

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

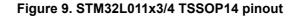
Details

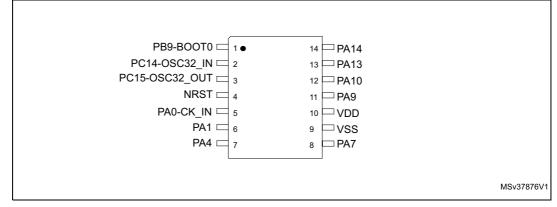
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l011k4u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	I2C bus	9
		3.15.2	Universal synchronous/asynchronous receiver transmitter (USART) 30)
		3.15.3	Low-power universal asynchronous receiver transmitter (LPUART) 37	1
		3.15.4	Serial peripheral interface (SPI)	1
	3.16	Cyclic r	redundancy check (CRC) calculation unit	1
	3.17	Serial v	vire debug port (SW-DP) 32	2
4	Pin d	lescript	ions	3
5	Mem	ory map	oping	}
6	Elect	rical ch	aracteristics	ł
	6.1	Parame	eter conditions	1
		6.1.1	Minimum and maximum values44	1
		6.1.2	Typical values	1
		6.1.3	Typical curves	1
		6.1.4	Loading capacitor	1
		6.1.5	Pin input voltage44	1
		6.1.6	Power supply scheme	5
		6.1.7	Current consumption measurement45	5
	6.2	Absolu	te maximum ratings	3
	6.3	Operat	ing conditions	3
		6.3.1	General operating conditions	3
		6.3.2	Embedded reset and power control block characteristics	9
		6.3.3	Embedded internal reference voltage57	1
		6.3.4	Supply current characteristics	2
		6.3.5	Wakeup time from low-power mode62	2
		6.3.6	External clock source characteristics 64	1
		6.3.7	Internal clock source characteristics67	7
		6.3.8	PLL characteristics69	9
		6.3.9	Memory characteristics70)
		6.3.10	EMC characteristics	2
		6.3.11	Electrical sensitivity characteristics	3
		6.3.12	I/O current injection characteristics74	1
		6.3.13	I/O port characteristics	5
		6.3.14	NRST pin characteristics	9
		6.3.15	12-bit ADC characteristics80)


DocID027973 Rev 4



2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM[®] Cortex[®]-M4, including ARM[®] Cortex[®]-M3 and ARM[®] Cortex[®]-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultra-low-power series are the best solution for applications such as gas/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power Run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.

1. The above figure shows the package top view.

Table 12. Legend/abbreviations used in the pinout	table
---	-------

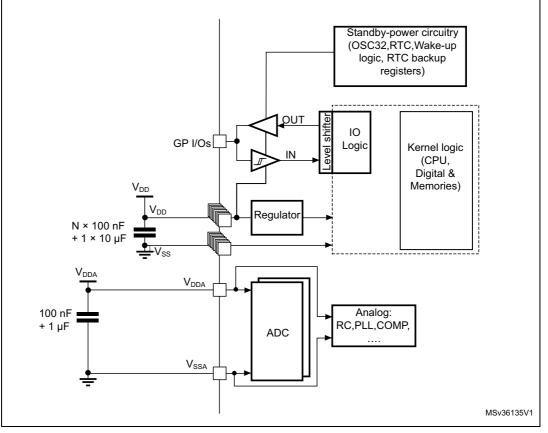
Nar	ne	Abbreviation	Definition		
Pin n	ame		ed in brackets below the pin name, the pin function during ne as the actual pin name		
		S	Supply pin		
Pin t	уре	I	Input only pin		
		I/O	Input / output pin		
		FT	5 V tolerant I/O		
		FTf	5 V tolerant I/O, FM+ capable		
I/O stru	ioturo	TTa	3.3 V tolerant I/O directly connected to the ADC		
1/0 501	loure	TC	Standard 3.3V I/O		
		В	Dedicated BOOT0 pin		
		RST	Bidirectional reset pin with embedded weak pull-up resistor		
Notes Unless otherwise spe after reset.			ed by a note, all I/Os are set as floating inputs during and		
Pin functions	Alternate functions	Functions selected through GPIOx_AFR registers			
	Additional functions	Functions directly selected	TTa 3.3 V tolerant I/O directly connected to the ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor therwise specified by a note, all I/Os are set as floating inputs during and et.		

