
Zilog - Z8F6481AN024XK2246 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor eZ8

Core Size 8-Bit

Speed 24MHz

Connectivity DALI, DMX, I²C, LINbus, SPI, UART/USART, USB

Peripherals DMA, LVD, POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 3.75K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 10x12b; D/A 1x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/zilog/z8f6481an024xk2246

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/z8f6481an024xk2246-4439084
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Z8 Encore! XP® F6482 Series
Product Specification

xxvi
Table 34. Port A–J Output Data Register (PxOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . .  95

Table 35. System Clock Configuration and Selection  . . . . . . . . . . . . . . . . . . . . . . . . .  99

Table 36. Peripheral Clock Sources and Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101

Table 37.  Common PLL Configurations for 48 MHz PLLCLK  . . . . . . . . . . . . . . . .  113

Table 38. Clock Control 0 Register (CLKCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

Table 39. Clock Control 1 Register (CLKCTL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116

Table 40. Clock Control 2 Register (CLKCTL2) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117

Table 41. Clock Control 4 Register (CLKCTL4) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Table 42. Clock Control 3 Register (CLKCTL3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Table 43. Clock Control 5 Register (CLKCTL5) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

Table 44. Clock Control 6 Register (CLKCTL6) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121

Table 45. Clock Control 7 Register (CLKCTL7) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

Table 46. Clock Control 8 Register (CLKCTL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122

Table 47. Clock Control 9 Register (CLKCTL9) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Table 48. Clock Control A Register (CLKCTLA) . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Table 49. Clock Control B Register (CLKCTLB) . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Table 50. Clock Control C Register (CLKCTLC) . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

Table 51. Trap and Interrupt Vectors in Order of Priority . . . . . . . . . . . . . . . . . . . . .  128

Table 52. Interrupt Request 0 Register (IRQ0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133

Table 53. Interrupt Request 1 Register (IRQ1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

Table 54. Interrupt Request 2 Register (IRQ2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

Table 55. Interrupt Request 3 Register (IRQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Table 56. IRQ0 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137

Table 57. IRQ0 Enable High Bit Register (IRQ0ENH) . . . . . . . . . . . . . . . . . . . . . . .  137

Table 58. IRQ0 Enable Low Bit Register (IRQ0ENL). . . . . . . . . . . . . . . . . . . . . . . .  138

Table 59. IRQ1 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139

Table 60. IRQ1 Enable High Bit Register (IRQ1ENH) . . . . . . . . . . . . . . . . . . . . . . .  139

Table 61. IRQ1 Enable Low Bit Register (IRQ1ENL). . . . . . . . . . . . . . . . . . . . . . . .  140

Table 62. IRQ2 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

Table 63. IRQ2 Enable High Bit Register (IRQ2ENH) . . . . . . . . . . . . . . . . . . . . . . .  141

Table 64. IRQ2 Enable Low Bit Register (IRQ2ENL). . . . . . . . . . . . . . . . . . . . . . . .  141

Table 65. IRQ3 Enable and Priority Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Table 66. IRQ3 Enable High Bit Register (IRQ3ENH) . . . . . . . . . . . . . . . . . . . . . . .  142

Table 67. IRQ3 Enable Low Bit Register (IRQ3ENL). . . . . . . . . . . . . . . . . . . . . . . .  144

Table 68. Interrupt Edge Select Register (IRQES). . . . . . . . . . . . . . . . . . . . . . . . . . .  145

Table 69. Shared Interrupt Select Register 0 (IRQSS0) . . . . . . . . . . . . . . . . . . . . . . .  146
PS029412-0618 P R E L I M I N A R Y  List of Tables



Z8 Encore! XP® F6482 Series
Product Specification

136
9.4.4. Interrupt Request 3 Register

The Interrupt Request 3 (IRQ3) Register, shown in Table 55, stores interrupt requests for 
both vectored and polled interrupts. When a request is presented to the interrupt controller, 
the corresponding bit in the IRQ3 Register becomes 1. If interrupts are globally enabled 
(vectored interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If 
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt 
Request 3 Register to determine if any interrupt requests are pending.

Table 55. Interrupt Request 3 Register (IRQ3)

Bit 7 6 5 4 3 2 1 0

Field
AESI MCTI U1RXI U1TXI

PC3I/
DMA3I

PC2I/
DMA2I

PC1I PC0I

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Address FC9h

Bit Description 

[7]
AESI

AES Interrupt Request
0: No interrupt request is pending for the AES.
1: An interrupt request from the AES is awaiting service.

[6]
MCTI

Multi-Channel timer Interrupt Request
0: No interrupt request is pending for multi-channel timer.
1: An interrupt request from multi-channel timer is awaiting service.

[5]
U1RXI

UART 1 Receiver Interrupt Request
0: No interrupt request is pending for the UART 1 receiver.
1: An interrupt request from the UART 1 receiver is awaiting service.

[4]
U1TXI

UART 1 Transmitter Interrupt Request
0: No interrupt request is pending for the UART 1 transmitter.
1: An interrupt request from the UART 1 transmitter is awaiting service.

