


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

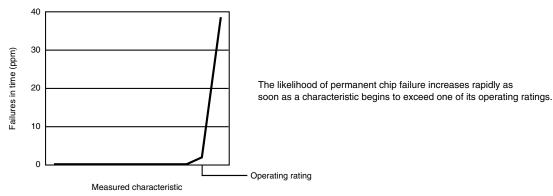
| Dectano                    |                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------|
| Product Status             | Active                                                                               |
| Core Processor             | ARM® Cortex®-M4                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                   |
| Speed                      | 100MHz                                                                               |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, IrDA, SD, SPI, UART/USART, USB, USB OTG |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                                            |
| Number of I/O              | 100                                                                                  |
| Program Memory Size        | 256KB (256K x 8)                                                                     |
| Program Memory Type        | FLASH                                                                                |
| EEPROM Size                | 4K x 8                                                                               |
| RAM Size                   | 64K x 8                                                                              |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                                         |
| Data Converters            | A/D 42x16b; D/A 2x12b                                                                |
| Oscillator Type            | Internal                                                                             |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                                   |
| Mounting Type              | Surface Mount                                                                        |
| Package / Case             | 144-LQFP                                                                             |
| Supplier Device Package    | 144-LQFP (20x20)                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mk60dx256zvlq10              |
|                            |                                                                                      |

Email: info@E-XFL.COM

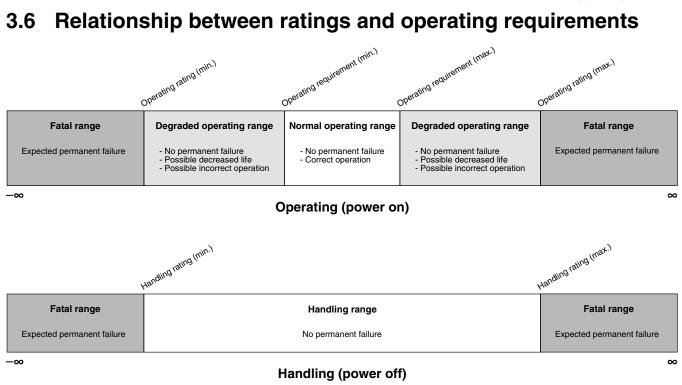
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- Handling ratings apply when the chip is not powered.

# 3.4.1 Example


This is an example of an operating rating:

| Symbol          | Description               | Min. | Max. | Unit |
|-----------------|---------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply voltage | -0.3 | 1.2  | V    |

# 3.5 Result of exceeding a rating



Terminology and guidelines



# 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

- 2.  $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

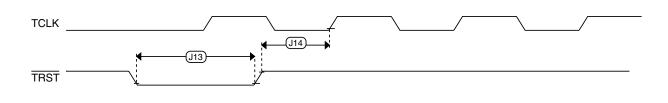
## 5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

### 5.2.8 Capacitance attributes

### Table 8. Capacitance attributes


| Symbol            | Description                     | Min. | Max. | Unit |
|-------------------|---------------------------------|------|------|------|
| C <sub>IN_A</sub> | Input capacitance: analog pins  | —    | 7    | pF   |
| C <sub>IN_D</sub> | Input capacitance: digital pins | _    | 7    | pF   |

# 5.3 Switching specifications

## 5.3.1 Device clock specifications

### Table 9. Device clock specifications

| Symbol               | Description                                            | Min. | Max. | Unit | Notes |  |  |  |  |
|----------------------|--------------------------------------------------------|------|------|------|-------|--|--|--|--|
|                      | Normal run mode                                        |      |      |      |       |  |  |  |  |
| f <sub>SYS</sub>     | System and core clock                                  | —    | 100  | MHz  |       |  |  |  |  |
| f <sub>SYS_USB</sub> | System and core clock when Full Speed USB in operation | 20   | _    | MHz  |       |  |  |  |  |
| f <sub>ENET</sub>    | System and core clock when ethernet in operation       |      |      | MHz  |       |  |  |  |  |
|                      | • 10 Mbps                                              | 5    | —    |      |       |  |  |  |  |
|                      | • 100 Mbps                                             | 50   | _    |      |       |  |  |  |  |
| f <sub>BUS</sub>     | Bus clock                                              | _    | 50   | MHz  |       |  |  |  |  |
| FB_CLK               | FlexBus clock                                          | _    | 50   | MHz  |       |  |  |  |  |
| f <sub>FLASH</sub>   | Flash clock                                            | —    | 25   | MHz  |       |  |  |  |  |
| f <sub>LPTMR</sub>   | LPTMR clock                                            | —    | 25   | MHz  |       |  |  |  |  |





# 6.2 System modules

There are no specifications necessary for the device's system modules.

