
Zilog - Z8F6081AN024XK Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Active	
Core Processor eZ8	
Core Size 8-Bit	
Speed 24MHz	
Connectivity DALI, DMX, I ² C, LINbus, SPI, UART/USA	RT, USB
Peripherals DMA, LVD, POR, PWM, WDT	
Number of I/O 36	
Program Memory Size 60KB (60K x 8)	
Program Memory Type FLASH	
EEPROM Size -	
RAM Size 3.75K x 8	
Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V	
Data ConvertersA/D 10x12b; D/A 1x12b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 85°C (TA)	
Mounting Type Surface Mount	
Package / Case 44-LQFP	
Supplier Device Package44-LQFP (10x10)	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	9.4.8. 9.4.9. 9.4.10.	IRQ3 Enable High and Low Bit Registers142Interrupt Edge Select Register145Shared Interrupt Select Register 0146
	9.4.11.	Shared Interrupt Select Register 1 147
	9.4.12.	Interrupt Control Register 148
Chapter 10. Time	rs	
10.1.	Timer A	rchitecture
10.2.	Timer O	peration
	10.2.1.	Timer Clock Source
	10.2.2.	Low-Power Modes
	10.2.3.	Timer Operating Modes 152
	10.2.4.	Reading the Timer Count Values
	10.2.5.	Timer Interrupts and DMA 170
	10.2.6.	Timer Output Signal Operation
	10.2.7.	Timer Input Path and Noise Filter 171
10.3.	Timer R	egister Definitions
	10.3.1.	Timer 0–2 High and Low Byte Registers 175
	10.3.2.	Timer Reload High and Low Byte Registers 176
	10.3.3.	Timer 0–2 PWM0 High and Low Byte Registers 177
	10.3.4.	Timer 0–2 PWM1 High and Low Byte Registers 178
	10.3.5.	Timer 0–2 Control Registers 179
	10.3.6.	Timer 0–2 Status Registers
	10.3.7.	Timer 0–2 Noise Filter Control Registers 186
Chapter 11. Multi	-Channel	Timer
11.1.	Archited	ture
11.2.	Timer O	peration
	11.2.1.	Multi-Channel Timer Counter
	11.2.2.	Inputs and Outputs 188
	11.2.3.	Clock Source
	11.2.4.	Multi-Channel Timer Clock Prescaler
	11.2.5.	Multi-Channel Timer Start
	11.2.6.	Multi-Channel Timer Mode Control 189
	11.2.7.	Count Modulo Mode 190
	11.2.8.	Count Up/Down Mode 190
11.3.	Capture/	Compare Channel Operation 191
	11.3.1.	One-Shot Compare Operation
	11.3.2.	Continuous Compare Operation
	11.3.3.	PWM Output Operation 191
	11.3.4.	Capture Operation 192

