

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l011k3u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 42.	UFQPN28, 4 x 4 mm, 28-pin package outline	101
Figure 43.	UFQFPN28 recommended footprint	102
Figure 44.	Example of UFQFPN28 marking (package top view)	102
Figure 45.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package outline	103
Figure 46.	UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package recommended footprint	104
Figure 47.	Example of UFQFPN20 marking (package top view)	105
Figure 48.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
-	package outline	106
Figure 49.	TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,	
-	package footprint	107
Figure 50.	Example of TSSOP20 marking (package top view)	108
Figure 51.	TSSOP14 – 14-lead thin shrink small outline, 5.0 x 4.4 mm, 0.65 mm pitch,	
-	package outline.	109
Figure 52.	Example of TSSOP14 marking (package top view)	
Figure 53.	Thermal resistance	

	Functionalities depending on the operating power supply range					
Operating power supply range	ADC operation	Dynamic voltage scaling range	I/O operation			
V _{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance			
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation			
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect the condition: f_{CPU initial} <4f_{CPU initial}. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

Table 4. CPU frequency range depe	ending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

Table 5. Functionalities depending on the working mode(from Run/active down to standby) (1)(2)

			Low-	Low-		Stop	Standby	
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
CPU	Y	-	Y	-	-	-	-	-
Flash memory	0	0	0	0	-	-	-	-
RAM	Y	Y	Y	Y	Y	-	-	-
Backup registers	Y	Y	Y	Y	Y	-	Y	-
EEPROM	0	0	0	0	-	-	-	-
Brown-out reset (BOR)	0	0	0	0	0	0	0	0
DMA	0	0	0	0	-	-	-	-

٦

3.17 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

Table 13.	Pin definitions	(continued)
-----------	-----------------	-------------

		Pin	num	ber							Pin functions			
TSSOP14	UFQFPN20	TSSOP20	UFQFPN28	LQFP32	UFQFPN32 ⁽¹⁾	WLCSP25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
12	15	18	20	20	20	C2	PA10	I/O	FTf	-	TIM21_CH1, I2C1_SDA, RTC_REFIN, USART2_RX, TIM2_CH3, COMP1_OUT	-		
-	-	-	-	21	21	-	PA11	I/O	FT	-	SPI1_MISO, LPTIM1_OUT, EVENTOUT, USART2_CTS, TIM21_CH2, COMP1_OUT	-		
-	-	-	-	22	22	-	PA12	I/O	FT	-	SPI1_MOSI, EVENTOUT, USART2_RTS, COMP2_OUT	-		
13	16	19	21	23	23	A1	PA13	I/O	FTf	-	SWDIO, LPTIM1_ETR, I2C1_SDA, SPI1_SCK, LPUART1_RX, COMP1_OUT	-		
14	17	20	22	24	24	A2	PA14	I/O	FT	-	SWCLK, LPTIM1_OUT, I2C1_SMBA, USART2_TX, SPI1_MISO, LPUART1_TX, COMP2_OUT	-		
-	-	-	23	25	25	-	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1	-		
-	-	-	24	26	26	B2	PB3	I/O	FT	-	SPI1_SCK, TIM2_CH2, EVENTOUT	COMP2_INM		
-	-	-	25	27	27	-	PB4	I/O	FT	-	SPI1_MISO, EVENTOUT	COMP2_INP		