[3:2]
PCxI/DMAxI

Port Cx or DMA x Interrupt Request
0: No interrupt request is pending for GPIO Port Cx or DMA x.
1: An interrupt request from GPIO Port Cx or DMA x is awaiting service; x indicates the 

specific GPIO Port C bit or DMA number (3–2).

[1:0]
PCxI

Port C Pin x Interrupt Request
0: No interrupt request is pending for GPIO Port C pin x.
1: An interrupt request from GPIO Port C pin x is awaiting service; x indicates the specific 

GPIO Port C pin number (1–0).
PS029412-0618 P R E L I M I N A R Y  Interrupt Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

186
10.1.7. Timer 0–2 Noise Filter Control Registers

The Timer 0–2 Noise Filter Control (TxNFC) registers, shown in Table 87, enable and dis-
able the Timer Noise Filter and set noise filter control. 

Table 87. Timer 0–2 Noise Filter Control Registers (TxNFC)

Bit 7 6 5 4 3 2 1 0

Field NFCTL NFCON Reserved

Reset 0 0 0 0 0 0 0 0

R/W W W R

Address T0NFC @ F2Ch, T1NFC @ F2Dh, T2NFC @ F2Eh

Note: x references bits in the range [2:0].

Bit Description 

[7:4]
NFCTL

Noise Filter Control
This field controls the delay and noise rejection characteristics of the Noise Filter. The wider 
the counter the more delay that is introduced by the filter and the wider the noise event that will 
be filtered.

0000: The Noise Filter is disabled. Received inputs bypass the filter
0001: 2-bit up/down counter
0010: 3-bit up/down counter
0011: 4-bit up/down counter
0100: 5-bit up/down counter
0101: 6-bit up/down counter
0110: 7-bit up/down counter
0111: 8-bit up/down counter
1000: 9-bit up/down counter
1001: 10-bit up/down counter
1010: 11-bit up/down counter
1011–1111: Reserved.

[3]
NFCON

Noise Filter Connection
0: Noise Filter connects to Timer(x) and filters timer Input 0 (TxIN ORed with Event System 

Timer(x) Input 0).
1: Noise Filter is reassigned to Timer(x+1) and filters Event System Timer(x+1) Input 1. 

Timer(x) Input 0 effectively bypasses the Noise Filter. In the case of Timer 2, its Noise Filter 
connects to Timer 0 Input 1. With this selection, the Noise Filter is reassigned to the 
designated timer and uses its timer clock.

[2:0] Reserved
This bit is reserved and must be programmed to 0.
PS029412-0618 P R E L I M I N A R Y  Timer Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

187
Chapter 11. Multi-Channel Timer

The Multi-Channel timer has a 16-bit up/down counter and a 4-channel Capture/Compare/
PWM channel array. This timer provides multiple synchronous Capture/Compare/PWM 
channels based on a single timer. The Multi-Channel Timer features include:

• 16-bit up/down timer counter with programmable prescale

• Selectable clock source (system clock or external input pin)

• Count Modulo and Count up/down counter modes

• Four independent capture/compare channels which reference the common timer

• Channel modes:

– One-Shot Compare Mode

– Continuous Compare Mode

– PWM Output Mode

– Capture Mode

• Event System and external input pin for timer input

• DMA request source

11.1. Architecture

Figure 21 shows the Multi-Channel Timer architecture.
PS029412-0618 P R E L I M I N A R Y  Multi-Channel Timer



Z8 Encore! XP® F6482 Series
Product Specification

226
13.5.13.Real-Time Clock Alarm Control Register

The RTC_ACTRL Register, shown in Table 118, contains control bits for the Real-Time 
Clock. This register is cleared by a Power-On Reset (POR).

Table 118. Real-Time Clock Alarm Control Register (RTC_ACTRL )

Bit 7 6 5 4 3 2 1 0

Field when 
MODE=0

Reserved ADOM_
EN

ADOW_
EN

AHRS_
EN

AMIN_
EN

ASEC_
EN

Field when 
MODE=1

Reserved ADOM_
EN

Reserved AHRS_
EN

AMIN_
EN

ASEC_
EN

Power-On Reset 0 0 0 0 0 0 0 0

CPU Access R R R R/W R/W R/W R/W R/W

Address F3Ch
Note: X = undefined; R = read-only; R/W = read/write

Bit Description 

Calendar Mode Operation (MODE = 0)

[7:5] Reserved
These bits are reserved and must be programmed to 000.

[4]
ADOM_EN

Alarm Day Of The Month Enable
0: The day-of-the-month alarm is disabled.
1: The day-of-the-month alarm is enabled.

[3]
ADOW_EN

Alarm Day Of The Week Enable
0: The day-of-the-week alarm is disabled.
1: The day-of-the-week alarm is enabled.

[2]
AHRS_EN

Alarm Hours Enable
0: The hours alarm is disabled.
1: The hours alarm is enabled.

[1]
AMIN_EN

Alarm Minutes Enable
0: The minutes alarm is disabled.
1: The minutes alarm is enabled.