		Pin	num	ber							Pin functions		
TSSOP14	UFQFPN20	TSSOP20	UFQFPN28	LQFP32	UFQFPN32 ⁽¹⁾	WLCSP25	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	-	-	26	28	28	-	PB5	I/O	FT	-	SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM21_CH1	COMP2_INP	
-	18	-	27	29	29	A3	PB6	I/O	FTf	-	USART2_TX, I2C1_SCL, LPTIM1_ETR, TIM2_CH3, LPUART1_TX	COMP2_INP	
-	19	-	28	30	30	A4	PB7	I/O	FTf	-	USART2_RX, I2C1_SDA, LPTIM1_IN2, TIM2_CH4, LPUART1_RX	COMP2_INP, VREF_PVD_IN	
1	20	1	1	31	31	A5	PB9-BOOT0	I	В	-	-	BOOT0 (Boot memory selection)	
-	-	-	-	-	32	-	PB8	I/O	FTf	-	USART2_TX, EVENTOUT, I2C1_SCL, SPI1_NSS	-	
-	-	-	-	32	-	-	VSS	S	I	(5)	-	-	
-	-	-	-	1	1	-	VDD	S	-	(6)	-	-	

1. V_{SS} pins are connected to the exposed pad (see *Figure 36: UFQFPN32, 5 x 5 mm, 32-pin package outline*).

2. Device reset input/internal reset output (active low).

3. Analog power supply.


4. On TSSOP14 package, V_{DDA} is internally connected to V_{DD} .

5. Digital and analog ground.

6. Digital power supply.

6.1.6 Power supply scheme

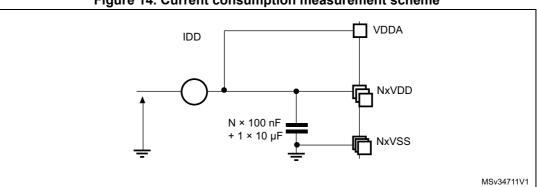


Figure 13. Power supply scheme

1. On TSSOP14 package, V_{DDA} is internally connected to V_{DD} .

2. V_{SSA} is internally connected to V_{SS} on all packages.

6.1.7 **Current consumption measurement**

Figure 14. Current consumption measurement scheme

6.3 Operating conditions

6.3.1 General operating conditions

Table 18. General operating condition	Table 18	18. Genera	I operating	conditions
---------------------------------------	----------	------------	-------------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	32 32 32	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V	
	Input voltage on FT, FTf and RST pins ⁽²⁾	$2.0 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	5.5		
V	Input voltage on FT, FTT and RST pins	1.65 V ≤ V _{DD} ≤2.0 V	-0.3	5.2	V	
V _{IN}	Input voltage on BOOT0 pin	-	0	0 32 0 32 0 32 0 32 1.65 3.6 1.8 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 0 5.5 0.3 5.2 0 5.5 0.3 5.2 0 5.5 0.3 5.2 0 5.5 0.3 5.2 0 5.5 0.3 VDD+0.3 - 206 - 286 - 270 - 196 - 210 - 83 - 52 - 71 - 67 - 49	v	
	Input voltage on TC pin	-	-0.3			
		LQFP32 package	0 32 0 32 0 32 1.65 3.6 1.8 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 -0.3 5.5 -0.3 5.2 0 5.5 -0.3 5.2 0 5.5 -0.3 5.2 0 5.5 -0.3 5.2 0 5.5 -0.3 VDD+0.3 - 333 - 513 - 206 - 286 - 210 - 83 - 128 - 52 - 71 - 67 - 49			
		UFQFPN32 package				
		UFQFPN28 package	-	32 32 32 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.7 5.5 VDD+0.3 333 513 206 286 270 196 210 83 128 52 71 67 49		
	Power dissipation at $T_A = 85 \degree C$ (range 6) or $T_A = 105 \degree C$ (rage 7) ⁽³⁾	WLCSP25 package	-			
		TSSOP20 package	-			
		UFQFPN20 package	-	196		
Pp		TSSOP14 package	-	210	mW	
PD		LQFP32 package	-	83	mvv	
		UFQFPN32 package	-	128		
		UFQFPN28 package	-	32 32 32 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.7 5.5 VDD+0.3 333 513 206 286 270 196 210 83 128 52 71 67 49		
	Power dissipation at $T_A = 125 \degree C$ (range 3) ⁽³⁾	WLCSP25 package	-	71		
	-,	TSSOP20 package	-	32 32 32 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 2.5 VDD+0.3 333 513 206 286 270 196 210 83 128 52 71 67 49		
		UFQFPN20 package	-			
		TSSOP14 package	-			