Memory mapping 5

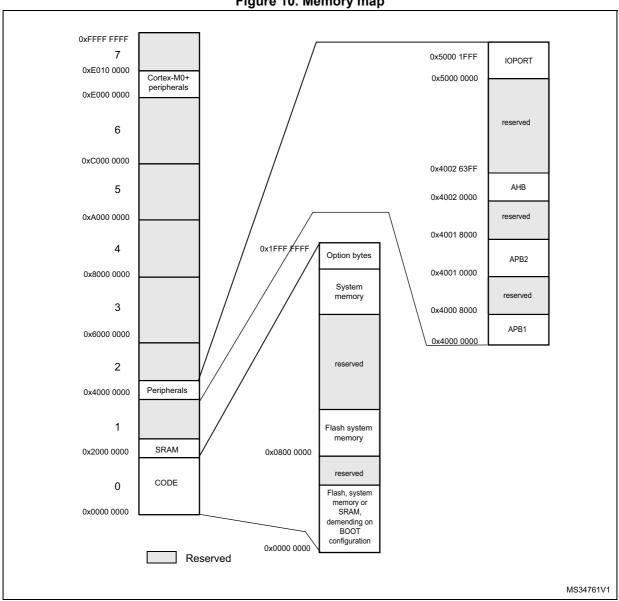


Figure 10. Memory map

1. Refer to the STM32L011x3/4 reference manual for details on the Flash memory organization for each memory size.

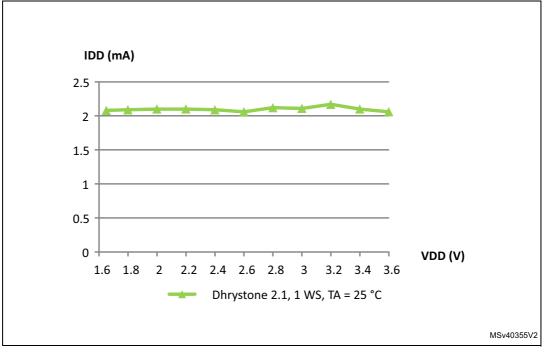
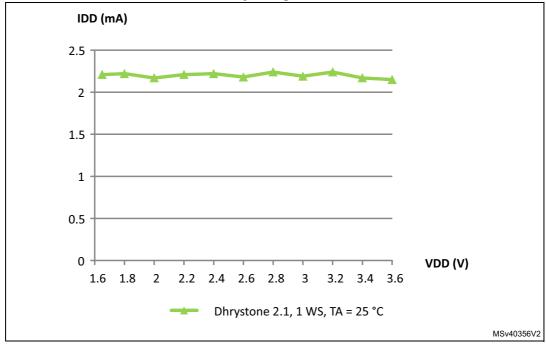



Figure 15. I_{DD} vs V_{DD} , at T_A = 25 °C, Run mode, code running from Flash memory, Range 2, 16 MHz HSE, 1WS

Figure 16. I_{DD} vs V_{DD}, at T_A= 25 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS

Symbol	Parameter	Conc	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
			Range 3,	1 MHz	115	140	
			V _{CORE} =1.2 V,	2 MHz	205	240	μA
			VOS[1:0]=11	4 MHz	385	420	
		f _{HSE} = f _{HCLK} up to 16 MHz, included	Range 2,	4 MHz	0.48	0.55	
		$f_{HSE} = f_{HCLK}/2$ above	V _{CORE} =1.5 ,V,	8 MHz	0.935	1.1	
I _{DD} (Run	Supply current in Run mode, code executed from RAM, Flash switched OFF	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	1.8	2	mA
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.1	1.4	
				16 MHz	2.1	2.5	
from RAM)				32 MHz	4.5	4.9	
		MSI clock	Range 3, V _{CORE} =1.2 V,	65 kHz	22	38	
				524 kHz	67	91	μA
			VOS[1:0]=11	4.2 MHz	415	450	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	1.95	2.2	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	4.7	5.2	mA

Table 24. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 25. Current consumption in Run mode vs code type,code with data processing running from RAM⁽¹⁾

Symbol	Parameter		Conditions				
				Dhrystone		385	
I _{DD} (Run	Supply current in Run mode, code executed from RAM, Flash	$f_{HSE} = f_{HCLK}$ up to 16 MHz, included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL ON) ⁽²⁾	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	CoreMark	4 MHz	_(3)	
				Fibonacci	4 IVI⊓Z	350	μA
				while(1)		340	
from RAM)				Dhrystone		4.5	
	switched OFF		Range 1,	CoreMark	32 MHz	_(3)	
			V _{CORE} =1.8 V, VOS[1:0]=01	Fibonacci		4.2	mA
				while(1)		3	