[0]
ASEC_EN

Alarm Seconds Enable
0: The seconds alarm is disabled.
1: The seconds alarm is enabled.
PS029412-0618 P R E L I M I N A R Y  Real-Time Clock Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

235
b. If Multiprocessor Mode is not enabled, then enable parity (if appropriate), and 
select either even or odd parity.

5. Check the RDA bit in the UART-LDD Status 0 Register to determine if the Receive 
Data Register contains a valid data byte (indicated by a 1). If RDA is set to 1 to indi-
cate available data, continue to Step 6. If the Receive Data Register is empty (indi-
cated by a 0), continue to monitor the RDA bit that is awaiting reception of the valid 
data.

6. Read data from the UART-LDD Receive Data Register. If operating in Multiprocessor 
(9-bit) Mode, further actions may be required depending on the Multiprocessor Mode 
bits MPMD[1:0].

7. Return to Step 5 to receive additional data.

14.1.5. Receiving Data Using the Interrupt-Driven Method

The UART-LDD Receiver interrupt indicates the availability of new data (as well as error 
conditions). Observe the following steps to configure the UART-LDD receiver for inter-
rupt-driven operation:

1. Write to the UART-LDD Baud Rate High and Low Byte registers to set the appropri-
ate baud rate.

2. Enable the UART-LDD pin functions by configuring the associated GPIO port pins 
for alternate function operation.

3. Execute a DI instruction to disable interrupts.

4. Write to the Interrupt Control registers to enable the UART-LDD Receiver interrupt 
and set the appropriate priority.

5. Clear the UART-LDD Receiver interrupt in the applicable Interrupt Request Register.

6. Write to the UART-LDD Control 1 Register to enable Multiprocessor (9-bit) Mode 
functions, if appropriate.

a. Set the Multiprocessor Mode Select (MPEN) bit to enable Multiprocessor Mode.

b. Set the Multiprocessor Mode Bits, MPMD[1:0] to select the appropriate address 
matching scheme.

c. Configure the UART-LDD to interrupt on received data and errors or errors only 
(interrupt on errors only is unlikely to be useful for Z8 Encore! devices without a 
DMA block).

7. Write the device address to the Address Compare Register (automatic Multiprocessor 
modes only).

8. Write to the UART-LDD Control 0 Register to:

a. Set the receive enable (REN) bit to enable the UART-LDD for data reception.
PS029412-0618 P R E L I M I N A R Y  UART-LDD Architecture



Z8 Encore! XP® F6482 Series
Product Specification

239
MPRX = 1, a new frame begins. If the address of this new frame is different from the 
UART-LDD’s address, then MPMD[0] must be set to 1 by software, causing the UART-
LDD interrupts to go inactive until the next address byte. If the new frame’s address 
matches the UART-LDD’s address, then the data in the new frame is also processed.

The second scheme is enabled by setting MPMD[1:0] to 10b and writing the UART-
LDD’s address into the UART-LDD Address Compare Register. This mode introduces 
more hardware control, interrupting only on frames that match the UART-LDD’s address. 
When an incoming address byte does not match the UART-LDD’s address, it is ignored. 
All successive data bytes in this frame are also ignored. When a matching address byte 
occurs, an interrupt is issued and further interrupts occur on each successive data byte. The 
first data byte in the frame has NEWFRM = 1 in the UART-LDD Status 1 Register. When 
the next address byte occurs, the hardware compares it to the UART-LDD’s address. If 
there is a match, the interrupt occurs and the NEWFRM bit is set to the first byte of the 
new frame. If there is no match, the UART-LDD ignores all incoming bytes until the next 
address match.

The third scheme is enabled by setting MPMD[1:0] to 11b and by writing the UART-
LDD’s address into the UART-LDD Address Compare Register. This mode is identical to 
the second scheme, except that there are no interrupts on address bytes. The first data byte 
of each frame remains accompanied by a NEWFRM assertion.

14.1.10. LIN Protocol Mode

The Local Interconnect Network (LIN) protocol, as supported by the UART-LDD module, 
is defined in Revision 2.0 of the LIN Specification Package. The LIN protocol specifica-
tion covers all aspects of transferring information between LIN master and slave devices 
using message frames, including error detection and recovery, SLEEP Mode and wake up 
from SLEEP Mode. The UART-LDD hardware in LIN Mode provides character transfers 
to support the LIN protocol including break transmission and detection, wake-up trans-
mission and detection and slave autobauding. Part of the error detection of the LIN proto-
col is for both master and slave devices to monitor their receive data when transmitting. If 
the receive and transmit data streams do not match, the UART-LDD asserts the PLE bit 
(i.e., the physical layer error bit in the Status 0 Register). The message frame time-out 
aspect of the protocol depends on software requiring the use of an additional general-pur-
pose timer. The LIN Mode of the UART-LDD does not provide any hardware support for 
computing/verifying the checksum field or verifying the contents of the identifier field. 
These fields are treated as data and are not interpreted by hardware. The checksum calcu-
lation/verification can easily be implemented in software via the Add with Carry (ADC) 
instruction.

