

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 50x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gc010-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-12: OP AMP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP1CON	024A	AMPEN		AMPSIDL	AMPSLP	INTPOL1	INTPOL0	CMOUT	CMPSEL	SPDSEL	AMPOE	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000
AMP2CON	024C	AMPEN	—	AMPSIDL	AMPSLP	INTPOL1	INTPOL0	CMOUT	CMPSEL	SPDSEL	AMPOE	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000
1 I							1											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA<	<15:14>	_	_		TRISA	<10:9>	—				TRISA	\<7:0>				C6FF
PORTA	02C2	RA<1	5:14>	_	_	_	RA<′	10:9>	_				RA<	7:0>				xxxx
LATA	02C4	LATA<	15:14>	_	_	_	LATA<	<10:9>	— LATA<7:0>			xxxx						
ODCA	02C6	ODA<	15:14>	—	_		ODA<	<10:9>	—	ODA<7:0>			0000					

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal. Reset values shown are for 100/121-pin devices.

Note 1: PORTA and all associated bits are unimplemented in 64-pin devices.

TABLE 4-14: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB	<15:12>		—	-	—	—				TRISE	3<7:0>				FOFF
PORTB	02CA		RB<1	5:12>		_	_	_	_	RB<7:0>				xxxx				
LATB	02CC		LATB<	:15:12>		_	—	_	_	LATB<7:0>			xxxx					
ODCB	02CE		ODB<	15:12>		_	—	_	_	ODB<7:0>			0000					

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	_	_	FSTIE	SDA1IE	AMP2IE		
bit 15						·	bit 8		
R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0		
AMP1IE	—	—	LCDIE	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-11	Unimplemen	ted: Read as '0)'						
bit 10	FSTIE: FRC S	Self-Tune Interr	upt Enable bit						
	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	enabled						
bit 9	SDA1IE: Sigr	na-Delta A/D C	onverter Interr	upt Enable bit					
	1 = Interrupt	request is enab	led						
hit 8		Amp 2 Interrup	t Enable bit						
bit 0	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	enabled						
bit 7	AMP1IE: Op	Amp 1 Interrup	t Enable bit						
	1 = Interrupt	request is enab	oled						
	0 = Interrupt request is not enabled								
bit 6-5	Unimplemen	ted: Read as '0)'						
bit 4	LCDIE: LCD	Controller Inter	rupt Enable bit						
	1 = Interrupt	request is enab	oled						
		request is not e	enabled						
bit 3-0	Unimplemen	ted: Read as '0)´						

REGISTER 8-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

REGISTER	8-43: IPC25	5: INTERRUP	T PRIORITY	CONTROL I	REGISTER 2	5	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	AMP1IP2	AMP1IP1	AMP1IP0	—			_
bit 15	•						bit
11.0	110	11-0	11-0	11-0	D/\\/_1	P/M/_0	P/M/0
					I CDIP2		
bit 7					LODII Z	LODIN	bit /
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow							
bit 14-12 bit 14-12 bit 11-3 bit 2-0	AMP1IP<2:0> 111 = Interrup 001 = Interrup 000 = Interrup Unimplement LCDIP<2:0>: 111 = Interrup 001 = Interrup	ted: Read as ' : Op Amp 1 In ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ' LCD Controlle ot is Priority 7 (ot is Priority 1	^{o'} terrupt Priority highest priority abled o' r Interrupt Prio highest priority	bits rinterrupt) rity bits rinterrupt)			

REGISTER 11-21: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

11-0	11-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/\\/_1
00							
	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7				•	•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TIECS<1:0> and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL<4:0> bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSEL<2:0> bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICI<1:0> bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM<2:0> bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures that the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

17.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE^(1,2)

$$FSCL = \frac{FCY}{I2CxBRG + 1 + \frac{FCY}{10,000,000}}$$

or:
$$I2CxBRG = \left(\frac{FCY}{FSCL} - \frac{FCY}{10,000,000} - 1\right)$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '0000000' and '0100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Demuined Custom Foot	Fox	I2CxB	RG Value			
Required System FSCL	FCY	(Decimal)	(Hexadecimal)	Actual FSCL		
100 kHz	16 MHz	157	9D	100 kHz		
100 kHz	8 MHz	78	4E	100 kHz		
100 kHz	4 MHz	39	27	99 kHz		
400 kHz	16 MHz	37	25	404 kHz		
400 kHz	8 MHz	18	12	404 kHz		
400 kHz	4 MHz	9	9	385 kHz		
400 kHz	2 MHz	4	4	385 kHz		
1 MHz	16 MHz	13	D	1.026 MHz		
1 MHz	8 MHz	6	6	1.026 MHz		
1 MHz	4 MHz	3	3	0.909 MHz		

TABLE 17-1: I²C CLOCK RATES^(1,2)

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

TABLE 17-2: I²C RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description					
0000 000	0	General Call Address ⁽²⁾					
0000 000	1	Start Byte					
0000 001	х	Cbus Address					
0000 01x	х	Reserved					
0000 1xx	х	HS Mode Master Code					
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾					
1111 1xx	x	Reserved					

Note 1: The address bits listed here will never cause an address match, independent of address mask settings.