Timer 1 (ContinuedF0BTimF0CTimF0DTimF0ETimF0FTimF24TimF25TimF26Tim	egister Description P mer 1 Reload Low Byte mer 1 PWM0 High Byte mer 1 PWM0 Low Byte mer 1 Control 0 mer 1 Control 1 mer 1 PWM1 High Byte mer 1 PWM1 Low Byte mer 1 Control 2 mer 1 Status mer 1 Noise Filter Control	Mnemonic T1RL T1PWM0H T1PWM0L T1CTL0 T1CTL1 T1PWM1H T1PWM1L T1CTL2 T1STA	Reset (Hex) FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	Page # 176 177 177 179 180 178 178 101
F0B Tim F0C Tim F0D Tim F0E Tim F0F Tim F24 Tim F25 Tim F26 Tim	ner 1 Reload Low Byte ner 1 PWM0 High Byte ner 1 PWM0 Low Byte ner 1 Control 0 ner 1 Control 1 ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1PWM0H T1PWM0L T1CTL0 T1CTL1 T1PWM1H T1PWM1L T1CTL2	00 00 00 00 00 00	177 177 179 180 178 178
FOC Tin F0D Tin F0E Tin F0F Tin F24 Tin F25 Tin F26 Tin	ner 1 PWM0 High Byte ner 1 PWM0 Low Byte ner 1 Control 0 ner 1 Control 1 ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1PWM0H T1PWM0L T1CTL0 T1CTL1 T1PWM1H T1PWM1L T1CTL2	00 00 00 00 00 00	177 177 179 180 178 178
F0D Tin F0E Tin F0F Tin F24 Tin F25 Tin F26 Tin	ner 1 PWM0 Low Byte ner 1 Control 0 ner 1 Control 1 ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1PWM0L T1CTL0 T1CTL1 T1PWM1H T1PWM1L T1CTL2	00 00 00 00 00	177 179 180 178 178
F0E Tin F0F Tin F24 Tin F25 Tin F26 Tin	ner 1 Control 0 ner 1 Control 1 ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1CTL0 T1CTL1 T1PWM1H T1PWM1L T1CTL2	00 00 00 00	179 180 178 178
F0F Tin F24 Tin F25 Tin F26 Tin	ner 1 Control 1 ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1CTL1 T1PWM1H T1PWM1L T1CTL2	00 00 00	<u>180</u> <u>178</u> <u>178</u>
F24 Tin F25 Tin F26 Tin	ner 1 PWM1 High Byte ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1PWM1H T1PWM1L T1CTL2	00	<u>178</u> <u>178</u>
F25 Tin F26 Tin	ner 1 PWM1 Low Byte ner 1 Control 2 ner 1 Status	T1PWM1L T1CTL2	00	<u>178</u>
F26 Tin	ner 1 Control 2 ner 1 Status	T1CTL2		
	ner 1 Status		00	404
F27 Tin		T1STA		<u>184</u>
	ner 1 Noise Filter Control		00	<u>185</u>
F2D Tin		T1NFC	00	<u>186</u>
Timer 2				
F10 Tin	ner 2 High Byte	T2H	00	<u>175</u>
F11 Tin	ner 2 Low Byte	T2L	01	<u>175</u>
F12 Tin	ner 2 Reload High Byte	T2RH	FF	<u>176</u>
F13 Tin	ner 2 Reload Low Byte	T2RL	FF	<u>176</u>
F14 Tin	ner 2 PWM0 High Byte	T2PWM0H	00	<u>177</u>
F15 Tin	ner 2 PWM0 Low Byte	T2PWM0L	00	<u>177</u>
F16 Tin	ner 2 Control 0	T2CTL0	00	<u>179</u>
F17 Tin	ner 2 Control 1	T2CTL1	00	<u>180</u>
F18–F1F Re	eserved	_	XX	
F28 Tin	ner 2 PWM1 High Byte	T2PWM1H	00	<u>180</u>
F29 Tin	ner 2 PWM1 Low Byte	T2PWM1L	00	<u>178</u>
F2A Tin	ner 2 Control 2	T2CTL2	00	<u>184</u>
F2B Tin	ner 2 Status	T2STA	00	<u>185</u>
F2E Tin	ner 2 Noise Filter Control	T2NFC	00	<u>186</u>
F2F Re	eserved	_	XX	
RTC				
F30 Rea	al-Time Clock Seconds	RTC_SEC	XX	<u>213</u>
F31 Rea	al-Time Clock Minutes	RTC_MIN	XX	<u>214</u>
F32 Re	al-Time Clock Hours	RTC_HRS	XX	<u>216</u>
F33 Re	al-Time Clock Day-of-the-Month	RTC_DOM	XX	217

Table 8. Register File Address Map (Continued)

the supply voltage reaches a safe circuit operating level when the device is powered on. V_{DD} must be greater than both V_{POR} and V_{VBO} to exit the Reset state.

After power on, the POR circuit keeps idle until the supply voltage drops below V_{TH} voltage. <u>Figure 8</u> on page 42 shows this POR behavior.

After the F6482 Series MCU exits the POR state, the eZ8 CPU fetches the Reset vector. Following this POR, the POR/VBO status bit in the Reset Status Register is set to 1.

For the POR threshold voltage (V_{POR}) and POR start voltage V_{TH} , see the <u>Electrical</u> <u>Characteristics</u> chapter on page 598.