The LIN bus contains a single Master and one or more slaves. The LIN master is responsi-
ble for transmitting the message frame header which consists of the Break, Synch and 
Identifier fields. Either the master or one of the slaves transmits the associated response 
section of the message which consists of data characters followed by a checksum charac-
ter. 
PS029412-0618 P R E L I M I N A R Y  UART-LDD Architecture



Z8 Encore! XP® F6482 Series
Product Specification

281
Chapter 15. Enhanced Serial Peripheral 
Interface

The Enhanced Serial Peripheral Interface (ESPI) supports the Serial Peripheral Interface 
(SPI) and Inter-IC Sound (I2S). ESPI includes the following features:

• Full-duplex, synchronous, character-oriented communication

• Four-wire interface (SS, SCK, MOSI and MISO)

• Transmit and receive buffer registers to enable high throughput

• Master Mode transfer rates up to a maximum of one-half the system clock frequency

• Slave Mode transfer rates up to a maximum of one-eighth the system clock frequency

• Error detection

• Dedicated Programmable Baud Rate Generator

• Data transfer control via polling, interrupt or DMA

15.1. Architecture

The ESPI is a full-duplex, synchronous, character-oriented channel that supports a four-
wire interface (serial clock, transmit data, receive data and slave select). The ESPI block 
consists of a shift register, data buffer register, a baud rate (clock) generator, control/status 
registers and a control state machine. Transmit and receive transfers are in synch because 
there is a single shift register for both transmitting and receiving data. Figure 37 shows a 
diagram of the ESPI block.
PS029412-0618 P R E L I M I N A R Y  Enhanced Serial Peripheral Interface



Z8 Encore! XP® F6482 Series
Product Specification

312
loses arbitration during the transmission of a data byte, it releases the SDA line and waits 
for the next stop or start condition.

The master detects a loss of arbitration when a 1 is transmitted but a 0 is received from the 
bus in the same bit-time. This loss occurs if more than one master is simultaneously 
accessing the bus. Loss of arbitration occurs during the address phase (two or more Mas-
ters accessing different slaves) or during the data phase, when the masters are attempting 
to write different data to the same slave.

When a master loses arbitration, the software is informed by means of the Arbitration Lost 
interrupt. The software can repeat the same transaction at a later time.

A special case can occur when a slave transaction starts just before the software attempts 
to start a new master transaction by setting the start bit. In this case, the state machine 
enters its slave states before the start bit is set and as a result the I2C controller will not 
arbitrate. If a slave address match occurs and the I2C controller receives/transmits data, the 
start bit is cleared and an Arbitration Lost interrupt is asserted. The software can minimize 
the chance of this instance occurring by checking the BUSY bit in the I2CSTATE Register 
before initiating a master transaction. If a slave address match does not occur, the Arbitra-
tion Lost interrupt will not occur and the start bit will not be cleared. The I2C controller 
will initiate the master transaction after the I2C bus is no longer busy.

16.2.5.2. Master Address-Only Transactions

It is sometimes preferable to perform an address-only transaction to determine if a particu-
lar slave device is able to respond. This transaction can be performed by monitoring the 
ACKV bit in the I2CSTATE Register after the address has been written to the I2CDATA 
Register and the start bit has been set. After the ACKV bit is set, the ACK bit in the 
I2CSTATE Register determines if the slave is able to communicate. The stop bit must be 
set in the I2CCTL Register to terminate the transaction without transferring data. For a 10-
bit slave address, if the first address byte is acknowledged, the second address byte should 
also be sent to determine if the preferred slave is responding.

Another approach is to set both the stop and start bits (for sending a 7-bit address). After 
both bits have been cleared (7-bit address has been sent and transaction is complete), the 
ACK bit can be read to determine if the slave has acknowledged. For a 10-bit slave, set the 
stop bit after the second TDRE interrupt (which indicates that the second address byte is 
being sent).

16.2.5.3. Master Transaction Diagrams

In the following transaction diagrams, the shaded regions indicate the data that is trans-
ferred from the master to the slave, and the unshaded regions indicate the data that is trans-
ferred from the slave to the master. The transaction field labels are defined as follows:

S Start

W Write
PS029412-0618 P R E L I M I N A R Y  Operation



Z8 Encore! XP® F6482 Series
Product Specification

320
Slave 10-Bit Address Recognition Mode. If IRM = 0 during the address phase and the 
controller is configured for MASTER/SLAVE or SLAVE 10-BIT ADDRESS Mode, the 
hardware detects a match to the 10-bit slave address defined in the I2CMODE and 
I2CSLVAD registers and generates the slave address match interrupt (the SAM bit = 1 in 
the I2CISTAT Register). The I2C controller automatically responds during the Acknowl-
edge phase with the value in the NAK bit of the I2CCTL Register.