1. Guaranteed by characterization results, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

3. CoreMark code is unable to run from RAM since the RAM size is only 2 Kbytes.

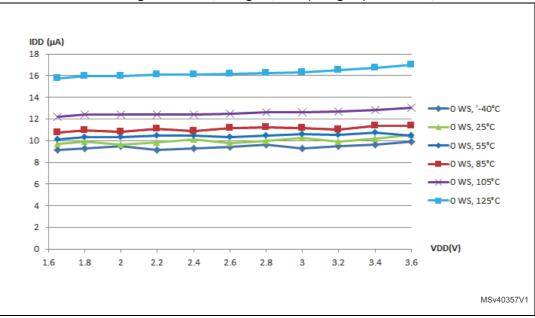
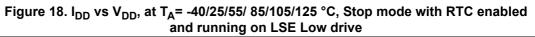


Figure 17. I_{DD} vs V_{DD}, at T_A= -40/25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Table 28. Current consumption in Low-power Sleep mode

Symbol	Parameter	Conditions				Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	2.5 ⁽²⁾	-	
			T_A = -40 °C to 25 °C	13	19		
		MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	15.5	20		
		Flash ON	T _A = 105 °C	17.5	22		
		All peripherals		T _A = 125 °C	21	29	
	Supply		MSI clock, 65 kHz fuct k = 65 kHz.	T _A = -40 °C to 25 °C	13.5	19	
I _{DD} (LP Sleep)	current in Low-power	OFF, V _{DD} from 1.65 V to 3.6 V		T _A = 85 °C	16	20	μA
	sleep mode	1.00 V 10 3.0 V		T _A = 105 °C	18	22	
				T _A = 125 °C	21.5	29	
				T_A = -40 °C to 25 °C	15.5	21	
			MSI clock, 131 kHz	T _A = 55 °C	17	22	
		f _{HCLK} = 131 kHz,	T _A = 85 °C	18	23		
			Flash ON	T _A = 105 °C	19.5	24	
				T _A = 125 °C	23.5	31	

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.


2. As the CPU is in Sleep mode, the difference between the current consumption with Flash memory ON and OFF (nearly 12 μ A) is the same whatever the clock frequency.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit					
		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.34	0.99						
	Supply current in Stop mode	T _A = 55°C	0.43	1.9						
I _{DD} (Stop)		T _A = 85°C	0.94	4.2	μA					
		T _A = 105°C	2.0	9						
		T _A = 125°C	4.9	19						

Table 29. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.

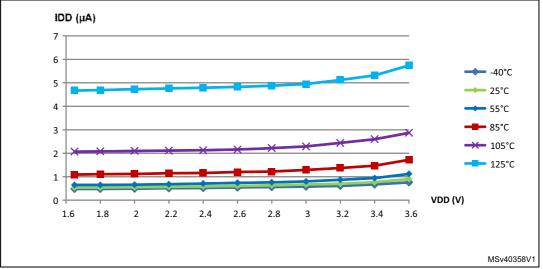
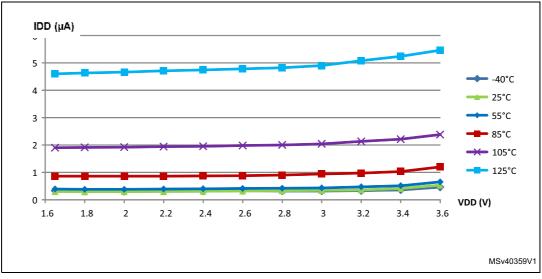



Figure 19. I_{DD} vs V_{DD}, at T_A= -40/25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks OFF

Symbol	Parameter	Conditions		Тур	Max ⁽¹⁾	Unit	
			T_A = -40 °C to 25 °C	0.8	1.6		
			T _A = 55 °C	0.9	1.8		
		Independent watchdog and LSI enabled	T _A = 85 °C	1	2		
	Supply current in Standby mode		T _A = 105 °C	1.25	3		
I _{DD}			T _A = 125 °C	2	7		
(Standby)		Independent watchdog and LSI OFF	T_A = -40 °C to 25 °C	0.23	0.6	μA	
			T _A = 55 °C	0.25	0.7		
				$T_{A} = 85 ^{\circ}C$ 0.3	0.36	1	
			T _A = 105 °C	0.62	1.7		
			T _A = 125 °C	1.35	5		

Table 30. Typical and maximum current of	consumptions in Standby mode
--	------------------------------