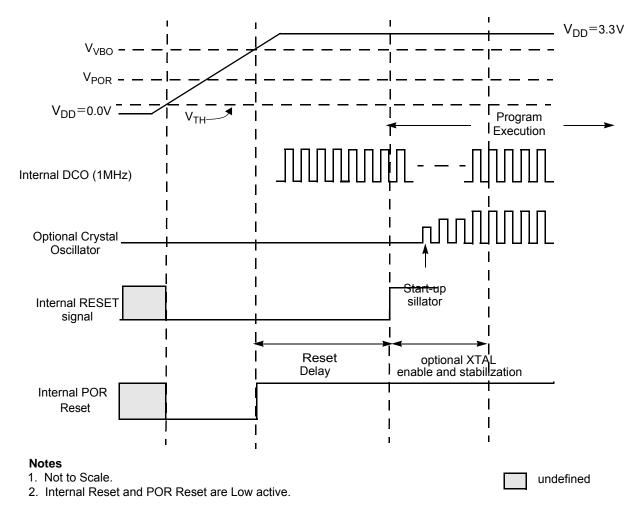


Figure 7. Power-On Reset Operation

Chapter 7. General-Purpose Input/Output

The F6482 Series products support a maximum of 67 port pins (ports A–J) for generalpurpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop-Mode Recovery functionality, and alternate pin functions. Each port pin is individually programmable.

7.1. GPIO Port Availability by Device

Table 16 lists the port pins available with each device and package type.

		12-Bit	120		0.01											Port	Total
Device	Pkg.	ADC	I ² C	LCD	SPI	UART	USB	Α	В	С	D	Е	F	G	н	J	I/O
Z8F6481QK, Z8F6081QK, Z8F3281QK, Z8F1681QK	32- pin QFN	9	1	-	1	1	1	[7:0]	[6:0]	[7:0]	[0]	[1:0]	-	-	-	_	26
Z8F6481AN, Z8F6081AN, Z8F3281AN, Z8F1681AN	44- pin LQFP	10	1	_	1	2	1	[7:0]	[4:0]	[7:0]	[7:0]	[6:0]	-	_	_	_	36
Z8F6481QN, Z8F6081QN, Z8F3281QN, Z8F1681QN	44- pin QFN	10	1	-	1	2	1	[7:0]	[4:0]	[7:0]	[7:0]	[6:0]	-	-	-	-	36
Z8F6481AR, Z8F6081AR, Z8F3281AR, Z8F1681AR	64- pin LQFP	12	1	-	2	2	1	[7:0]	[7:0]	[7:0]	[7:0]	[6:0]	[7:0]	[4:0]	-	_	52
Z8F6482AR, Z8F6082AR, Z8F3282AR, Z8F1682AR	64- pin LQFP	8	1	1	2	1	0	[7:0]	[5:0]	[7:0]	[0]	-	[7:0]	[7:0]	[7:0]	[3:0]	51
Z8F6482AT, Z8F6082AT, Z8F3282AT, Z8F1682AT	80- pin LQFP	12	1	1	2	2	1	[7:0]	[7:0]	[7:0]	[7:0]	[6:0]	[7:0]	[7:0]	[7:0]	[3:0]	67

Table 16. Port Availability by Device and Package Type

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Subregisters
Port E ¹	PE0	DP	USB DP	AFS1[0]: 0
PE1 PE2 PE3		T0IN/T0OUT	Timer 0 Input/Timer 0 Output Complement	AFS1[0]: 1
	PE1	DM	USB DM	AFS1[1]: 0
		TOOUT	Timer 0 Output	AFS1[1]: 1
	PE2	T4IN	AFS1[2]: 0	
		Reserved		AFS1[2]: 1
	PE3	T4CHA	Multi Channel Timer Input/Output A	AFS1[3]: 0
		ESOUT[0]	Event System Out 0	AFS1[3]: 1
	PE4	T4CHB	Multi Channel Timer Input/Output B	AFS1[4]: 0
		ESOUT[1]	Event System Out 1	AFS1[4]: 1
	PE5	T4CHC	Multi Channel Timer Input/Output C	AFS1[5]: 0
		ESOUT[2]	Event System Out 2	AFS1[5]: 1
	PE6	T4CHD	Multi Channel Timer Input/Output D	AFS1[6]: 0
		ESOUT[3]	Event System Out 3	AFS1[6]: 1

Table 18. Port Alternate Function Mapping (44-Pin Parts) (Continued)

Notes

 Because there are at most two choices of alternate function for some pins of Ports A, B, D and E, the Alternate Function Set register AFS2 is not implemented. Additionally, alternate function selection, as described in the Port A–J Alternate Function Subregisters (see page 88), must also be enabled.

2. The alternate function selection for Port C, as described in the Port A–J Alternate Function Subregisters (see page 88), must also be enabled.