Symbol	Parameter	Conditions	Min	Max	Unit
	Imposition Parameter TA Temperature range Junction temperature range (range 6) Junction temperature range (range 7)	Maximum power dissipation (range 6)	-40	85	
Та	Temperature range	Maximum power dissipation (range 7)	-40	105	
		Maximum power dissipation (range 3)	-40	85	°C
	Junction temperature range (range 6)	-40 °C \leq T _A \leq 85 °	-40	105	
TJ	Junction temperature range (range 7)	-40 °C \leq T _A \leq 105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130	

 Table 18. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 17: Thermal characteristics on page 47).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 18*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	V rise time rate	BOR detector enabled	0	-	8		
t _{VDD} ⁽¹⁾	V _{DD} rise time rate	BOR detector disabled	0	-	1000	uo/\/	
'VDD`'	V _{DD} fall time rate	BOR detector enabled	20	-	8	μs/V	
		BOR detector disabled	0	-	1000		
т (1)	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	m 0	
T _{RSTTEMPO} ⁽¹⁾		V _{DD} rising, BOR disabled ⁽²⁾	0.4	- 2 3.3 0.4 0.7 1.6 1 1.5 1.65 1.3 1.5 1.65 .67 1.7 1.74	1.6	– ms	
V	Power on/power down reset	Falling edge	1	1.5	1.65		
V _{POR/PDR}	threshold	Rising edge	1.3	- 10 - 10 - 10 2 3 0.7 1 1.5 1 1.5 1 1.7 1 1.76 1 1.93 1 2.03 2 2.30 2	1.65		
V	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74		
V _{BOR0}		Rising edge	1.69	1.76	1.8	V	
V	Drown out report throohold 1	Falling edge	1.87	1.93	1.97	v	
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07		
N/ -	Falling edge		2.22	2.30	2.35		
V _{BOR2}	Brown-out reset threshold 2	Rising edge	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.44			

Table 19. Embedded reset and power control block characteristics

- 4. Guaranteed by design, not tested in production.
- 5. Shortest sampling time can be determined in the application by multiple iterations.
- 6. To guarantee less than 1% VREF_OUT deviation.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise.

The current consumption values are derived from the tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 18: General operating conditions* unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time and prefetch is adjusted depending on f_{HCLK} frequency and voltage range to provide the best CPU performance unless otherwise specified.
- When the peripherals are enabled f_{APB1} = f_{APB2} = f_{APB}
- When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used)
- The HSE user clock is applied to CK_IN. It follows the characteristic specified in Table 35: High-speed external user clock characteristics
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins
- For typical current consumption V_{DD} = V_{DDA} = 3.0 V is applied to all supply pins if not specified otherwise

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3	1 MHz	36.5	70	
			V _{CORE} =1.2 V, VOS[1:0]=11	2 MHz	58	95	
				4 MHz	100	150	
			Range 2	4 MHz	125	170	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V,	8 MHz	230	300	
			VOS[1:0]=10	16 MHz	450	540	
	$Sleep) \begin{tabular}{ c c c c c c } Supply current in Sleep mode, Flash OFF \end{tabular} \\ Sleep) \end{tabular} Sleep mode, Flash OFF \end{tabular} \\ Sleep) \end{tabular} \begin{tabular}{ c c c c c c } \hline Supply current in Sleep mode, Flash OFF \end{tabular} \\ Sleep) \end{tabular} \begin{tabular}{ c c c c c c c } \hline Supply current in Sleep mode, Flash ON \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c c c } \hline Supply current in Sleep mode, Flash ON \end{tabular} \e$	Range 1	8 MHz	275	350		
			V _{CORE} =1.8 V,	f_{HCLK} Typ Max ⁽¹⁾ Unit 1 MHz 36.5 70 2 MHz 58 95 4 MHz 100 150 4 MHz 125 170 8 MHz 230 300 16 MHz 450 540 8 MHz 275 350 16 MHz 555 650 32 MHz 1350 1600 65 kHz 15.5 32 524 kHz 26.5 55 4.2 MHz 115 160 16 MHz 585 670 32 MHz 1500 1700 16 MHz 49 88 2 MHz 69 120 4 MHz 115 190 4 MHz 135 200 8 MHz 240 340 16 MHz 460 650 8 MHz 290 400 16 MHz 565 750 32 MHz 1350			
	mode, Flash	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
	OFF		Range 3	65 kHz	15.5	32	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	26.5	55	
I _{DD} (Sleep) –			VOS[1:0]=11	4.2 MHz	115	160	
			V _{CORE} =1.5 V,	16 MHz	585	670	- μΑ
			V _{CORE} =1.8 V,	32 MHz	1500	1700	
		16 MHz included, $f_{HSE} = f_{HCLK}/2$ above 16 MHz (PLL	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	1 MHz	49	88	
				2 MHz	69	120	
				4 MHz	115	190	
			Range 2, _{CORE} =1.5 V, VOS[1:0]=10	4 MHz	135	200	
				8 MHz	240	340	
				16 MHz	460	650	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	290	400	
				16 MHz	565	750	
				32 MHz	1350	1900	
	ON		Range 3	65 kHz	26.5	46	-
		MSI clock	Range 3, V _{CORE} =1.2 V,	524 kHz	38.5	70	-
			VOS[1:0]=11	4.2 MHz	125	190	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	600	760	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1500	1850	