16.2.6.2. General Call and Start Byte Address Recognition

If GCE = 1 and IRM = 0 during the address phase and the controller is configured for mas-
ter/slave or slave in either 7- or 10-bit address modes, the hardware detects a match to the 
General Call Address or the start byte and generates the slave address match interrupt. A 
General Call Address is a 7-bit address of all zeroes, with the R/W bit = 0. A start byte is a 
7-bit address of all zeroes, with the R/W bit = 1. The SAM and GCA bits are set in the 
I2CISTAT Register. The RD bit in the I2CISTAT Register distinguishes a General Call 
Address from a start byte which is cleared to 0 for a General Call Address). For a General 
Call Address, the I2C controller automatically responds during the address acknowledge 
phase with the value in the NAK bit of the I2CCTL Register. If the software is set to pro-
cess the data bytes associated with the GCA bit, the IRM bit can optionally be set follow-
ing the SAM interrupt to allow the software to examine each received data byte before 
deciding to set or clear the NAK bit. A start byte will not be acknowledged – a require-
ment of the I2C specification.

16.2.6.3. Software Address Recognition

To disable hardware address recognition, the IRM bit must be set to 1 prior to the recep-
tion of the address byte(s). When IRM = 1, each received byte generates a receive interrupt 
(RDRF = 1 in the I2CISTAT Register). The software must examine each byte and deter-
mine whether to set or clear the NAK bit. The slave holds SCL Low during the acknowl-
edge phase until the software responds by writing to the I2CCTL Register. The value 
written to the NAK bit is used by the controller to drive the I2C bus, then releasing the 
SCL. The SAM and GCA bits are not set when IRM = 1 during the address phase, but the 
RD bit is updated based on the first address byte.

16.2.6.4. Slave Transaction Diagrams

In the following transaction diagrams, the shaded regions indicate data transferred from 
the master to the slave and the unshaded regions indicate the data transferred from the 
slave to the master. The transaction field labels are defined as follows:

S Start

W Write

A Acknowledge

A Not Acknowledge

P Stop
PS029412-0618 P R E L I M I N A R Y  Operation



Z8 Encore! XP® F6482 Series
Product Specification

336
Table 161. I2CSTATE_H 

State 
Encoding State Name State Description

0000 Idle I2C bus is idle or I2C controller is disabled.

0001 Slave Start I2C controller has received a start condition.

0010 Slave Bystander Address did not match; ignore remainder of transaction.

0011 Slave Wait Waiting for stop or restart condition after sending a Not 
Acknowledge instruction.

0100 Master Stop2 Master completing stop condition (SCL = 1, SDA = 1).

0101 Master Start/Restart MASTER Mode sending start condition (SCL = 1, SDA = 0).

0110 Master Stop1 Master initiating stop condition (SCL = 1, SDA = 0).

0111 Master Wait Master received a Not Acknowledge instruction, waiting for 
software to assert stop or start control bits.

1000 Slave Transmit Data Nine substates, one for each data bit and one for the Acknowledge.

1001 Slave Receive Data Nine substates, one for each data bit and one for the Acknowledge.

1010 Slave Receive Addr1 Slave receiving first address byte (7- and 10-bit addressing) Nine 
substates, one for each address bit and one for the Acknowledge.

1011 Slave Receive Addr2 Slave receiving second address byte (10-bit addressing) nine 
substates, one for each address bit and one for the Acknowledge.

1100 Master Transmit Data Nine substates, one for each data bit and one for the Acknowledge.

1101 Master Receive Data Nine substates, one for each data bit and one for the Acknowledge.

1110 Master Transmit Addr1 Master sending first address byte (7- and 10-bit addressing) nine 
substates, one for each address bit and one for the Acknowledge.

1111 Master Transmit Addr2 Master sending second address byte (10-bit addressing) nine 
substates, one for each address bit and one for the Acknowledge.

Table 162. I2CSTATE_L  

State
I2CSTATE_H

Substate
I2CSTATE_L Substate Name State Description

0000–0100 0000  – There are no substates for these I2CSTATE_H 
values.

0110–0111 0000  – There are no substates for these I2CSTATE_H 
values.

0101 0000 Master Start Initiating a new transaction

0001 Master Restart Master is ending one transaction and starting a 
new one without letting the bus go idle.
PS029412-0618 P R E L I M I N A R Y  I2C Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

376
17.3.19.USB IN 0–3 Byte Count Subregisters

The USB IN 0–3 Byte Count subregisters, shown in Table 188, contain the USB IN end-
point byte counts.

[1]
HSNAK

EP0 Handshake NA
HSNAK is automatically set when a Setup token arrives. Software clears HSNAK by writing 
a 1 to it.
0: Do not send a NAK handshake.
1: Send a NAK handshake for every packet in the Status stage. 

[0]
STALL

EP0 Stall
STALL is automatically cleared when a Setup token arrives. 
0: Do not send a STALL handshake.
1: Send a STALL handshake for any IN or OUT token during the data or handshake phases 

of the control transfer.

Table 188. USB IN 0–3 Byte Count Subregisters (USBIxBC) 

Bit 7 6 5 4 3 2 1 0

Field Reserved BC

Reset 0 0 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W R/W R

Address If USBSA = 35h, 37h, 39h, 3Bh in the USB Subaddress Register, 
accessible through the USB Subdata Register

Bit Description 

[7] Reserved
This bit is reserved and must be programmed to 0.