- 2: The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 19-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE
							DETACHIE
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	. read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	STALLIE	: STALL Handshake Interrup	ot Enable bit	
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 6	ATTACH	IE: Peripheral Attach Interrup	pt bit (Host mode only) ⁽¹⁾	
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 5	RESUME	IE: Resume Interrupt bit		
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 4	IDLEIE:	dle Detect Interrupt bit		
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 3	TRNIE: 1	oken Processing Complete I	Interrupt bit	
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 2	SOFIE: S	Start-of-Frame Token Interrup	ot bit	
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 1	UERRIE:	USB Error Condition Interru	ıpt bit	
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
bit 0	URSTIE Enable b	or DETACHIE: USB Reset	Interrupt (Device mode) or U	SB Detach Interrupt (Host mode
	1 = Inter 0 = Inter	rupt is enabled rupt is disabled		
Note 1:	This bit is uni	mplemented in Device mode	e, read as '0'.	

D 444 A							
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTWREN	PTRDEN	PTBE1EN	PTBE0EN	—	AWAITM1	AWAITM0	AWAITE
bit 15							bit 8
U-0	R/W-0						
—	PTEN22 ⁽¹⁾	PTEN21 ⁽¹⁾	PTEN20 ⁽¹⁾	PTEN19 ⁽¹⁾	PTEN18 ⁽¹⁾	PTEN17 ⁽¹⁾	PTEN16 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	PTWREN: EF	MP Write/Enat	ole Strobe Port	Enable bit			
	1 = PMWR/P	MENB port is e	nabled				
	0 = PMWR/P	MENB port is c	lisabled				
bit 14	PTRDEN: EP	MP Read/Write	Strobe Port E	nable bit			
	1 = PMRD/PI	MWR port is en	abled				
	0 = PMRD/PI	MWR port is dis	sabled				
bit 13	PTBE1EN: EI	PMP High Nibb	le/Byte Enable	Port Enable bi	it		
	1 = PMBE1 p	oort is enabled					
	0 = PMBE1 p	oort is disabled					
bit 12	PTBE0EN: EI	PMP Low Nibbl	e/Byte Enable	Port Enable bit	t		
	1 = PMBE0 p	ort is enabled					
	0 = PMBE0 p	ort is disabled					
bit 11	Unimplemen	ted: Read as '0)'				
bit 10-9	AWAITM<1:0	>: Address Lat	ch Strobe Wait	States bits			
	11 = Wait of 3						
	10 = Walt of 2	272 ICY 114 Tey					
	00 = Wait of 1						
bit 8	AWAITE: Add	Iress Hold After	Address Latc	h Strobe Wait S	States bit		
	1 = Wait of 1						
	0 = Wait of 1/2	TCY					
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-0	PTEN<22:16	-: EPMP Addre	ss Port Enable	e bits ⁽¹⁾			
	1 = PMA<22:	16> function as	EPMP addres	ss lines			
	0 = PMA<22:	16> function as	s port I/Os				

REGISTER 21-3: PMCON3: EPMP CONTROL REGISTER 3

Note 1: These bits are not available in 64-pin devices (PIC24FJXXXGC006).

REGISTER 21-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—					_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PMPTTL
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

COMLines		Segments								
COWLINES	0 to 15	16 to 31	32 to 47	48 to 62						
0	LCDDATA0	LCDDATA1	LCDDATA2	LCDDATA3						
	S00C0:S15C0	S16C0:S31C0	S32C0:S47C0	S48C0:S63C0						
1	LCDDATA4	LCDDATA5	LCDDATA6	LCDDATA7						
	S00C1:S15C1	S16C1:S31C1	S32C1:S47C1	S48C1:S63C1						
2	LCDDATA8	LCDDATA9	LCDDATA10	LCDDATA11						
	S00C2:S15C2	S16C2:S31C2	S32C2:S47C2	S48C2:S63C2						
3	LCDDATA12	LCDDATA13	LCDDATA14	LCDDATA15						
	S00C3:S15C3	S16C3:S31C3	S32C3:S47C3	S48C3:S63C3						
4	LCDDATA16	LCDDATA17	LCDDATA18	LCDDATA19						
	S00C4:S15C4	S16C4:S31C4	S32C4:S47C4	S48C4:S59C4						
5	LCDDATA20	LCDDATA21	LCDDATA22	LCDDATA23						
	S00C5:S15C5	S16C5:S31C5	S32C5:S47C5	S48C5:S69C5						
6	LCDDATA24	LCDDATA25	LCDDATA26	LCDDATA27						
	S00C6:S15C6	S16C6:S31C6	S32C6:S47C6	S48C6:S59C6						
7	LCDDATA28	LCDDATA29	LCDDATA30	LCDDATA31						
	S00C7:S15C7	S16C7:S31C7	S32C7:S47C7	S48C7:S59C7						

TABLE 22-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

24.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 24-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 24-2.