 $PLL_{CLK} = \frac{PLL_{CLKIN}}{(PLLRDIV + 1)} \times \frac{(PLLNDIV+1)}{(PLLODIV+1)}$

The operands in the above equation can be defined as:

- PLL_{CLKIN} is either HFXO or the External Clock Drive, as selected by the PLLSEL
- PLL_{RDIV} + 1 is the PLL reference divider ratio
- PLL_{NDIV} + 1 is the PLL feedback divider ratio
- PLL_{ODIV} + 1 is the PLL output divider ratio

The PLL should be configured in accordance with the following requirements:

- PLL_{CLK}IN: 0.3125 MHz–24 MHz
- Reference divider output frequency (PLL core input clock): 0.3125–24MHz, 1.5MHz – the recommended minimum for when clocking the USB
- PLL VCO frequency (input to output divider): 80MHz–384MHz
- PLL_{CLK} (PLL output): 48 MHz max. If PLL_{CLK} is >25 MHz and is selected as the source for System Clock, SCKDIV must be configured such that System Clock does not exceed 24 MHz.

Table 37 lists common PLL configurations to generate a 48 MHz PLL_{CLK} for the USB that satisfy the 2500 ppm data rate requirement.

PLL _{CLKIN} (MHz)	PLL _{RDIV}	PLL Core (MHz)	PLL _{NDIV}	VCO (MHz)	PLL _{ODIV}
1.5	0	1.5	63	96	1
1.6	0	1.6	59	96	1
2	0	2	47	96	1
2.4	0	2.4	39	96	1
3	0	3	31	96	1
3.2	0	3.2	29	96	1
3.84	0	3.84	24	96	1
4	0	4	23	96	1
4.5	2	1.5	63	96	1
4.8	1	2.4	39	96	1
5	0	5	47	240	4

Table 37. Common PLL Configurations for 48 MHz PLLCLK

Bit	Description (Continued)
[2:0]	System Clock Source Select
SCKSEL	There is a delay from the writing of SCKSEL to the actual switching from the currently active clock source to the new, desired clock source. Reading SCKSEL return the currently active clock source.
	000: Digitally Controlled Oscillator (DCO).
	001: Peripheral Clock (PCLK).
	010: High Frequency Crystal Oscillator (HFXO) or external clock drive, CLKIN on PA0, based on PLL Clock Source Select (PLLSEL).
	011: Phase Locked Loop (PLL).
	100: Watchdog Timer Oscillator (WTO).
	101: Reserved.
	110: Reserved.
	111: Reserved.

8.11.2. Clock Control 1 Register

The Clock Control 1 (CLKCTL1) Register, shown in Table 39, enables/disables the IPO and LFXO, selects PCLK Stop Mode behavior, selects the PCLK source, enables/disables WTO failure detection, and contains a ready bit for the IPO. Before writing CLKCTL1, the clock control registers must be unlocked as described in the <u>Clock System Control</u> <u>Register Unlocking/Locking</u> section on page 103.

Table 39.	Clock	Control	1 Register	(CLKCTL1)
-----------	-------	---------	------------	-----------

Bit	7	6	5	4	3	2	1	0
Field	IPORDY	Reserved	WTOFEN	PCK	SEL	PCKSM	LFXOEN	IPOEN
Reset	0	0	0	0	0	0	0	1
R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Address		F83h						

Bit	Description
[7]	Internal Precision Oscillator (IPO) Ready Flag
IPORDY	0: The IPO is not ready.
	1: The IPO is ready.
[6]	Reserved
	This bit is reserved and must be programmed to 0.
[5]	Watchdog Timer Oscillator Failure Detection Enable
WTOFEN	0: Failure detection of Watchdog Timer Oscillator is disabled.
	1: Failure detection of Watchdog Timer Oscillator is enabled.

If an initial starting value other than 0001h is loaded into the Timer High and Low Byte registers, the One-Shot Mode equation must be used to determine the first PWM time-out period.

If TPOL is set to 0, the ratio of the PWM output High time to the total period is calculated using the following equation:

PWM Output High Time Ratio (%) = $\frac{\text{Reload Value - PWM Value}}{\text{Reload Value}} \times 100$

If TPOL is set to 1, the ratio of the PWM output High time to the total period is calculated using the following equation:

PWM Output High Time Ratio (%) = $\frac{PWM Value}{Reload Value} \times 100$

10.1.3.8. Capture Mode

In Capture Mode (TMODE=0100), the current timer count value is recorded when the appropriate external Timer Input 0 transition occurs. The Capture count value is written to the Timer PWM0 High and Low Byte registers. The Timer counts timer clocks up to the 16-bit reload value. The TPOL bit in the Timer Control 1 Register determines if the Capture occurs on a rising edge or a falling edge of the Timer Input 0 signal. When the Capture event occurs, an interrupt is generated and the timer continues counting. The INPCAP bit in Timer Control 0 Register is set to indicate the timer interrupt is due to an input capture event.

