

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 50x12b, 2x16b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gc010t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	AN33/SEG50/CTED3/CN82/RG15	41	AN12/COM5/SEG18/T1CK/CTED2/PMA11/CN30/RB12
2	VDD	42	AN13/OA2P3/SEG19/DAC2/CTED1/PMA10/CN31/RB13
3	CTED4/PMD5/LCDBIAS2/CN63/RE5	43	AN14/OA2N4/SEG8/RP14/CTED5/CTPLS/PMA1/CN32/RB14
4	PMD6/LCDBIAS1/CN64/RE6	44	AN15/SEG9/RP29/T2CK/REFO/CTED6/PMA0/CN12/RB15
5	PMD7/LCDBIAS0/CN65/RE7	45	Vss
6	AN8/OA1N1/SEG32/RPI38/CN45/RC1	46	Vdd
7	SEG51/ RPI39 /CN46/RC2	47	AN28/SEG38/RPI43/CN20/RD14
8	AN9/SEG33/ RPI40 /CN47/RC3	48	AN29/SEG39/RP5/CN21/RD15
9	AN16/SEG52/RPI41/PMCS2/CN48/RC4	49	AN11/OA2N3/SEG10/ RP10 /SDA2 ⁽³⁾ /T3CK/PMA9/CN17/RF4
10	BGBUF2/AN17/OA1P1/C1IND/SEG0/ RP21 /T5CK/PMA5/CN8/ RG6	50	CVREF/AN10/OA2P2/SEG11/ RP17 /SCL2 ⁽³⁾ /PMA8/CN18/RF5
11	VLCAP1/AN18/OA1N4/C1INC/RP26/PMA4/CN9/RG7	51	AN30/SEG12/RP16/USBID/PMA12/CN71/RF3
12	VLCAP2/AN19/OA1N2/C2IND/RP19/PMA3/CN10/RG8	52	AN31/SEG40/RP30/CN70/RF2
13	MCLR	53	AN32/SEG41/ RP15 /CN74/RF8
14	AN49/OA1P0/C2INC/SEG1/DAC1/RP27/PMA2/CN11/RG9	54	VBUS/CN83/RF7
15	Vss	55	VUSB3V3
16	VDD	56	D-/CN73/RG3
17	TMS/SEG48/CTED0/CN33/RA0	57	D+/CN72/RG2
18	SEG34/RPI33/PMCS1/CN66/RE8	58	SEG55/SCL2/CN35/RA2
19	AN21/SEG35/RPI34/PMA19/CN67/RE9	59	SEG56/SDA2/PMA20/CN36/RA3
20	PGEC3/AN5/OA1OUT/C1INA/SEG2/RP18/CN7/RB5	60	TDI/AN36/SEG29/PMA21/CN37/RA4
21	PGED3/AN4/OA1N0/C1INB/SEG3/RP28/USBOEN/CN6/RB4	61	TDO/AN37/SEG28/CN38/RA5
22	AN3/OA2OUT/C2INA/SEG4/VPIO/CN5/RB3	62	VDD
23	AN2/OA2N2/CTCMP/C2INB/SEG5/ RP13 /T4CK/VMIO/CTED13/ CN4/RB2	63	OSCI/CLKI/CN23/RC12
24	PGEC1/CVREF-/AVREF-/AN1/OA2P1/SEG6/ RP1 /CTED12/CN3/ RB1	64	OSCO/CLKO/CN22/RC15
25	PGED1/CVREF+/AVREF+/DVREF+/BGBUF1/AN0/SEG7/ RP0 /CN2/ RB0	65	Vss
26	PGEC2/AN6/OA1P3/RP6/LCDBIAS3/CN24/RB6	66	AN38/SEG42/RPI36/SCL1/OCTRIG2/PMA22/CN43/RA14
27	PGED2/AN7/COM6/SEG30/RP7/CN25/RB7	67	AN39/SEG43/RPI35/SDA1/PMBE1/CN44/RA15
28	CVREF- ⁽¹⁾ /AVREF- ⁽²⁾ /SEG36/PMA7/CN41/RA9	68	AN40/SEG13/RP2/RTCC/DMLN/OCTRIG1/PMA13/CN53/RD8
29	CVREF+ ⁽¹⁾ /AVREF+ ⁽²⁾ /SEG37/PMA6/CN42/RA10	69	AN24/SEG14/RP4/DPLN/PMACK2/CN54/RD9
30	AVdd	70	AN41/C3IND/SEG15/RP3/PMA15/CS2/CN55/RD10
31	AVss	71	AN42/OA2P0/C3INC/SEG16/RP12/PMA14/CS1/CN56/RD11
32	SVss	72	AN43/OA2N0/SEG17/RP11/VCMPST3/DMH/INT0/CN49/RD0
33	CH0+	73	SOSCI/RC13
34	CH0-	74	PWRLCLK/SOSCO/SCLKI/RPI37/RC14
35	CH1+/SVREF+	75	Vss
36	CH1-/CH1SE/SVREF-	76	AN35/SEG20/RP24/CN50/RD1 ⁽⁴⁾
37	SVDD	77	AN25/OA2N1/SEG21/RP23/DPH/PMACK1/CN51/RD2
38	TCK/AN26/SEG31/CN34/RA1	78	AN44/OA2P4/SEG22/RP22/PMBE0/CN52/RD3
39	AN27/SEG53/ RP31 /CN76/RF13	79	AN45/SEG44/ RPI42 /PMD12/CN57/RD12
40	SEG54/ RPI32 /CTED7/PMA18/CN75/RF12	80	AN46/SEG45/PMD13/CN19/RD13