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

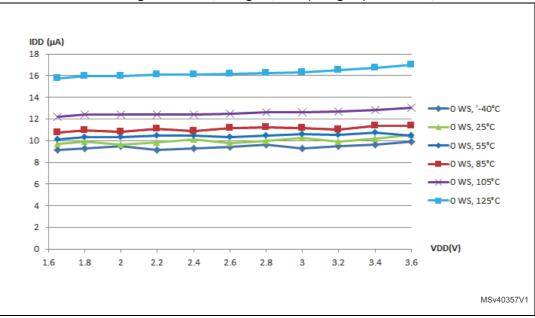


Figure 17. I_{DD} vs V_{DD}, at T_A= -40/25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

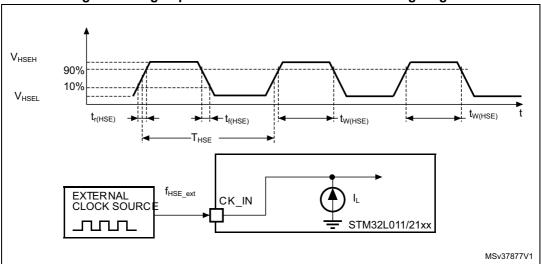
Table 28. Current consumption in Low-power Sleep mode

Symbol	Parameter	Conditions				Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	2.5 ⁽²⁾	-	
				T_A = -40 °C to 25 °C	13	19	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	15.5	20	
			Flash ON	T _A = 105 °C	17.5	22	
			T _A = 125 °C	21	29		
	Supply current in	All peripherals	MSI clock, 65 kHz	T _A = -40 °C to 25 °C	13.5	19	
I _{DD} (LP Sleep)	Low-power	OFF, V _{DD} from 1.65 V to 3.6 V		T _A = 85 °C	16	20	μA
	sleep mode	1.00 V 10 3.0 V	f _{HCLK} = 65 kHz, Flash ON	T _A = 105 °C	18	22	
				T _A = 125 °C	21.5	29	
				T_A = -40 °C to 25 °C	15.5	21	
			MSI clock, 131 kHz	T _A = 55 °C	17	22	
			f _{HCLK} = 131 kHz,	T _A = 85 °C	18	23	
			Flash ON	T _A = 105 °C	19.5	24	
				T _A = 125 °C	23.5	31	

1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified.

2. As the CPU is in Sleep mode, the difference between the current consumption with Flash memory ON and OFF (nearly 12 μ A) is the same whatever the clock frequency.

6.3.6 External clock source characteristics


High-speed external user clock generated from an external source

In bypass mode the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.12*. However, the recommended clock input waveform is shown in *Figure 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is ON or PLL is used	1	8	32	MHz
^f HSE_ext	frequency	CSS is OFF, PLL not used	0	8	32	MHz
V _{HSEH}	CK_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	CK_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	CK_IN high or low time	_	12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	CK_IN rise or fall time		-	-	20	115
C _{in(HSE)}	CK_IN input capacitance		-	2.6	-	pF
DuCy _(HSE)	Duty cycle		45	-	55	%
١L	CK_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 35. High-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

Figure 20. High-speed external clock source AC timing diagram

Low-speed internal (LSI) RC oscillator

Table	39.	LSI	oscillator	characteristics
10010	•••		0001110101	

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	SI ⁽¹⁾ LSI frequency		38	56	kHz
D _{LSI} ⁽²⁾	$D_{LSI}^{(2)} \qquad \begin{array}{c} LSI \text{ oscillator frequency drift} \\ 0^{\circ}C \leq T_A \leq 85^{\circ}C \end{array}$		-	4	%
t _{su(LSI)} ⁽³⁾	t _{su(LSI)} ⁽³⁾ LSI oscillator startup time		-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design, not tested in production.

