No single-ended zero is detected
bit 5	PKTDIS: Packet Transfer Disable bit
	 1 = SIE token and packet processing are disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing are enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit
	 1 = USB host capability is enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability is disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling is activated
	0 = Resume signaling is disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Resets all Ping-Pong Buffer Pointers to the even BD banks 0 = Ping-Pong Buffer Pointers are not reset
bit 0	USBEN: USB Module Enable bit
	 1 = USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry are disabled (device detached)

REGISTER 19-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	It POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	IDIE: ID I	nterrupt Enable bit		
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 6	T1MSEC	IE: 1 Millisecond Timer Inter	rupt Enable bit	
	1 = Inter	rupt is enabled		
bit E		Fuling State Stable Interrun	t Enabla bit	
DIL D	1 - Inter	E: Line State Stable Interrup	t Enable bit	
	0 = Inter	rupt is disabled		
bit 4	ACTVIE:	Bus Activity Interrupt Enable	e bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	SESVDIE	: Session Valid Interrupt En	able bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 2	SESEND	IE: B-Device Session End Ir	nterrupt Enable bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 1	Unimple	mented: Read as '0'		
bit 0	VBUSVD	IE: A-Device VBUS Valid Inte	errupt Enable bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		

23.3 Registers

23.3.1 RTCC CONTROL REGISTERS

REGISTER 23-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CAL7 | CAL6 | CAL5 | CAL4 | CAL3 | CAL2 | CAL1 | CAL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	RTCEN: RTCC Enable bit ⁽²⁾
	1 = RTCC module is enabled
	0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit
	 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT register can be read without concern over a rollover ripple
bit 11	HALFSEC: Half Second Status bit ⁽³⁾
	1 = Second half period of a second
	0 = First half period of a second
bit 10	RTCOE: RTCC Output Enable bit
	 1 = RTCC output is enabled 0 = RTCC output is disabled
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits
	Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.
	$\frac{\text{RTCVAL} \leq 15.62}{11 = \text{Reserved}}$
	10 = MONTH
	01 = WEEKDAY
	00 = MINUTES
	<u>RTCVAL<7:0>:</u>
	11 = YEAR
Note 1:	The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

	••••••					
Analog Input Channel	Op Amp	Comparator	Comparator Reference	DAC	Band Gap	Other Analog
AN0	_	_	CVREF+	DVREF+	BGBUF1	AVREF+
AN1	OA2P1	_	CVREF-			AVREF-
AN2	OA2N2	C2INB	—	—	—	CTCMP
AN3	OA2OUT	C2INA	—	—	—	—
AN4	OA1N0	C1INB	—	—	—	—
AN5	OA1OUT	C1INA	—	—	—	—
AN6	OA1P3	—	—	—	—	—
AN9	OA1N2	—	—	—	—	—
AN10	OA2P2	—	CVREF	—	—	—
AN11	OA2N3	—	—	—	—	—
AN13	OA2P3	_	—	DAC2	—	—
AN14	OA2N4	—	—	—	—	CTPLS
AN17	OA1P1	C1IND	—	—	BGBUF2	—
AN18	OA1N4	C1INC	—	—	—	—
AN19	OA1N2	C2IND	—	—	—	—
AN20	—	C3INA	—	—	—	—
AN25	OA2N1	_	—	—	—	—
AN30	—	—	—	—	—	—
AN34	OA1P2	C3INB	—	—	—	—
AN41	—	C3IND	—	—	—	—
AN42	OA2P0	C3INC	—	—	—	—
AN43	OA2N0	—	—	—	—	—
AN44	OA2P4	_	—	—	—	—
AN47	OA1P4	—	—	—	—	
AN48	OA1N1					
AN49	OA1P0	C2INC		DAC1		