The timer continues counting up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. Upon reaching the reload value, the timer generates an interrupt and continues counting. The INPCAP bit in Timer Control 0 Register is cleared to indicate the timer interrupt is not due to an input capture event.

Observe the following steps to configure a timer for Capture Mode and initiate the count:

- 1. Write to the Timer Control 1 Register to:
 - Disable the timer
 - Configure the timer for Capture Mode
 - Set the prescale value
 - Set the Capture edge (rising or falling) for the Timer Input 0
- 2. Write to the Timer Control 2 Register to choose the timer clock source.
- 3. Write to the Timer Control 0 Register to set the timer interrupt configuration field TICONFIG.
- 4. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001h).

17.3.3. USB Control Register

The USB Control Register, shown in Table 172, selects the USB Module endpoint buffer memory addressing method and the endpoint buffer memory section for the USBSD access.

Bit	7	6	5	4	3	2	1	0
Field	Reserved	AI		EPSEL		Reserved		
Reset	0	0	0	0	0	0	0	0
R/W	R	R/W	R/W	R/W	R/W	R	R	R
Address				F5	Bh			

Table 172. USB Control Register (USBCTL)

Bit	Description
[7]	Reserved
	This bit is reserved and must be programmed to 0.
[6]	Addressing Select
AI	Accesses to the endpoint buffer selected by EPSEL will auto-increment.
	1: Accesses to the endpoint buffer selected by EPSEL will not auto-increment.
[5:3]	Endpoint Select
EPSEL	000: IN endpoint 0 buffer memory.
	001: IN endpoint 1 buffer memory.
	010: IN endpoint 2 buffer memory.
	011: IN endpoint 3 buffer memory.
	100: OUT endpoint 0 buffer memory.
	101: OUT endpoint 1 buffer memory.
	110: OUT endpoint 2 buffer memory.
	111: OUT endpoint 3 buffer memory.
[2:0]	Reserved
-	These bits are reserved and must be programmed to 000.

373

17.3.16. USB OUT Interrupt Enable Subregister

The USB OUT Interrupt Enable Subregister, shown in Table 185, controls the enabling of OUT endpoint interrupt requests.

Table 185. USB OUT Interrupt Enable Subregister (USBOUTIEN)

Bit	7	6	5	4	3	2	1	0
Field	Reserved			OUT3IEN	OUT2IEN	OUT1IEN	OUT0IEN	
Reset	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Address		If USBSA = 2Dh in the USB Subaddress Register, accessible through the USB Subdata Register						
Bit	Descriptio	Description						
[7:4]	Reserved These bits are reserved and must be programmed to 0000.							
[3] OUT3IEN	0: Interrupts	OUT Endpoint 3 Interrupt Enable 0: Interrupts from OUT endpoint 3 are disabled. 1: Interrupts from OUT endpoint 3 are enabled.						
[2] OUT2IEN	OUT Endpoint 2 Interrupt Enable 0: Interrupts from OUT endpoint 2 are disabled. 1: Interrupts from OUT endpoint 2 are enabled.							
[1] OUT1IEN	OUT Endpoint 1 Interrupt Enable 0: Interrupts from OUT endpoint 1 are disabled. 1: Interrupts from OUT endpoint 1 are enabled.							
[0] OUTOIEN	OUT Endpoint 0 Interrupt Enable 0: Interrupts from OUT endpoint 0 are disabled. 1: Interrupts from OUT endpoint 0 are enabled.							

Bit	Description (Continued)
[1] CHAIN32	Chain DMA3and DMA2 0: DMA3 and DMA2 are independent of each other.
	 DMA3 and DMA2 are chained together, as described in the <u>Chain Operation</u> section on page 393.
[0]	Chain DMA1 and DMA0
CHAIN10	0: DMA1 and DMA0 are independent of each other.
	 DMA1 and DMA0 are chained together, as described in the <u>Chain Operation</u> section on page 393.

18.3.4. DMA Source Address Subregisters

The DMAxSRCH and DMAxSRCL subregisters, shown in Tables 207 and 208, combine to form the 12-bit source address for the DMA transaction. Upon each byte transfer, the source address is updated based on the SRCCTL configuration in the DMAx Control 0 Subregister. In addition, DMAxSRCH contains transfer in list (TXLIST) control.