Multi-speed internal (MSI) RC oscillator

Symbol Parameter Condition Typ Max								
Symbol	Falameter	Condition	-	Wax	Unit			
		MSI range 0	65.5	-	1			
		MSI range 1	131	-	kHz			
		MSI range 2	262	-	KI IZ			
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-				
		MSI range 4	1.05	-				
		MSI range 5	2.1	-	MHz			
		MSI range 6	4.2	-	1			
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%			
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift $0 \text{ °C} \leq T_A \leq 85 \text{ °C}$	-	±3	-	%			
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V \leq V _{DD} \leq 3.6 V, T _A = 25 °C	-	-	2.5	%/V			
		MSI range 0	0.75	-				
		MSI range 1	1	-				
		MSI range 2	1.5	-				
I _{DD(MSI)} ⁽²⁾	MSI oscillator power consumption	MSI range 3	2.5	-	μA			
		MSI range 4	4.5	-				
		MSI range 5	8	-				
		MSI range 6	15	-				

Table 40. MSI oscillator characteristics

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 45*. They are based on the EMS levels and classes defined in application note AN1709.

;	Symbol	Parameter	Conditions	Level/ Class
`	/ _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP32, T_A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
\	/ _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP32, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 45. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range (32 MHz voltage Range 1)	Unit
		k level $V_{DD} = 3.3 \text{ V},$ $T_A = 25 ^{\circ}\text{C},$ LQFP32 package compliant with IEC 61967-2	0.1 to 30 MHz	-22	
6	Dook lovel		30 to 130 MHz	-7	dBµV
S _{EMI}	reakievei		130 MHz to 1GHz	-12	
			SAE EMI Level	1	-

Table 46. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Table 47. I	ESD absolute	maximum	ratings
-------------	--------------	---------	---------

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C},$ conforming to ANSI/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C},$ conforming to ANSI/ESD STM5.3.1.	C4	500	v

1. Guaranteed by characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol Parameter		Conditions Class					
LU	Static latch-up class	$T_A = +125$ °C conforming to JESD78A	II level A				

Table 48. Electrical sensitivities

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 49.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
I _{INJ}	Injected current on all FT pins	-5 ⁽¹⁾	NA	mA
	Injected current on any other pin	-5 ⁽¹⁾	+5	

Table 49. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

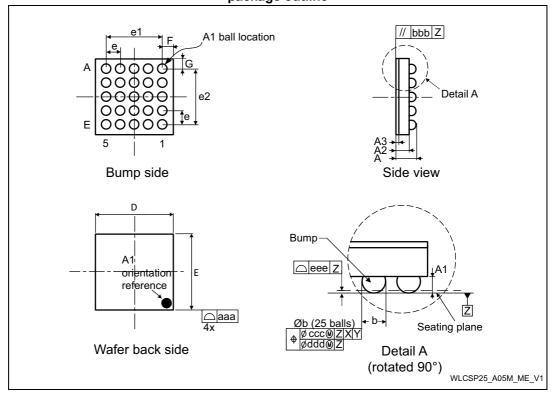
6.3.17 Comparators

Table 59. Comparator 1 characteristics								
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
V_{DDA}	Analog supply voltage	-	1.65		3.6	V		
R _{400K}	R _{400K} value	-	-	400	-	kΩ		
R _{10K}	R _{10K} value	-	-	10	-	K77		
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V		
t _{START}	Comparator startup time	-	-	7	10			
td	Propagation delay ⁽²⁾	-	-	3	10	μs		
V _{offset}	Comparator offset ⁽³⁾	-	-	±3	±10	mV		
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions ⁽³⁾	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_A = 25 ° C$	0	1.5	10	mV/1000 h		
I _{COMP1}	Current consumption ⁽⁴⁾	-	-	160	260	nA		

Table 59. Comparator 1 characteristics

1. Guaranteed by characterization, not tested in production.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.


 In TSSOP14 package, where V_{DDA} pin is shared with V_{DD} pin, I/O toggling should be minimized to reach the values given in the above table. I/O toggling with loaded I/O pins can generate ripple on V_{DD}/V_{DDA} and degrade the comparator performance.