FIGURE 24-1: CRC BLOCK DIAGRAM

FIGURE 24-2: CRC SHIFT ENGINE DETAIL

FIGURE 30-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0

CxOUT Pin

Сх

Comparator VBG > CVREF Compare CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 01

VIN-

VIN+

VBG/2

VREF+

VREF+

COE

X

CxOUT Pin

VINI

VREF+

CxOUT Pin

DC CHARAC	TERISTICS		Standard C Operating t	Dperating Condit emperature	ions: 2.0V t -40°C	to 3.6V (unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions				
Incremental 0	Current Brov	vn-out Rese	t (∆BOR) ⁽²⁾							
DC25	3.1	5.0	μA	-40°C to +85°C	2.0V					
	4.3	6.0	μA	-40°C to +85°C	3.3V					
Incremental C	Current Wate	hdog Timer	(∆WDT) ⁽²⁾			•				
DC71	0.8	1.5	μA	-40°C to +85°C	2.0V	AVA/DT (with L BBC selected)(2)				
	0.8	1.5	μA	-40°C to +85°C	3.3V	AWDT (WITH LFRC selected)				
Incremental C	Current HLV	D (AHLVD) ⁽²⁾)			•				
DC75	4.2	15	μA	-40°C to +85°C	2.0V					
	4.2	15	μA	-40°C to +85°C	3.3V					
Incremental C	Current Real	-Time Clock	and Calenc	lar (∆RTCC) ⁽²⁾						
DC77	0.30	1.0	μA	-40°C to +85°C	2.0V	APTCC (with SOSC)(2)				
	0.35	1.0	μA	-40°C to +85°C	3.3V					
DC77a	0.30	1.0	μA	-40°C to +85°C	2.0V	ABTCC (with BBC)(2)				
	0.35	1.0	μA	-40°C to +85°C	3.3V					
Incremental 0	Current Deep	Sleep BOR	(ADSBOR)	(2)						
DC81	0.11	0.40	μA	-40°C to +85°C	2.0V	ADoon Sloop BOD(2)				
	0.12	0.40	μA	-40°C to +85°C	3.3V	ADeep Sleep BOR				
Incremental C	Current Deep	Sleep Wate	chdog Time	r Reset (∆DSWD]	T) ⁽²⁾					
DC80	0.24	0.40	μA	-40°C to +85°C	2.0V	ADoon Sloop W/DT(2)				
	0.24	0.40	μA	-40°C to +85°C	3.3V					
Incremental C	Current LCD	(ALCD) ⁽²⁾								
DC82	0.8	3.0	μA	-40°C to +85°C	3.3V	∆LCD external/internal; ^(2,3) 1/8 MUX, 1/3 Bias				
DC90	20	_	μA	-40°C to +85°C	2.0V	∆LCD charge pump;(2,4)				
	24		μA	-40°C to +85°C	3.3V	1/8 MUX, 1/3 Bias				
VBAT A/D MO	nitor ⁽⁵⁾									
DC91	1.5	_	μΑ	-40°C to +85°C	3.3V	VBAT = 2V				
	4.0	_	μA	-40°C to +85°C	3.3V	VBAT = 3.3V				
Nata di Dai	Lete 1. Date in the "Tunical" solumn is at 2.21/ 1.25°C unloss attenuing stated. Decemptors are far decima									

TABLE 37-7: DC CHARACTERISTICS: A CURRENT (BOR, WDT, DSBOR, DSWDT, LCD)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: LCD is enabled and running, no glass is connected; the resistor ladder current is not included.

4: LCD is enabled and running, no glass is connected.

5: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DVB01	Vbt	Operating Voltage	1.6		3.6	V	Battery connected to the VBAT pin, VBTBOR = 0
DVB02			VBATBOR	—	3.6	V	Battery connected to the VBAT pin, VBTBOR = 1
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6		3.6	V	A/D monitoring the VBAT pin using the internal A/D channel

TABLE 37-13: VBAT OPERATING VOLTAGE SPECIFICATIONS

Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D.