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note 1: Alternate pin assignments for the external comparator voltage references as determined by the ALTCVREF Configuration bit.

2: Alternate pin assignments for the external A/D voltage references as determined by the ALTADREF Configuration bit.

3: Alternate pin assignments for I2C2 as determined by the I2C2SEL Configuration bit.

4: RD1 is an analog pin and implements the AN35/SEG20/RP24/CN50/RD1 functions. However, there is not an ANSx bit associated with the RD1 port. Using the RD1 pin for the AN35 function would cause a worst-case increase in device current consumption of 500 μA.

NOTES:

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: \pm 15% over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of \pm 22%/-82%. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

DC BIAS VOLTAGE vs. FIGURE 2-4: CAPACITANCE **CHARACTERISTICS** Change (%) 0 -10 16V Capacitor -20 -30 pacitance -40 10V Capacitor -50 -60 -/0 6.3V Capacitor

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. The minimum DC rating for the ceramic capacitor on VCAP is 16V. Suggested capacitors are shown in Table 2-1.

8 9

DC Bias Voltage (VDC)

10 11 12

13

15 16

2.5 ICSP Pins

2

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

The $\overline{\text{MCLR}}$ connection from the ICSP header should connect directly to the $\overline{\text{MCLR}}$ pin on the device. A capacitor to ground (C1 in Figure 2-2) is optional, but if used, may interfere with ICSP operation if the value exceeds 0.01 $\mu F.$ In most cases, this capacitor is not required.

For more information on available Microchip development tools connection requirements, refer to **Section 35.0 "Development Support"**.

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADxPCFG register(s) or clearing all bits in the ANSx registers.

All PIC24F devices will have either one or more ADxPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to **Section 11.2 "Configuring Analog Port Pins** (ANSx)" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADxPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADxPCFG or ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Sigma-Delta A/D Connections

The Sigma-Delta A/D Converter has input and power connections that are independent from the rest of the microcontroller. These connections are required to use the converter, and are in addition to the connection and layout connections provided in Section 2.1 "Basic Connection Requirements" and Section 2.2 "Power Supply Pins".

2.8.1 VOLTAGE AND GROUND CONNECTIONS

To minimize noise interference, the Sigma-Delta A/D Converter has independent voltage pins. Converter circuits are supplied through the SVDD pin. Independent ground return is provided through the SVss pin.

As with the microcontroller's VDD/VSS and AVDD/AVSS pins, bypass capacitors are required on SVDD and SVSS. Requirements for these capacitors are identical to those for the VDD/VSS and AVDD/AVSS pins.

It is recommended that designs using the Sigma-Delta A/D Converter incorporate a separate ground return path for analog circuits. The analog and digital grounds may be tied to a single point at the power source. Analog pins that require grounding should be tied to this analog return. SVss can be tied to the digital ground, along with Vss and AVss.

2.8.2 ANALOG INPUTS

The analog signals to be converted are connected to the pins of CH0 and/or CH1. Each channel has inverting and non-inverting inputs (CHx- and CHx+, respectively), and is fully differential.

If not used for conversion, CH1+ and CH1- can be used to supply an external voltage reference to the converter. If an external reference is not used and CH1 is not needed as a conversion input, both pins should be connected to the analog ground return.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Memory with Extended Data Space (EDS)" (DS39733) which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space (DS) is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space. This gives a DS address range of 64 Kbytes or 32K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.