4. Comparator consumption only. Internal reference voltage not included.

Table 60. Comparator 2 characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	- V _{DDA} V		V	
t _{START}	Comparator startup time	Fast mode	-	15	20		
		Slow mode	-	20	25		
t _{d slow}	Propagation delay ⁽²⁾ in slow mode	$1.65 \text{ V} \leq \text{V}_{\text{DDA}} \leq 2.7 \text{ V}$	-	1.8	3.5	μs	
		$2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	2.5	6		
t _{d fast}	Propagation delay ⁽²⁾ in fast mode	$1.65 \text{ V} \leq \text{V}_{\text{DDA}} \leq 2.7 \text{ V}$	-	0.8	2		
		$2.7 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1.2	4		
V _{offset}	Comparator offset error ⁽³⁾		-	±4	±20	mV	
dThreshold/ dt	$ \begin{array}{l} V_{DDA} = 3.3V \\ T_A = 0 \text{ to } 50 \ ^\circ\text{C} \\ V- = V_{REFINT}, \\ 3/4 \ V_{REFINT}, \\ 1/2 \ V_{REFINT}, \\ 1/4 \ V_{REFINT}. \end{array} $		-	15	30	ppm /°C	

7.3 WLCSP25 package information

Figure 39. WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 70. WLCSP25 - 25-ball, 2.133 x 2.070 mm, 0.4 mm pitch wafer level chip scale
package mechanical data

Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	2.098	2.133	2.168	0.0826	0.0840	0.0854
E	2.035	2.070	2.105	0.0801	0.0815	0.0829
е	-	0.400	-	-	0.0157	-
e1	-	1.600	-	-	0.0630	-
e2	-	1.600	-	-	0.0630	-
F	-	0.2665	-	-	0.0105	-

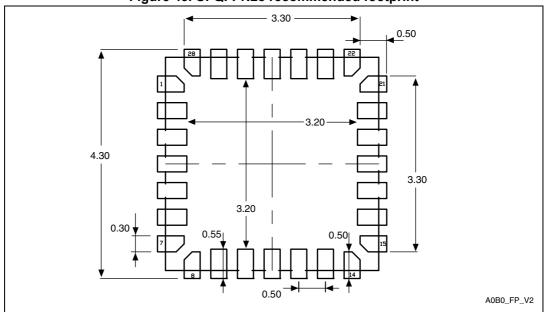
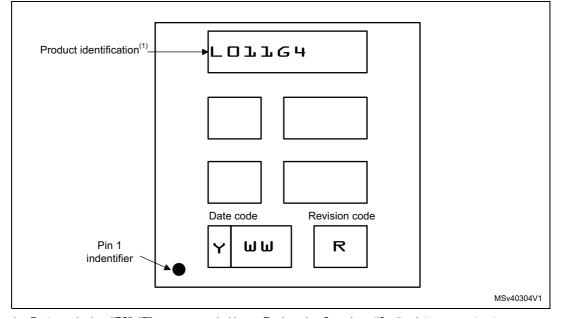


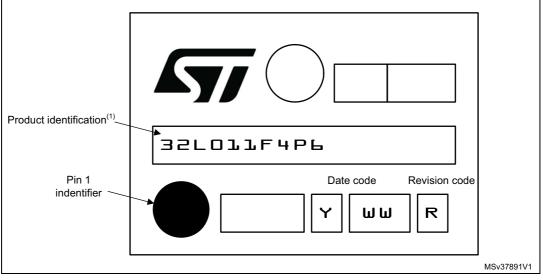
Figure 43. UFQFPN28 recommended footprint

1. Dimensions are expressed in millimeters.

UFQFPN28 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

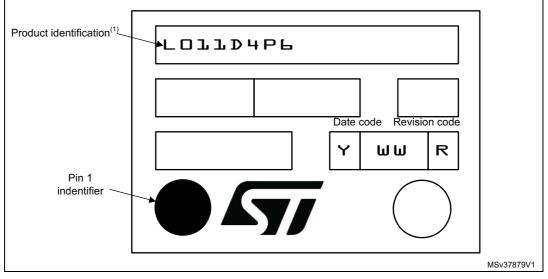



Figure 44. Example of UFQFPN28 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

TSSOP14 device marking

The following figure gives an example of topside marking versus pin 1 position identifier location.

7.8 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.