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified

Symbol	parameter	System frequency	Current consumption during wakeup	Unit
		HSI	1	
		HSI/4	0,7	
I _{DD} (WU from Stop)	Supply current during wakeup from Stop mode	MSI 4,2 MHz	0,7	
		MSI 1,05 MHz	0,4	
		MSI 65 KHz	0,1	mA
I _{DD} (Reset)	Reset pin pulled down	-	0,21	
I _{DD} (Power Up)	BOR ON	-	0,23	
I _{DD} (WU from	With Fast wakeup set	MSI 2,1 MHz	0,5	
StandBy)	With Fast wakeup disabled	MSI 2,1 MHz	0,12	

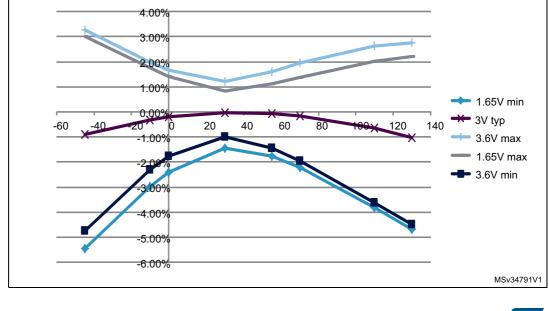
On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked OFF
 - with only one peripheral clocked ON

6.3.7 Internal clock source characteristics

The parameters given in *Table 38* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 18*.


High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions		Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI16 user-	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI16 oscillator	V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
ACC		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI16}		V_{DDA} = 3.0 V, T_{A} = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time			3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by test in production.

Figure 23. HSI16 minimum and maximum value versus temperature

DocID027973 Rev 4

Symbol	Parameter Condition		Тур	Мах	Unit
		MSI range 0	30	-	
		MSI range 1	20	-	
		MSI range 2	15	-	-
		MSI range 3	10	-	
t	MSI oscillator startup time	MSI range 4	6	-	μs
t _{SU(MSI)}		MSI range 5	5	-	μο
		MSI range 6, Voltage range 1 and 2	3.5	-	
		MSI range 6, Voltage range 3	5	-	
		MSI range 0	-	40	
		MSI range 1	-	20	
	MSI oscillator stabilization time	MSI range 2	-	10	
		MSI range 3	i	4	
t _{STAB(MSI)} ⁽²⁾		MSI range 4	-	2.5	μs
STAB(MSI)		MSI range 5	I	2	μο
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f _{over(MSI)}	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
		Any range to range 6	-	6	

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results, not tested in production.

6.3.8 PLL characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 18*.

Symbol	Parameter		Unit		
Symbol	Falameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
^T PLL_IN	PLL input clock duty cycle	45	-	55	%

Symbol Parameter		Parameter	Conditions	Class		
	LU Static latch-up class $T_A = +125$ °C conforming to JESD78A		II level A			

Table 48. Electrical sensitivities

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 49.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on all FT pins	-5 ⁽¹⁾	NA	mA
	Injected current on any other pin	-5 ⁽¹⁾	+5	

Table 49. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
I _{COMP2}	Current consumption ⁽⁴⁾	Fast mode	-	3.5	5	
		Slow mode	-	0.5	2	μA

Table 60. Comparator 2 characteristics (continued)

1. Guaranteed by characterization results, not tested in production.

4. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

6.3.18 Timer characteristics

TIM timer characteristics

The parameters given in the *Table 61* are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
	Timer resolution time		1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 32 MHz	31.25	-	ns
f	Timer external clock		0	f _{TIMxCLK} /2	MHz
f _{EXT} frequency on	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz
Res _{TIM}	Timer resolution	-		16	bit
16-bit counter clock		-	1	65536	t _{TIMxCLK}
t _{COUNTER}	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs
	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	s

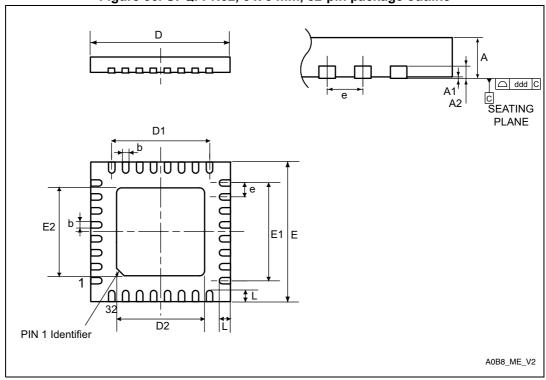
Table 61. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2 and TIM21 timers.