The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

The lower half of DS is compatible with previous PIC24F microcontrollers without EDS. All PIC24FJ128GC010 family devices implement 8 Kbytes of data RAM in the lower half of the DS, from 0800h to 27FFh.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space Effective Addresses (EAs) resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0630	CMIDL	—	-	—	—	C3EVT	C2EVT	C1EVT	—	—	—	—	_	C3OUT	C2OUT	C10UT	0000
CVRCON	0632	_	_	_	_	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0634	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2CON	0636	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3CON	0638	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	—	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
CRCCON1	0640	CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	0040
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644		X<15:1> — 0000															
CRCXORH	0646		X<31:16> 000											0000				
CRCDATL	0648							CRC	C Data Input	Register L	ow							0000
CRCDATH	064A		CRC Data Input Register High 000											0000				
CRCWDATL	064C		CRC Result Register Low 0000															
CRCWDATH	064E		CRC Result Register High 0000															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: BAND GAP BUFFER INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BUFCON0	0670	BUFEN	—	BUFSIDL	BUFSLP	—	—	—	—	_	BUFSTBY	—	—	—	—	BUFREF1	BUFREF0	0000
BUFCON1	0672	BUFEN	_	BUFSIDL	BUFSLP	_	—	_	_	BUFOE	BUFSTBY	—	—	—	_	BUFREF1	BUFREF0	0000
BUFCON2	0674	BUFEN	_	BUFSIDL	BUFSLP	_	—	_	_	BUFOE	BUFSTBY	—	—	—	_	BUFREF1	BUFREF0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	- 00.							(0011										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	—	_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	—	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	—	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	—	_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾	_	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2	_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	—	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	—	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC		_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0		_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15	06DE		_	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾	_	_	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0	0000

TABLE 4-35: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are unimplemented in 64-pin devices, read as '0'.

TABLE 4-36: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	RETEN	-	DPSLP	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0746	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	CPDIV1	CPDIV0	PLLEN	_	_	_	_	_	3100
OSCTUN	0748	STEN	_	STSIDL	STSRC	STLOCK	STLPOL	STOR	STORPOL	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	LSIDL	_	_	_	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000
RCON2	0762	—	—	_		_	—	—	_	_	—	—	r	VDDBOR	VDDPOR	VBPOR	VBAT	Note 1

Legend: — = unimplemented, read as '0'; r = reserved, do not modify. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 7.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 9.0 "Oscillator Configuration" for more information.

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

Interrunt Source	Vector	IVT	AIVT	Inte	errupt Bit Locat	ions
Interrupt Source	Number	Address	Address	Flag	Enable	Priority
Enhanced Parallel Master Port (EPMP)	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock and Calendar (RTCC)	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>
USB	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
DAC2IF	DAC1IF	CTMUIF		_	—		HLVDIF
bit 15				·	•		bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	—		_	CRCIF	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	DAC2IF: DAC	C Converter 2 Ir	nterrupt Flag S	status bit			
	1 = Interrupt	request has oc	curred				
1.11.4.4		request has no	t occurred	N I I I.			
DIT 14	DAC1IF: DAC	Converter 1 Ir	iterrupt Flag S	status bit			
	1 = Interrupt 0 = Interrupt	request has oc	t occurred				
bit 13	CTMUIF: CTM	MU Interrupt Fla	a Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 12-9	Unimplemen	ted: Read as 'd)'				
bit 8	HLVDIF: High	n/Low-Voltage E	Detect Interrup	t Flag Status bit	t		
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 7-4	Unimplemen	ted: Read as '0)'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt 0 = Interrupt	request has oc	curred				
hit 2		RT2 Error Interr	unt Flag Statu	s hit			
SIL 2	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	toccurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Statu	s bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 0	Unimplemen	ted: Read as '0)'				

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

-							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE		INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		DT2 Transmittar	Interrupt Engl	blo hit			
bit 15		request is enab	niterrupt ∟nat bled				
	0 = Interrupt	request is not e	enabled				
bit 14	U2RXIE: UAF	RT2 Receiver Ir	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	bled				
	0 = Interrupt	request is not e	enabled				
bit 13	INT2IE: Exter	mal Interrupt 2	Enable bit ⁽¹⁾				
	1 = Interrupt	request is enab	bled				
h:: 40		request is not e					
DIT 12	15IE: Ilmer5	Interrupt Enabl					
	0 = Interrupt	request is not e	enabled				
bit 11	T4IE: Timer4	Interrupt Enabl	e bit				
	1 = Interrupt	request is enab	bled				
	0 = Interrupt	request is not e	enabled				
bit 10	OC4IE: Outpu	ut Compare Ch	annel 4 Interru	pt Enable bit			
	1 = Interrupt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				
bit 9	OC3IE: Outpu	ut Compare Ch	annel 3 Interru	ipt Enable bit			
	1 = Interrupt	request is enab)led mabled				
hit 8		A Channel 2 In	torrunt Enable	bit			
bito		request is enab		bit			
	0 = Interrupt	request is not e	enabled				
bit 7	IC8IE: Input C	Capture Channe	el 8 Interrupt E	nable bit			
	1 = Interrupt	request is enat	oled				
	0 = Interrupt	request is not e	enabled				
bit 6	IC7IE: Input C	Capture Channe	el 7 Interrupt E	nable bit			
	1 = Interrupt	request is enab	bled				
L:1 C		request is not e					
DIT 5	Unimplemen	ted: Read as ').				
Note 1. If	an avtornal into	rrunt is onabled	the interrupt	input must also	he configured	to an available	DDn or DDIn