[6:0]
BC

IN Byte Count
00–40: After loading the IN endpoint x buffer memory, software should write BC with the 

number of bytes loaded. Writing to the USBIxBC Register arms the IN endpoint x by 
setting BUSY in USBIxCS. When the host sends an IN token for IN endpoint x and 
BUSY is set, the USB Module will transmit a BC length data packet.

41-7F: Reserved.

Bit Description (Continued)
PS029412-0618 P R E L I M I N A R Y  USB Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

392
16.2.7. DMA Control of I2C Transactions – see page 326

17.2.10. USB Module Interrupts and DMA – see page 355

20.2.1. AES Operation and DMA – see page 426

21.2.8. ADC Interrupts and DMA – see page 450

22.2.4. DAC Interrupt and DMA – see page 468

18.2.4. Transfer Types

Three transfer types provide Register Bus bandwidth-sharing options, and are selected 
with the BURST bit in the DMA Control Register. If no DMA requests are asserted, the 
CPU has 100% of the Register Bus bandwidth.

18.2.4.1. Block (BURST = 00)

The DMA Controller can be configured to transfer data blocks by selecting BURST = 00. 
It will transfer the entire transfer length as long as the DMA request is asserted. 

The CPU will not execute instructions while the DMA Controller is transferring the block. 
The DMA Controller will pause to allow CPU execution, but only if the DMA requestor 
does not continue to assert DMA requests during the block transfer. Care should be taken 
using block transfer if CPU response time is critical.

18.2.4.2. Burst4 (BURST =  01)

The DMA Controller can be configured to limit data transfer length to bursts of 4 transfers 
by selecting BURST = 01. After 4 consecutive DMA transfers, the CPU is allowed to exe-
cute an instruction; i.e., one CPU instruction is interleaved with a burst of 4 DMA trans-
fers.

If the requesting DMA does not require all four transfers and deasserts a DMA request, 
CPU instruction execution will occur after the last required transfer. 

18.2.4.3. Single (BURST = 10)

The DMA Controller can be configured to limit data transfer length to a single transfer by 
selecting BURST = 10. After a DMA transfer, the CPU will execute one instruction; i.e., 
one CPU instruction is interleaved with each DMA transfer). 

18.2.5. Direct Operation

18.2.5.1. DMA Setup with Autoincrement

The DMA Subregister selection and status registers have an autoincrement that allows the 
DMA Controller to be set up without modifying the DMASA subregister address in the 
DMAxSA Register. To enable autoincrementing, set the AUTOINC bit in the DMA 
Control Register. DMASA is autoincremented whenever DMAxSD is accessed (i.e., read 
or written) while DMAx is not active. This autoincrement allows for convenient channel 
setup, because software can sequentially write to the DMA channel subregisters without 
PS029412-0618 P R E L I M I N A R Y  Operation



Z8 Encore! XP® F6482 Series
Product Specification

433
20.2.6. Decrypt Key Derivation

The Round 10 (R[10]) expanded encryption key can be used as the decryption key for 
decrypting data sent using the encryption key. This decryption key can be derived and 
made available for retrieval by performing a decrypt key derivation using MODE = 11. For 
this operation, real or dummy plain text data can be used. When the operation is com-
pleted, the derived 16-byte R[10] decryption key can be read from the AESDATA Register 
and stored for use as a decryption key. The first key byte read is the most significant byte 
(associated with s(0,0) in Figure 63 – see page 425). 

Whenever MODE is written to 11, KEYLD is cleared. The decryption key will be derived 
only if the encryption key was loaded while MODE = 11 which sets KEYLD = 1. After a 
decrypt key derivation is completed, the decryption key is available to be read. When any 
other confidentiality mode is selected, the decryption key can no longer be read without 
again setting MODE = 11, loading the encryption key, and starting/completing the decrypt 
key derivation.

The following example outlines a procedure for deriving and retrieving the decryption 
key.

1. Write the AESCTRL Register as follows: AES_EN = 1, MODE = 11 (KEYGEN), 
DECRYPT = 0, AUTODIS = 1.

2. Write the AESKEY Register with the encryption key.

3. Write real or dummy data to the AESDATA Register, or use DMA.

4. Set the START/BUSY bit in the AESSTAT Register, or use auto-start by setting 
AUTODIS = 0 in Step 1.

5. Poll the START/BUSY bit, or use an interrupt.

6. Read the R[10] key from the AESDATA Register and store it.

7. Select another MODE.

20.3. AES Register Definitions

The AES accelerator is accessed through the registers listed in Table 228. The remainder 
of this chapter describes each of these registers.
PS029412-0618 P R E L I M I N A R Y  AES Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

437
20.3.5. AES Status Register

TheAES Status Register is shown in Table 233.

Table 233. AES Status Register (AESSTAT)

Bit 7 6 5 4 3 2 1 0

Field START/
BUSY

Reserved ERROR IVLD KEYLD DATALD

Reset 0 0 0 0 0 0 0 0

R/W R/W1* R R R R R R R

Address FBBh

Note: *R/W1 = Writing a 1 clears this bit.

Bit Description

[7]
START/
BUSY

AES Start/Busy Status
0: AES is idle or the requested encryption/decryption operation is complete.
1: Write 1 to start encryption/decryption, will remain 1 (Busy) till operation is complete and 

clears when finished.