TABLE 25-1: SHARED ANALOG PINS

Legend: Shaded cells are analog outputs.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
ADON		ADSIDL	ADSLP	FORM3	FORM2	FORM1	FORM0						
bit 15							bit 8						
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
PUMPEN	ADCAL ⁽²⁾		—			—	PWRLVL						
bit 7							bit 0						
Legend:													
R = Readat	ole bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15	ADON: A/D M 1 = Module is 0 = Module is	/lodule Enable I s enabled s disabled (regi	oit sters are still r	eadable and wr	itable)								
bit 14	Unimplemen	ted: Read as '0)'										
bit 13	ADSIDL: A/D	Stop in Idle Co	ontrol bit										
	1 = Halts whe 0 = Continue	en CPU is in Idl es to operate in	e mode CPU Idle mod	e									
bit 12	ADSLP: A/D	Suspend in Sle	ep Control bit										
	1 = Continue 0 = Ignores t	es operation in S riggers and cloo	Sleep mode cks when CPL	J is in Sleep mo	de								
bit 11-8	FORM<3:0>:	Data Output Fo	ormat bits										
	1xxx = Unim 0111 = Signe 0110 = Fract 0101 = Signe 0100 = Integr 0011 = Signe 0010 = Fract 0001 = Signe 0000 = Integr	plemented, do i ed Fractional (se ional (dddd dd ed Integer (sss er (0000 dddd ed Fractional (se ional (dddd dd ed Integer (sss er, Raw Data (0	not use ddd dddd dd ddd dddd 00 s sddd dddd ddd dddd d	ddd 0000) 00) 1 dddd)) ddd 0000) 00) 1 dddd) ddd dddd)									
bit 7	PUMPEN: Ar	nalog Channel S	Switch Charge	Pump Enable I	oit								
	1 = Charge p 0 = Charge p	bump for switch	es is enabled, es is disabled	reducing switcl	h impedance ⁽¹⁾								
bit 6	ADCAL: A/D	Internal Analog	Calibration bi	it ⁽²⁾									
	1 = Initiates i 0 = No opera	internal analog	calibration										
bit 5-1	Unimplemen	ted: Read as 'd)'										
bit 0	PWRLVL: Po	wer Level Sele	ct bit										
	1 = Full-Power mode; A/D clock rates from 1 MHz to 10 MHz are allowed 0 = Low-Power mode; A/D clock rates from 1 MHz to 2.5 MHz are allowed												
Note 1: 0 2: \	 Note 1: Use of the channel switch charge pump is recommended when AVDD < 2.5V. 2: When set, ADCAL remains set for at least one TAD and is then automatically cleared by hardware. 												
	Appually alogring	the hit does no	t noocoorily (oonool the calib	ration routing	Colibration is a	Menually clearing the bit does not responsibly consolities calibration relation. Calibration is complete when						

REGISTER 26-1: ADCON1: A/D CONTROL REGISTER 1

Manually clearing the bit does not necessarily cancel the calibration routine. Calibration is complete when ADSTATH<1> = 1.

REGISTER 26-4:	ADSTATH: A/D STATUS HIGH REGISTER
----------------	-----------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
_		—	—		PUMPST	ADREADY	ADBUSY			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u			own			
bit 15-3	Unimplemen	ted: Read as 'd)'							
bit 2	PUMPST: A/D	D Boost Pump S	Status bit							
	1 = The A/D	boost pump is a	active							
	0 = Ihe A/D	boost pump is l	ldle							
bit 1	ADREADY: A	/D Analog Rea	dy bit							
	1 = The analog portion of the A/D is warmed up, internally calibrated and ready									
	0 = The analog portion of the A/D is not ready									
bit 0	t 0 ADBUSY: A/D Busy bit									
	$1 = A/D \operatorname{conv}$	ersion is in pro	gress							
	0 = A/D is Idl	e								

27.1 Important Differences Compared to Conventional A/D Converters

In principle, the Sigma-Delta A/D Converter does what most other A/Ds do: it samples an analog input voltage and generates a digital output code representing the analog voltage. There are, however, a number of differences when comparing a Sigma-Delta Converter to conventional A/D Converters, such as the Successive Approximation Register (SAR) design that is popular on many of today's microcontrollers.

The most important differences that are noticeable at the application level include:

- Variable signal bandwidth based on the OSR (Oversampling Ratio)
- Programmable input gain
- Uncorrected offset error
- Uncorrected gain error

27.1.1 RESULT QUALITY AND OVERSAMPLING

In a typical application, involving switching digital circuitry, oscillators, clocks and other noise sources common in a microcontroller-based circuit, it is often difficult to reduce the high-frequency noise floor below some arbitrary value. For A/Ds, which perform instantaneous "snapshot" based sampling (e.g., charging a Sample-and-Hold capacitor in a conventional SAR-based A/D), this noise floor ultimately restricts the maximum achievable stable result resolution.

To achieve higher effective stable resolution and to minimize the effects of high-frequency noise, the Sigma-Delta A/D Converter implements inherent oversampling in the design. This oversampling has an effect similar to low-pass filtering of the analog signal and voltage references to the A/D. Therefore, when the converter generates a result, the output code represents the average voltage of the signal or reference being measured over a specific time window, rather than an instantaneous snapshot in time (like that of the SAR-based A/D). This sampling method enables the Sigma-Delta A/D Converter to generate stable results at significantly higher resolution than is typically achievable with conventional A/D designs. The design of this Sigma-Delta A/D Converter allows user-configurable Oversampling Ratios (OSRs), between 16 and 1024. The lowest settings provide the fastest results, but they sacrifice result code accuracy. The highest OSR settings provide the best quality and most stable results, but generate results at a much slower rate.