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 8-46: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0	r-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ	—	VHOLD	_	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
	 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority 0 = No interrupt request is unacknowledged
bit 14	Reserved: Maintain as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
	 1 = VECNUM<6:0> contain the value of the highest priority pending interrupt 0 = VECNUM<6:0> contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	• 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0
bit 7	Unimplemented: Read as '0'
bit 6-0	VECNUM<6:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits
	<u>When VHOLD = 1:</u> Indicates the vector number (from 0 to 118) of the highest priority pending interrupt.
	<u>When VHOLD = 0:</u> Indicates the vector number (from 0 to 118) of the interrupt request currently being handled.

REGISTER 10-3: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
—	—	—	—	VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7							bit 0

Legend: CO = Clearable Only bit		r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-5	Unimplemented: Read as '0'
bit 4	Reserved: Maintain as '0'
bit 3	VDDBOR: VDD Brown-out Reset Flag bit ⁽¹⁾
	 1 = A VDD Brown-out Reset has occurred (set by hardware) 0 = A VDD Brown-out Reset has not occurred
bit 2	VDDPOR: VDD Power-on Reset Flag bit ^(1,2)
	 1 = A VDD Power-on Reset has occurred (set by hardware) 0 = A VDD Power-on Reset has not occurred
bit 1	VBPOR: VBAT Power-on Reset Flag bit ^(1,3)
	 1 = A VBAT POR has occurred (no battery is connected to the VBAT pin or VBAT power is below the Deep Sleep semaphore retention level set by hardware) 0 = A VBAT POR has not occurred
bit 0	VBAT: VBAT Flag bit ⁽¹⁾
	 1 = A POR exit has occurred while power was applied to the VBAT pin (set by hardware) 0 = A POR exit from VBAT has not occurred
Note 1:	This bit is set in hardware only; it can only be cleared in software.
2:	Indicates a VDD POR. Setting the POR bit (RCON<0>) indicates a VCORE POR.

3: This bit is set when the device is originally powered up, even if power is present on VBAT.

REGISTER 11-28: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

bit	0
2.1	~

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 RP1R<5:0>: RP1 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers). bit 7-6 Unimplemented: Read as '0'
- bit 5-0 RP0R<5:0>: RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).

REGISTER 11-29: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

RP2R<5:0>: RP2 Output Pin Mapping bits bit 5-0

Peripheral Output Number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = Pipeline A/D⁽²⁾
 - 11010 = Comparator 3⁽²⁾
 - 11001 = Comparator 2⁽²⁾
 - 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 8⁽²⁾
 - 10110 = Input Capture 7⁽²⁾

 - 10101 = Input Capture 6⁽²⁾ 10100 = Input Capture 5⁽²⁾

 - 10011 = Input Capture 4⁽²⁾
 - 10010 = Input Capture 3⁽²⁾ 10001 = Input Capture 2⁽²⁾
 - 10000 = Input Capture 1⁽²⁾

 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3 01100 = Timer2

 - 01011 = Timer1
 - 01010 = Input Capture 9⁽²⁾
 - 01001 = Output Compare $9^{(1)}$
 - 01000 = Output Compare 8⁽¹⁾
 - 00111 = Output Compare 7⁽¹⁾ 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTER 21-1: PMCON1: EPMP CONTROL REGISTER 1 (CONTINUED)

bit 1-0 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode), or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)
- 10 = Reserved
- 01 = Interrupt is generated at the end of a read/write cycle
- 00 = No interrupt is generated