Table 207. DMA Source Address High S	Subregister (DMAxSRCH)
--------------------------------------	------------------------

Bit	7	6	5	4	3	2	1	0
Field	TXLIST		Reserved			SR	СН	
Reset	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Address	If DMA	If DMASA = 0h in the DMAxSA Register, accessible through the DMA 0–3 Subregister						

Bit	Description
[7] TXLIST	Transfer In List TXLIST has an effect only during linked list operation, see the <u>Linked List Control Options</u> section on page 395 for details.
[6:4]	Reserved These bits are reserved and must be programmed to 000.
[3:0] SRCH	Source Address High 0–F: Upper 4 bits of the DMA source address.

output, ESOUT[3:0], that is available for a particular port pin. See the <u>General-Purpose</u> <u>Input/Output</u> chapter on page 55 to learn more regarding alternate function selection.

19.4. Timing Considerations

The Event System essentially performs a multiplexing function. Signals sourced to Event System channels do not go through a synchronization process within the Event System. As such, the signals on Event System channels must be sufficient in duration for detection by their corresponding destinations. Any source and destination pair that are using the same clock, one of SYSCLK, PCLK, or the WTO, can be connected to each other via the Event System without concern about source signal duration. When the Event System source and destination pair are using dissimilar clocks, the Event System source signal should be at least 1.5 times the duration of the clock period of the Event System destination to assure that the destination will detect the signal from the source.

19.5. Event System Usage Examples

To illustrate the usage of the Event System, let's examine the following two examples.

Example 1: Triggering Periodic ADC Conversions Using a Timer. In this example, a timer serves as the signal source to Event System channel 0 and the this channel is selected to trigger ADC conversions.

- Select Timer 0 out as the signal source for Event System channel 0, as follows:
 - Write 00h to the ESSSA Register to select the ESCH0SRC Subregister.
 - Write 10h to the ESSSD Register. This accesses the ESCH0SRC Subregister to select Timer 0 out as the Event System channel 0 source.
- Configure the ADC conversion parameters. For instance, the ADC could be configured with a window function such that interrupts are generated only when the window is exceeded.
- If a DMA is desired, configure the DMA Controller to transfer the ADC results to memory.
- Configure the ADC to respond to Event System channel 0, as follows:
 - Write 04h to the ESDSA Register to select the ESDST04CH Subregister.
 - Write 08h to the ESDSD Register. This accesses ESDST04CH Subregister to enable Event System connection to the ADC and to select channel 0 as input to the ADC.

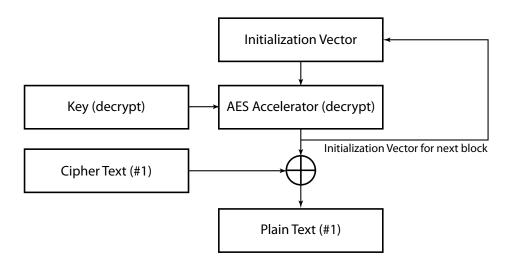


Figure 67. OFB Mode Decryption Flow Diagram

20.2.4.2. OFB Mode Encryption Example

The following steps are required to support OFB Mode encryption operation.

- 1. Write the AESCTRL Register as follows: AES_EN=1, MODE=01 (OFB), DECRYPT=0, AUTODIS=1.
- 2. Write the AESKEY Register with the encryption key.
- 3. Set the IVEN bit.
- 4. Write the Initialization Vector to the AESIV Register.
- 5. Clear the IVEN bit; DMA and IRQ will not occur while this bit is set.
- 6. Write the plain text data to the AESDATA Register, or use DMA.
- 7. Set the START/BUSY bit in the AESSTAT Register, or use auto-start by setting AUTODIS=0 in <u>Step 1</u>.
- 8. Poll the START/BUSY bit, or use an interrupt.
- 9. Read the cipher text from the AESDATA Register, or use DMA. The Initialization Vector is overwritten in preparation for the next 128-bit data block AES encryption operation, as shown in Figure 66.