27.1.2 UNCORRECTED OFFSET ERROR

When uncorrected, the Sigma-Delta A/D Converter typically has more LSBs worth of offset error than conventional SAR-based A/Ds. This is partly due to the high resolution and small size of each LSB. Additionally, internal or external input circuitry, such as the internal input gain stage, can also introduce some offset error.

Fortunately, the Sigma-Delta A/D Converter implements a feature that allows it to measure its own internal offset error. This feature is controlled by the VOSCAL bit (SD1CON1<4>). Once the application firmware has measured the internal offset error, the digital output code can be saved in the firmware and subsequently subtracted from all future A/D measurements on the regular input channel(s). This procedure significantly improves the absolute accuracy of the A/D and is recommended for most applications.

27.1.3 UNCORRECTED GAIN ERROR

When uncorrected, Sigma-Delta A/D Converters typically exhibit high gain error compared to other A/D designs. To obtain high absolute accuracy from the Sigma-Delta A/D Converter, it is necessary to compensate for both offset error and gain error. Gain error can be corrected by first removing the offset error, then multiplying the resulting code with a suitable gain error correction factor.

One of the input channel settings selectable in the SD1CON3 register allows the A/D to measure its own references. When a measurement (with a gain of 1) is performed on this channel, the result code can be corrected for offset error (using the method described in **Section 27.1.2 "Uncorrected Offset Error**") and then used to calculate the gain error correction factor. Once the gain error correction factor is known, it can be saved and stored in the firmware, so that it may be used later to correct for gain error when performing measurements on the other A/D input channels.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDDIV2	⁽¹⁾ SDDIV1 ⁽¹⁾	SDDIV0 ⁽¹⁾	SDOSR2	SDOSR1	SDOSR0	SDCS1	SDCS0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	—		—	SDCH2	SDCH1	SDCH0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	SDDIV<2:0>:	S/D Input Cloc	k Divider/Post	scaler Ratio bit	_S (1)		
	111 = Reserv	ved					
	110 = 64						
	101 = 32 100 = 16						
	011 = 8						
	010 = 4						
	001 = 2						
	000 = 1 (NO	divider, clock se	elected by SDC	2S<1:0> is prov	lided directly to	A/D.)	
bit 12-10	SDOSR<2:0>	S/D Oversam	ipling Ratio (O	SR) Selection b	oits		
	111 = Reserv	/ed stest result_low/	est quality)				
	101 = 32		est quality)				
	100 = 64						
	011 = 128						
	010 = 256						
	001 = 512 000 = 1024 (slowest result	hest quality)				
hit 9-8	SDCS<1:0>	S/D A/D Modul	e Clock Source	e Select hits			
	11 = Reserve	ed					
	10 = Primary	Oscillator (OSC	CI/CLKI)				
	01 = FRC (8	MHz) ⁽²⁾					
	00 = System	clock (Fosc/2)					
bit 7-3	Unimplemen	ted: Read as '0)'				
bit 2-0	SDCH<2:0>:	S/D Analog Ch	annel Input Se	elect bits (positiv	ve input/negativ	/e input)	
	1xx = Reserved						
	011 = Measurements 010 = CH1S	F/SVss (single-	ended measu	rement of CH19		gain error mea	surements)
	001 = CH1+/	CH1- (Different	tial Channel 1)		52)		
	000 = CH0+/	CH0- (Different	tial Channel 0)				
Note 1.	To avoid overcloc	king or underch	ocking the mov	ule set SDDIV	/<2·N> to obtain	n an A/D clock	frequency
	(input frequency s	selected by SD	CS<1:0> sourc	e, divided by s	elected SDDIV	x ratio) at or be	tween 1 MHz
	and 4 MHz.	2		5			
2:	Eight MHz FRC output is used directly, prior to the FRCDIV postscaler.						