REGISTER 21-2: PMCON2: EPMP CONTROL REGISTER 2

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	U-0	U-0	U-0	U-0
BUSY	—	ERROR	TIMEOUT	—	—	—	—
bit 15							bit 8

| R/W-0 |
|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| RADDR23 ⁽¹⁾ | RADDR22 ⁽¹⁾ | RADDR21 ⁽¹⁾ | RADDR20 ⁽¹⁾ | RADDR19 ⁽¹⁾ | RADDR18 ⁽¹⁾ | RADDR17 ⁽¹⁾ | RADDR16 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:	HS = Hardware Settable bit	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit	

bit 15	BUSY: Busy bit (Master mode only) 1 = Port is busy 0 = Port is not busy
bit 14	Unimplemented: Read as '0'
bit 13	ERROR: Error bit
	1 = Transaction error (illegal transaction was requested)0 = Transaction completed successfully
bit 12	TIMEOUT: Time-out bit
	1 = Transaction timed out0 = Transaction completed successfully
bit 11-8	Unimplemented: Read as '0'
bit 7-0	RADDR<23:16>: Parallel Master Port Reserved Address Space bits ⁽¹⁾

Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFh.

COMLines	Segments						
COWLINES	0 to 15	16 to 31	32 to 47	48 to 62			
0	LCDDATA0	LCDDATA1	LCDDATA2	LCDDATA3			
	S00C0:S15C0	S16C0:S31C0	S32C0:S47C0	S48C0:S63C0			
1	LCDDATA4	LCDDATA5	LCDDATA6	LCDDATA7			
	S00C1:S15C1	S16C1:S31C1	S32C1:S47C1	S48C1:S63C1			
2	LCDDATA8	LCDDATA9	LCDDATA10	LCDDATA11			
	S00C2:S15C2	S16C2:S31C2	S32C2:S47C2	S48C2:S63C2			
3	LCDDATA12	LCDDATA13	LCDDATA14	LCDDATA15			
	S00C3:S15C3	S16C3:S31C3	S32C3:S47C3	S48C3:S63C3			
4	LCDDATA16	LCDDATA17	LCDDATA18	LCDDATA19			
	S00C4:S15C4	S16C4:S31C4	S32C4:S47C4	S48C4:S59C4			
5	LCDDATA20	LCDDATA21	LCDDATA22	LCDDATA23			
	S00C5:S15C5	S16C5:S31C5	S32C5:S47C5	S48C5:S69C5			
6	LCDDATA24	LCDDATA25	LCDDATA26	LCDDATA27			
	S00C6:S15C6	S16C6:S31C6	S32C6:S47C6	S48C6:S59C6			
7	LCDDATA28	LCDDATA29	LCDDATA30	LCDDATA31			
	S00C7:S15C7	S16C7:S31C7	S32C7:S47C7	S48C7:S59C7			

TABLE 22-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS

REGISTER 24-2:	CRCCON2: CRC	CONTROL 2 REGISTER
----------------	--------------	---------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	Unimplement	ted: Read as 'd)'				
bit 12-8	DWIDTH<4:0	>: Data Word V	Vidth Configura	ation bits			
	Configures the	e width of the d	ata word (Data	a Word Width –	1).		
bit 7-5	Unimplemented: Read as '0'						

bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

REGISTER 26-13: ADCHITH: A/D MATCH HIT HIGH REGISTER

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS		
	CHH<31:24>								
bit 15							bit 8		
R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS		
			CHH<	23:16>					
bit 7							bit 0		
Legend:	Jend: HS = Hardware Settable bit								

3				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 CHH<31:16>: A/D Conversion Match Hit bits

1 = A threshold compare match has occurred on the corresponding sample list entry

0 = No match has occurred

REGISTER 26-14: ADCHITL: A/D MATCH HIT LOW REGISTER

R/W-0, HS								
CHH<15:8>								
bit 15							bit 8	
R/W-0, HS								
CHH<7:0>								
bit 7							bit 0	

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 CHH<15:0>: A/D Conversion Match Hit bits

1 = A threshold compare match has occurred on the corresponding sample list entry

0 = No match has occurred

AC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2	_	_	μS	
SY12	TPOR	Power-on Reset Delay	—	2	—	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700	_	(3 Tcy + 2)	μS	
SY25	TBOR	Brown-out Reset Pulse Width	1	—	_	μS	$VDD \leq VBOR$
SY45	TRST	Internal State Reset Time	—	50	—	μS	
SY70	Toswu	Deep Sleep Wake-up Time	_	200	_	μS	VCAP fully discharged before wake-up
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with PMSLP = 0
			_	1	—	μS	Sleep wake-up with PMSLP = 1
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with PMSLP = 0
			_	70	—	μS	Sleep wake-up with PMSLP = 1

TABLE 37-27: RESET AND BROWN-OUT RESET REQUIREMENTS

© 2012-2016 Microchip Technology Inc.