TABLE 37-14: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	RISTICS	Standa Opera	ard Ope ting terr	rating	Conditi ure	ons: 2.0V to 3.6V (unless -40°C ≤ TA ≤ +85°C f	otherwise stated) for Industrial	
Param No. Sym Characteristic		Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions	
DCT10	ΙΟυτ1	CTMU Current Source, Base Range		550	_	nA	CTMUICON<1:0> = 00 ⁽²⁾	
DCT11	IOUT2	CTMU Current Source, 10x Range	—	5.5	-	μA	CTMUICON<1:0> = 01	
DCT12	IOUT3	CTMU Current Source, 100x Range	_	55	—	μA	CTMUICON<1:0> = 10	2.5V < VDD < VDDMAX
DCT13	IOUT4	CTMU Current Source, 1000x Range	_	550	—	μA	CTMUICON<1:0> = 11 ⁽²⁾	
DCT21	VDELTA1	Temperature Diode Voltage Change per Degree Celsius	—	-1.8	_	mV/°C	Current = 5.5 µA	
DCT22	VDELTA2	Temperature Diode Voltage Change per Degree Celsius	_	-1.55	_	mV/°C	Current = 55 µA	
DCT23	VD1	Forward Voltage	—	710	—	mV	At 0⁰C, 5.5 µA	
DCT24	VD2	Forward Voltage	_	760	_	mV	At 0°C, 55 μA	

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

2: Do not use this current range with a temperature sensing diode.

TABLE 37-19: OF	PERATIONAL AMPL	LIFIER SPECIFICATIONS
-----------------	-----------------	-----------------------

Operating Conditions: -40°C < TA < +85°C, 2.0V < (A)VDD < 3.6V							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
Op Amp	Mode Sp	ecifications					
CM20a	SR	Slew Rate		1.2	_	V/µs	SPDSEL = 1
CM20b			_	0.4	—	V/µs	SPDSEL = 0
CM23	GBW	Gain Bandwidth Product	—	2.5	_	MHz	SPDSEL = 1
			—	0.5	_	MHz	SPDSEL = 0
CM33	VGAIN	DC Open-Loop Gain	—	80	—	dB	
CM40	VOFFSET	Input Offset Voltage	—	±2	±14	mV	
CM42	VCMR	Common-Mode Input Voltage Range	AVss	—	AVdd	V	
CM45	Ів	Input Bias Current	—	—	—	nA	(Note 1)
CM52	Voamax	Maximum Output Voltage Swing	AVss + 50	—	AVDD – 50	mV	0.5V input overdrive, no output loading
CM53	ΙΟΑ	Maximum Continuous Output Current Rating (DC or RMS AC)	_	_	±6	mA	This value is not tested in production
CM54a	IQOA	AVDD Quiescent Current	—	190	—	μA	Module enabled, SPDSEL = 1, no output load
CM54b			_	40	_	μA	Module enabled, SPDSEL = 0, no output load
Compar	ator Mode	Specifications					
CM10a	TRESPL	Large Signal Comparator Response Time	_	500	—	ns	SPDSEL = 1, 3V step with 1.5V input overdrive
			_	2.6	_	μs	SPDSEL = 0, 3V step with 1.5V input overdrive
CM10b	TRESPS	Small Signal Comparator Response Time	_	1.6	_	μs	SPDSEL = 1, 50 mV step with 15 mV input overdrive
			_	4.6	_	μs	SPDSEL = 0, 50 mV step with 15 mV input overdrive
CM15	VCMCR	Common-Mode Input Voltage Range	AVss	—	AVdd	V	
CM16	TRF	Rise/Fall Time	_	20	—	ns	SPDSEL = 1

Note 1: The op amps use CMOS input circuitry with negligible input bias current. The maximum "effective bias current" is the I/O pin leakage specified by electrical Parameter DI51.

		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2	_	_	μS	
SY12	TPOR	Power-on Reset Delay	—	2	—	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700	_	(3 Tcy + 2)	μS	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	_	μS	$VDD \leq VBOR$
SY45	TRST	Internal State Reset Time	—	50	—	μS	
SY70	Toswu	Deep Sleep Wake-up Time	_	200	_	μS	VCAP fully discharged before wake-up
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with PMSLP = 0
			_	1	—	μS	Sleep wake-up with PMSLP = 1
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with PMSLP = 0
			_	70	—	μS	Sleep wake-up with PMSLP = 1

TABLE 37-27: RESET AND BROWN-OUT RESET REQUIREMENTS

FIGURE 38-28: IOL vs. PIN VOL (VDD = 3.6V)

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads N 64					
Lead Pitch	е	0.50 BSC			
Overall Height	Α	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11° 12° 13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2