[6:4] Reserved
These bits are reserved and must be programmed to 000.

[3]
ERROR

ERROR Status
0: No error occurred during processing.
1: Error occurred during processing.

[2]
IVLD

Initialization Vector Load Status
0: Initialization vector not fully loaded.
1: Initialization vector fully loaded.

[1]
KEYLD

Key Load Status
0: Key not fully loaded.
1: Key fully loaded.

[0]
DATALD

Data Load Status
0: Data not fully loaded.
1: Data fully loaded.
PS029412-0618 P R E L I M I N A R Y  AES Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

465
22.2. Operation

The DAC is enabled by setting the DAC bit in the PWRCTL1 Register, which is described 
in the Low-Power Modes chapter on page 50. The DAC converts the digital input, 
DACDH and DACDL, in the DAC data registers, DACD_H and DACD_L, to an analog 
output level. 

Data can be right-justified or left-justified, as selected by the JUSTIFY bit in the DAC-
CTL Register. If data is left-justified, 8-bit resolution can be achieved by writing only the 
Data High Register, DACD_H.

The data format can be either unsigned (binary) or signed (two’s-complement), as selected 
by the DFORMAT bit in the DACCTL Register. As shown in Figure 79, for unsigned data, 
000h represents VREF–, 7FFh represents midrange, and FFFh represents VREF+. The 
equation for determining the analog level with unsigned data can be calculated as:

DAC Output = (VREF+ – VREF–) x (data ÷ 4095)

In this equation, data represents the value of {DACDH, DACDL}.

Figure 78. Digital-to-Analog Converter Block Diagram

Digital-to-Analog
Converter

VREF+

Data Register
Registers DAC

VREF–

Bus
8

Event In

REFSEL

AVDD

VREF– VREF+

DAC VREFfrom
Reference System

VREF
Buffer
PS029412-0618 P R E L I M I N A R Y  Operation



Z8 Encore! XP® F6482 Series
Product Specification

524
26.3.6. LCD Control 2 Register

The LCDCTL2 Register, shown in Table 272, provides memory status and control, inter-
rupt control and control of the LCD mode and waveform type. Writes to this register take 
effect at the end of the current waveform.

Table 272. LCD Control 2 Register (LCDCTL2)

Bits 7 6 5 4 3 2 1 0

Field MSTAT IRQS LCDMODE DMMODE

Reset 0 0 0 0 0 0 0 0

R/W R R/W R/W R/W R/W R/W R/W R/W

Address FB6h

Bit Description 

[7]
MSTAT

LCD Memory Status
0: LCD Display Memory Bank A is currently the source for the LCD Controller outputs.
1: LCD Display Memory Bank B is currently the source for the LCD Controller outputs.

[6]
IRQS

Interrupt Request Select
0: Frame interrupt. 

For static, 1/2, and 1/4 duty, the interrupt occurs at 7/8 frame for type A waveforms 
(LCDMODE[2]=1) and 7/4 frame for type B waveforms (LCDMODE[2]=0). 
For 1/3 duty, the interrupt occurs at 5/6 frame for type A waveforms (LCDMODE[2]=1) 
and 5/3 frame for type B waveforms (LCDMODE[2]=0).

1: Blink Interrupt. 
When DMMODE=10, interrupt occurs when the LCD controller switches from LCD 
Memory Bank A to LCD Memory Bank B. 
When a blink mode is selected (BMODE = 01, 10, 11), interrupt occurs at the transition 
from displayed to blank.

[5:2]
LCDMODE

LCD Operating Mode
0000: 1 common (COM0), 1/1 duty, static bias, static waveform.
0001: 2 commons (COM[1:0]), 1/2 duty, 1/2 bias, type A waveform.
0010: 2 commons (COM[1:0]), 1/2 duty, 1/2 bias, type B waveform.
0011: 2 commons (COM[1:0]), 1/2 duty, 1/3 bias, type A waveform.
0100: 2 commons (COM[1:0]), 1/2 duty, 1/3 bias, type B waveform.
0101: 3 commons (COM[2:0]), 1/3 duty, 1/2 bias, type A waveform.
0110: 3 commons (COM[2:0]), 1/3 duty, 1/2 bias, type B waveform.
0111: 3 commons (COM[2:0]), 1/3 duty, 1/3 bias, type A waveform.
1000: 3 commons (COM[2:0]), 1/3 duty, 1/3 bias, type B waveform.
1001: 4 commons (COM[3:0]), 1/4 duty, 1/2 bias, type A waveform.
1010: 4 commons (COM[3:0]), 1/4 duty, 1/2 bias, type B waveform.
1011: 4 commons (COM[3:0]), 1/4 duty, 1/3 bias, type A waveform.
1100: 4 commons (COM[3:0]), 1/4 duty, 1/3 bias, type B waveform.
Others: Reserved. 
PS029412-0618 P R E L I M I N A R Y  LCD Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

563
munication will only work when using an external clock source. To operate in high-speed 
synchronous mode, simply Auto-Baud to the desired speed. The Auto-Baud generator will 
automatically run at the desired baud rate. 