^{2.} The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

In TSSOP14 package, where V_{DDA} pin is shared with V_{DD} pin, I/O toggling should be minimized to reach the values given in the above table. I/O toggling with loaded I/O pins can generate ripple on V_{DD}/V_{DDA} and degrade the comparator performance.

USART/LPUART characteristics


The parameters given in the following table are guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUUSART} U		Stop mode with main regulator in Run mode, Range 2 or 3	-	8.7	
	Wakeup time needed to calculate the maximum USART/LPUART baudrate	Stop mode with main regulator in Run mode, Range 1	-	8.1	μs
	allowing to wake up from Stop mode	Stop mode with main regulator in	12		
			-	11.4	

Table 64. USART/LPUART	characteristics

7.2 UFQFPN32 package information

Figure 36. UFQFPN32, 5 x 5 mm, 32-pin package outline

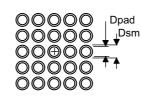
1. Drawing is not to scale.

Table 69. UFQFPN32, 5 x 5 mm, 32-pin package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Max	Min	Тур	Max
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.200	-	-	0.0079	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D2	3.200	3.450	3.700	0.1260	0.1358	0.1457
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E2	3.200	3.450	3.700	0.1260	0.1358	0.1457
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 70. WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)


		-		•		
G	-	0.235	-	-	0.0093	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

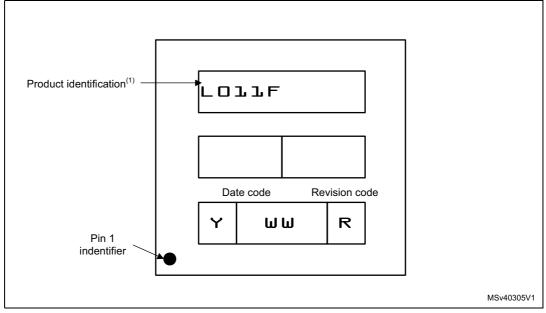
1. Values in inches are converted from mm and rounded to 4 decimal digits.

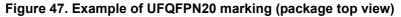
2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 40. WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

WLCSP25_A05M_FP_V1


Table 71. WLCSP25 recommended PCB design rules (0.4 mm pitch)


Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

UFQFPN20 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

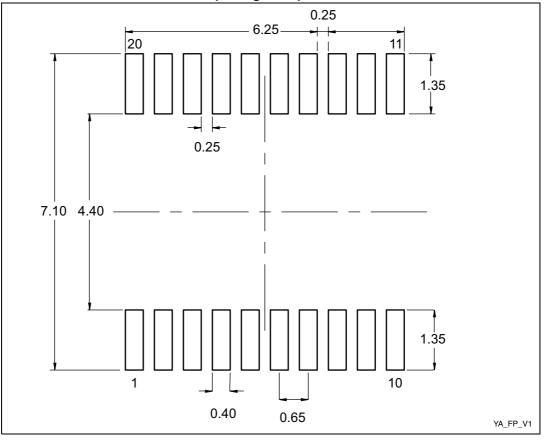
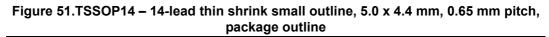


Table 74. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,
package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to four decimal digits.


Figure 49. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package footprint



1. Dimensions are expressed in millimeters.

7.7 TSSOP14 package information

1. Drawing is not to scale.

Table 75. TSSOP14 – 14-lead thin shrink small outline, 5.0 x 4.4 mm, 0.65 mm pitch,
package mechanical data

Symbol	millimeters inches					
	Min	Тур	Max	Min	Тур	Max
A	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
с	0.090	-	0.200	0.0035	-	0.0079
CP	-	-	0.100	-	-	0.0039
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
e	-	0.650	-	-	0.0256	-
E	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1	4.300	4.400	4.500	0.1693	0.1732	0.1772
L	0.500	0.600	0.750	0.0197	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
а	0°	-	8°	0°	-	8°