464

Chapter 22. Digital-to-Analog Converter

The F6482 Series MCUs include a high-performance Digital-to-Analog Converter (DAC). This DAC converts a 12-bit digital input code to an analog output signal. The DAC offers the following features:

- 12-bit resolution
- Output driven externally on GPIO; internal connections to comparators and ADC
- Conversion initiated by software or Event System input
- Data buffering option
- Data can be left- or right-justified with either unsigned (binary) or signed (two's-complement) format
- DMA support
- Internal positive voltage reference selections of A_{VDD} or the DAC V_{REF} from the Reference System (2.5V, 2.0V, 1.5V, 1.25V) which is driven on V_{REF}+ for decoupling
- Ability to utilize external reference voltage
- Three power settings providing programmable power vs. settling time; see the <u>Electri-</u> <u>cal Characteristics</u> chapter on page 598 to learn more

22.1. Architecture

The DAC architecture, shown in Figure 78, consists of a data register, an internal voltage reference buffer, and a 12-bit DAC.

Bit	Description (Continued)			
[5]	Programmable Reference Source Selection			
PREFSRC	0: VBIAS is the highest tap of the Programmable Reference.			
	1: AV _{DD} is the highest tap of the Programmable Reference.			
[4:0]	Programmable Reference Level Selection			
PREFLVL	0000 to 1111: Programmable reference level=(PREFSRC selection) * (PREFLVL + 1) ÷ 32.			

26.3.3. LCD Clock Register

The LCD Clock Register, shown in Table 269, controls the clocking of the LCD including: clock selection, clock prescale division and frame clock division.

Table 269. LCD Clock Register (LCDCLK)

Bits	7	6	5	4	3	2	1	0
Field	CLKSEL		PRESCALE			FC	DIV	
Reset	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FB	3h			
Bit	Descriptio	n						
[7] CLKSEL	LCD Clock 0: PCLK. 1: WTO.							
[6:4] PRESCALE	LCD Clock Prescale Divider 000: Divide by 1. 001: Divide by 2. 010: Divide by 4. 011: Divide by 8. 100: Divide by 16. 101: Divide by 32. 110: Reserved. 111: Reserved.							
[3:0] FDIV	Frame Div 0000: Divid 0001: Divid 0010: Divid 0010: Divid 0100: Divid 0101: Divid 0111: Divid 1000: Divid 1001: Divid 1011: Divid 1011: Divid 1101: Divid 1101: Divid 1111: Divid	e by 8. e by 9. e by 10. e by 11. e by 12. e by 13. e by 14. e by 16. e by 20. e by 22. e by 22. e by 24. e by 26. e by 28. e by 30.						

Z8 Encore! XP[®] F6482 Series Product Specification

16 KB Flash Program Memory	Addresses 3FFFh	
Page 31	3DFFh	
Page 30	3BFFh	
Page 29	39FFh	
Page 28	37FFh	
I		
i		
Page 3	07FFh	
Page 2	05FFh	
Page 1	03FFh	
Page 0	01FFh	
	0000h	

32 KB Flash Program Memory	Addresses 7FFFh	
Page 63	7DFFh	
Page 62	7BFFh	
Page 61	79FFh	
Page 60	77FFh	
Page 3	07FFh	
Page 2	05FFh	
Page 1	03FFh	
Page 0	01FFh	
Ŭ	0000h	

60 KB Flash Program Memory	Addresses ′
Dama 440] EFFFh
Page 119	EDFFh
Page 118	
Page 117	EBFFh
	E9FFh
Page 116	
	E7FFh

I

64 KB Flash	Addresses
Program Memory	/

Page 127	FFFFh
	FDFFh
Page 126	FBFFh
Page 125	
Page 124	F9FFh
	F7FFh

1 | | |

T

	07551
Page 3	07FFh
Page 2	05FFh
	03FFh
Page 1	01FFh
Page 0	
	0000h

	07556
Page 3	07FFh
Page 2	05FFh
Page 1	03FFh
	01FFh
Page 0	0000h

Figure 94. Flash Memory Arrangement

528

27.2.1. Flash Operation Timing

Before performing either a program or erase operation on Flash memory, the Digitally Controlled Oscillator (DCO) must be running and must be locked using the Frequency Locked Loop (FLL) to a minimum frequency of 1 MHz.

27.2.2. Flash Code Protection Against External Access

The user code contained within Flash memory can be protected against external access with the On-Chip Debugger. Programming the FRP Flash option bit prevents the reading of user code with the On-Chip Debugger. To learn more, see the <u>Flash Option Bit Address</u> <u>Space</u> section on page 544 and the <u>On-Chip Debugger</u> section on page 558.