Slow bus rise times due to the pull-up resistor become a limiting factor when operating at 
high speeds. To compensate for slow rise times, the output driver can be configured to 
drive the line High. If the Transmit Drive (TXD) bit is set, the line will be driven both 
High and Low during transmission. The line starts being driven at the beginning of the 
start bit and stops being driven at the middle of the stop bit. If the Transmit Drive High 
(TXDH) bit is set, the line will be driven High until the input is High or until the center of 
the bit occurs, whichever occurs first. If both TXD and TXDH are set, the pin will be 
driven High for one clock period at the beginning of each 0-to-1 transition. An example of 
a high-speed synchronous interface is shown in Figure 101.

30.2.6. OCD Serial Errors

The On-Chip Debugger can detect any of the following error conditions on the DBG pin:

• Serial Break (a minimum of ten continuous bits Low)

• Framing Error (the received stop bit is Low)

• Transmit Collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, 
transmits a Serial Break 4096 system clock cycles long back to the host, and resets the 
Auto-Baud Detector/Generator. A Framing Error or Transmit Collision can be caused by 
the host sending a Serial Break to the OCD. Because of the open-drain nature of the inter-

Figure 101. Synchronous Operation

High-Speed
Adapter

DBG

CLOCKDevice

Host PC

Any high-speed
interface
PS029412-0618 P R E L I M I N A R Y  Operation



Z8 Encore! XP® F6482 Series
Product Specification

573
Table 308. OCD Control Register (OCDCTL)

Bit 7 6 5 4 3 2 1 0

Field DBGMODE BRKEN DBGACK BRKLOOP BRKPC BRKZRO Reserved RST

Reset 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit Description 

[7]
DBGMODE

Debug Mode
Setting this bit to 1 causes the device to enter Debug Mode. When in Debug Mode, the eZ8 
CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to resume 
execution. This bit is automatically set when a BRK instruction is decoded and breakpoints 
are enabled.
0: The device is running (operating in Normal Mode).
1: The device is in Debug Mode.

[6]
BRKEN

Breakpoint Enable
This bit controls the behavior of BRK instruction (op code 00h). By default, breakpoints are 
disabled and the BRK instruction behaves like a NOP. If this bit is set to 1 and a BRK 
instruction is decoded, the OCD takes action depending upon the BRKLOOP bit.
0: BRK instruction is disabled.
1: BRK instruction is enabled.

[5]
DBGACK

Debug Acknowledge
This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends a 
Debug Acknowledge character (FFh) to the host when a breakpoint occurs. This bit 
automatically clears itself when an acknowledge character is sent.
0: Debug Acknowledge is disabled.
1: Debug Acknowledge is enabled.

[4]
BRKLOOP

Breakpoint Loop
This bit determines what action the OCD takes when a BRK instruction is decoded and 
breakpoints are enabled (BRKEN is 1). If this bit is 0, the DBGMODE bit is automatically set 
to 1 and the OCD enters Debug Mode. If BRKLOOP is set to 1, the eZ8 CPU loops on the 
BRK instruction. 
0: BRK instruction sets DBGMODE to 1.
1: eZ8 CPU loops on BRK instruction.

[3]
BRKPC

Break when PC == OCDCNTR
If this bit is set to 1, then the OCDCNTR Register is used as a hardware breakpoint. When 
the program counter matches the value in the OCDCNTR Register, DBGMODE is 
automatically set to 1. If this bit is set, the OCDCNTR Register does not count when the 
CPU is running.
0: OCDCNTR is setup as counter.
1: OCDCNTR generates hardware break when PC == OCDCNTR.
PS029412-0618 P R E L I M I N A R Y  On-Chip Debugger Control Register Definitions



Z8 Encore! XP® F6482 Series
Product Specification

583
STOP  – Stop Mode

WDT  – Watchdog Timer Refresh

Table 321. Load Instructions

Mnemonic Operands Instruction

CLR dst Clear

LD dst, src Load

LDC dst, src Load Constant to/from Program Memory

LDCI dst, src Load Constant to/from Program Memory and 
Autoincrement Addresses

LDE dst, src Load External Data to/from Data Memory

LDEI dst, src Load External Data to/from Data Memory and 
Autoincrement Addresses

LDWX dst, src Load Word using Extended Addressing

LDX dst, src Load using Extended Addressing

LEA dst, X(src) Load Effective Address

POP dst Pop

POPX dst Pop using Extended Addressing

PUSH src Push

PUSHX src Push using Extended Addressing

Table 322. Logical Instructions 

Mnemonic Operands Instruction

AND dst, src Logical AND

ANDX dst, src Logical AND using Extended Addressing

COM dst Complement

OR dst, src Logical OR

ORX dst, src Logical OR using Extended Addressing

XOR dst, src Logical Exclusive OR

XORX dst, src Logical Exclusive OR using Extended Addressing

Table 320. CPU Control Instructions (Continued)

Mnemonic Operands Instruction
PS029412-0618 P R E L I M I N A R Y  eZ8 CPU Instruction Classes