REGISTER 27-3: SD1CON3: S/D CONTROL REGISTER 3

						_			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-x	R/W-0		
AMPEN	_	AMPSIDL	AMPSLP	INTPOL1	INTPOL0	CMOUT	CMPSEL		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SPDSEL	AMPOE	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	AMPEN: Op A 1 = Module is 0 = Module is	Amp Control Mo s enabled s disabled	odule Enable b	bit					
bit 14	Unimplemen	ted: Read as '0)'						
bit 13	AMPSIDL: O	p Amp Peripher	ral Stop in Idle	Mode bit					
	1 = Discontin	iues module op s module opera	eration when on the month of th	device enters Id	lle mode				
bit 12	AMPSI P: On	Amp Peripher	al Enabled in S	Sleep Mode bit					
	1 = Continue 0 = Discontin	s module operatives module op	ation when dev eration in Slee	vice enters Slee	p mode				
bit 11-10	INTPOL<1:0> When CMPSI 11 = Interrupt 01 = Interrupt 00 = Interrupt When CMPSI Op amp interr	Interrupt Mod <u>EL = 1:</u> t occurs on any t occurs on neg t occurs on pos ts are disabled <u>EL = 0:</u> rupts are not ge	le Select bits change ative edge itive edge enerated.						
bit 9	CMOUT: Com	parator Mode	Output State b	it					
	When CMPSEL = 1: 1 = Non-inverting input is greater than the inverting input 0 = Non-inverting input is less than the inverting input When CMPSEL = 0:								
bit 8	CMPSEL: On	Amp Mode Se	lect bit	- <u>J</u> ,					
	1 = Configure 0 = Configure	ed as a compar ed as an op am	ator p						
bit 7	SPDSEL: Op	Amp/Compara	tor Power/Spe	ed Select bit					
	1 = Higher po 0 = Lower po	ower and bandw	vidth (faster re vidth (slower re	sponse time) sponse time)					
bit 6	AMPOE: Amp	olifier Output Er	nable bit	-					
	AMPOE: Amplifier Output Enable bit 1 = Amplifier or comparator output is sent to OAxOUT pin 0 = Amplifier or comparator output is not sent to OAxOUT (pin is controlled by TRISx and LATx bits)								

REGISTER 29-1: AMPxCON: OP AMP x CONTROL REGISTER

REGISTER 34-5: DEVID: DEVICE ID REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—		—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Readable bit	U = Unimplemented bit

- bit 23-16 Unimplemented: Read as '1'
- bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 0100 1000 = PIC24FJ128GC010 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 1000 1000 = PIC24FJ64GC006 1000 1001 = PIC24FJ128GC006 1000 0100 = PIC24FJ64GC010 1000 0101 = PIC24FJ128GC010

REGISTER 34-6: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—			—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
	_	_		REV3	REV2	REV1	REV0

Legend: R = Readable bit U = Ur

U = Unimplemented bit

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Device Revision Identifier bits

bit 7

TABLE 37-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
DVR10	Vbg	Internal Band Gap Reference		1.2	—	V			
DVR11	Твg	Band Gap Reference Start-up Time		1	-	ms			
DVR20	Vrgout	Regulator Output Voltage		1.8	—	V	VDD > 2.0V		
DVR21	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Series Resistance < 3Ω recommended; < 5Ω required		
DVR25	TVREG	Start-up Time	١	10	—	μS	PMSLP = 1 with any POR or BOR		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage		1.2	_	V	RETEN = 1, LPCFG = 0		

TABLE 37-12: BAND GAP REFERENCE (BGBUFn) SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C, 2.0V < (A)VDD < 3.6V ⁽¹⁾							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
DBG01		Recommended Output Capacitance for Optimal Transient Response	_	_	22	μF	BGBUF1 or BGBUF2
DBG02		Output Voltage	1.140	1.200	1.260	V	BUFREF<1:0> = 00, 2.0V < AVDD < 3.6V
DBG03			1.945	2.048	2.151	V	BUFREF<1:0> = 01 ⁽²⁾
DBG04			2.432	2.560	2.688	V	BUFREF<1:0> = 10 ⁽²⁾
DBG05			2.918	3.072	3.226	V	BUFREF<1:0> = 11 ⁽²⁾
DBG07		DC Output Resistance	20	—		Ω	BUFREF<1:0> = 00, 2.0V < AVDD ≤ 2.5V
DBG08			20	—	_	Ω	BUFREF<1:0> = 00, 2.5V < AVDD < 3.6V
DBG09			20		_	Ω	BUFREF<1:0> = 01, 10 or 11 ⁽²⁾
DBG10		Maximum Continuous DC Output Current Rating	_	—	1	mA	This value is not tested in production ⁽³⁾
DBG11		Module Start-up Time from Disabled State	_	5	_	ms	Time from BUFEN and BUFOE = 1 to output stable, CLOAD = 20 μ F
DBG12		Module Start-up Time from Standby Mode	_	100	_	μs	Time from BUFSTBY = 0 to output stable
DBG14		AVDD Active Current	_	100	_	μA	Module enabled, BUFOE = 1

Г

Note 1: No DC loading on module unless otherwise stated.

2: For BUFREF<1:0> \neq 00, (Reference Output Max + 100 mV) < AVDD < 3.6V.

3: To minimize voltage error, the DC loading on the BGBUFn output pins should be <100 µA.

FIGURE 38-47: 10-BIT DAC OFFSET vs. TEMPERATURE

FIGURE 38-48: 10-BIT DAC GAIN vs. TEMPERATURE