27.2.3. Flash Code Protection Against Accidental Program and Erasure

The F6482 Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy, and the block level protection control of the Flash Controller.

27.2.3.1. Flash Code Protection Using the Flash Option Bits

The FWP Flash option bit provides Flash Program Memory protection as listed in Table 277. To learn more, see the <u>Flash Option Bit Address Space</u> section on page 544.

Table 277. Flash Code Protection Using the Flash Option Bit

FWP	Flash Code Protection Description
0	Programming and erasing disabled for all of Flash Program Memory. In user code programming, Page Erase, and Mass Erase are all disabled. Mass Erase is available through the On-Chip Debugger.
1	Programming and Page Erase are enabled for all of Flash Program Memory. Mass Erase is available through the On-Chip Debugger.

27.2.3.2. Flash Code Protection Using the Flash Controller

At Reset, the Flash Controller locks to prevent accidental program or erasure of Flash memory. Observe the following procedure to unlock the Flash Controller from user code:

- 1. Write the Page Select Register with the target page.
- 2. Write the first unlock command, 73h, to the Flash Control Register.
- 3. Write the second unlock command, 8Ch, to the Flash Control Register.
- 4. Rewrite the Page Select Register with the target page previously stored in this register in <u>Step 1</u>.

<u>Tables 317 through 324</u> contain the instructions belonging to each group and the number of operands required for each instruction. Some instructions appear in more than one table, because these instructions should be considered as a subset of more than one category. Within these tables, the source operand is identified as *src*, the destination operand is *dst*, and the condition code is *cc*.

Mnemonic	Operands	Instruction
ADC	dst, src	Add with Carry
ADCX	dst, src	Add with Carry using Extended Addressing
ADD	dst, src	Add
ADDX	dst, src	Add using Extended Addressing
СР	dst, src	Compare
CPC	dst, src	Compare with Carry
CPCX	dst, src	Compare with Carry using Extended Addressing
CPX	dst, src	Compare using Extended Addressing
DA	dst	Decimal Adjust
DEC	dst	Decrement
DECW	dst	Decrement Word
INC	dst	Increment
INCW	dst	Increment Word
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 317. Arithmetic Instructions

	Parameter	V _{DD} =1.8V to 3.6V T _A =–40°C to +85°C				
Symbol		Min	Тур*	Max	Units	Conditions
V _{INT_REF}	Internal Reference Voltage	-1.5%	1.25	+1.5%	V	REFSEL=1x, REFLVL=00, $AV_{DD} \ge 1.8V$
		-1.5%	1.50	+1.5%	V	$\begin{array}{l} REFSEL=1x, REFLVL=01, \\ AV_{DD} \geq 2.0V \end{array}$
		-1.5%	2.0	+1.5%	V	REFSEL=1x, REFLVL=10, AV _{DD} ≥ 2.5V
		-1.5%	2.5	+1.5%	V	REFSEL=1x, REFLVL=11, $AV_{DD} \ge 3.0V$
			AV_{DD}			REFSEL=00, INMODE=0x
V _{EXT_REFP}	External Positive Reference Voltage	1.25		AV_{DD}	V	REFSEL=01, INMODE=0x
		1.25		AV _{DD} -0 .5V	V	REFSEL=01, INMODE=1x
V _{EXT_REFN}	External Negative Reference Voltage	AV_{SS}	AV_{SS}	VREFP - 1.25V	V	
IDDVEXT	External Reference Active Current (included in IDDADCE)	20	40	55	μa	
C _{VREF}	V _{REF} Capacitance		1		μF	
V _{INANA}	Analog Input Range	VREFN		VREFP	V	
C _{IN}	Analog Input Capacitance			5	pF	
R _{IN}	Analog Input Resistance		750	2000	Ω	
T _S	Sampling Time ²	0.2			μs	INMODE=0x
		0.8			μs	INMODE=1x; POWER=00
		2.0			μs	INMODE=1x; POWER=10
T _{S_TSENSE}	Sampling Time ² for Temperature Sensor		24		μs	
T _{S_VDD/2}	Sampling Time ² for V _{DD} /2 Fixed Reference		24		μs	
Notoe:						

Table 337. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

Notes:

1. Data in the Typical column is from characterization at 3.0V and 25°C. These values are provided for design guidance only and are not tested in production.

2. T_S is applied twice if INMODE=10 and RESOLUT=1. 3. T_{SS} is applied twice if RESOLUT=1.