# 6.3 Clock modules

## 6.3.1 MCG specifications

| Symbol                  | Description                                                                                                          | Min.                            | Тур.   | Max.    | Unit              | Notes |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|---------|-------------------|-------|
| f <sub>ints_ft</sub>    | Internal reference frequency (slow clock) —<br>factory trimmed at nominal VDD and 25 °C                              | _                               | 32.768 | —       | kHz               |       |
| f <sub>ints_t</sub>     | Internal reference frequency (slow clock) — user<br>trimmed — over fixed voltage and temperature<br>range of 0–70°C  | 31.25                           | _      | 38.2    | kHz               |       |
| $\Delta_{fdco\_res\_t}$ | Resolution of trimmed average DCO output<br>frequency at fixed voltage and temperature —<br>using SCTRIM and SCFTRIM | _                               | ± 0.3  | ± 0.6   | %f <sub>dco</sub> | 1     |
| $\Delta f_{dco_t}$      | Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C           | _                               | ± 4.5  | _       | %f <sub>dco</sub> | 1     |
| f <sub>intf_ft</sub>    | Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C                                  | _                               | 4      | —       | MHz               |       |
| f <sub>intf_t</sub>     | Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C                                    | 3                               | _      | 5       | MHz               |       |
| f <sub>loc_low</sub>    | Loss of external clock minimum frequency —<br>RANGE = 00                                                             | (3/5) x<br>f <sub>ints_t</sub>  |        | _       | kHz               |       |
| f <sub>loc_high</sub>   | Loss of external clock minimum frequency —<br>RANGE = 01, 10, or 11                                                  | (16/5) x<br>f <sub>ints_t</sub> | _      | _       | kHz               |       |
|                         | FI                                                                                                                   | L                               |        |         |                   |       |
| f <sub>fll_ref</sub>    | FLL reference frequency range                                                                                        | 31.25                           | _      | 39.0625 | kHz               |       |

### Table 15. MCG specifications

Table continues on the next page...

| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| R <sub>F</sub>               | Feedback resistor — low-frequency, low-power mode (HGO=0)                                              | —    |                 | _    | MΩ   | 2, 4  |
|                              | Feedback resistor — low-frequency, high-gain mode (HGO=1)                                              | —    | 10              | _    | MΩ   |       |
|                              | Feedback resistor — high-frequency, low-power mode (HGO=0)                                             | —    | _               |      | MΩ   |       |
|                              | Feedback resistor — high-frequency, high-gain mode (HGO=1)                                             | _    | 1               |      | MΩ   |       |
| R <sub>S</sub>               | Series resistor — low-frequency, low-power<br>mode (HGO=0)                                             | —    | _               | _    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                | —    | 200             |      | kΩ   |       |
|                              | Series resistor — high-frequency, low-power<br>mode (HGO=0)                                            | —    | _               |      | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              |                                                                                                        | —    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) | _    | V <sub>DD</sub> | _    | V    |       |

Table 16. Oscillator DC electrical specifications (continued)

1. V<sub>DD</sub>=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C<sub>x</sub>,C<sub>y</sub> can be provided by using either the integrated capacitors or by using external components.

4. When low power mode is selected, R<sub>F</sub> is integrated and must not be attached externally.

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

### 6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

| Symbol                | Description                                                                                          | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)                    | 32   | _    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (low range)<br>(MCG_C2[RANGE]=01) | 3    |      | 8    | MHz  |       |

Table continues on the next page...

### 6.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

| Symbol                  | Description                               | Min. | Тур.   | Max.             | Unit | Notes |
|-------------------------|-------------------------------------------|------|--------|------------------|------|-------|
| f <sub>osc_lo</sub>     | Oscillator crystal                        | _    | 32.768 | _                | kHz  |       |
| t <sub>start</sub>      | Crystal start-up time                     | —    | 1000   | _                | ms   | 1     |
| f <sub>ec_extal32</sub> | Externally provided input clock frequency | _    | 32.768 | _                | kHz  | 2     |
| V <sub>ec_extal32</sub> | Externally provided input clock amplitude | 700  |        | V <sub>BAT</sub> | mV   | 2, 3  |

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

The parameter specified is a peak-to-peak value and V<sub>IH</sub> and V<sub>IL</sub> specifications do not apply. The voltage of the applied clock must be within the range of V<sub>SS</sub> to V<sub>BAT</sub>.

# 6.4 Memories and memory interfaces

## 6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

## 6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                    | Description                              | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>       | Longword Program high-voltage time       | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Sector Erase high-voltage time           | —    | 13   | 113  | ms   | 1     |
| t <sub>hversblk256k</sub> | Erase Block high-voltage time for 256 KB | _    | 416  | 3616 | ms   | 1     |

 Table 20.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

### 6.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

| Symbol                  | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|-----------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                  |      |      |      |      |       |
| t <sub>rd1blk256k</sub> | 256 KB program/data flash                     | —    | —    | 1.7  | ms   |       |
| t <sub>rd1sec2k</sub>   | Read 1s Section execution time (flash sector) |      |      | 60   | μs   | 1     |

Table continues on the next page...

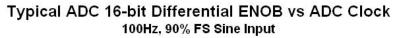
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB\_CLK). All other timing relationships can be derived from these values.

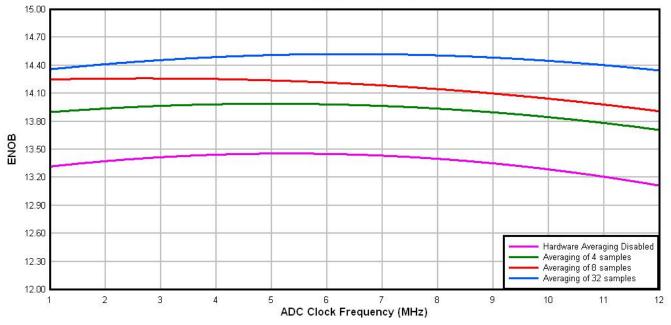
| Num | Description                             | Min. | Max.   | Unit | Notes |
|-----|-----------------------------------------|------|--------|------|-------|
|     | Operating voltage                       | 2.7  | 3.6    | V    |       |
|     | Frequency of operation                  | —    | FB_CLK | MHz  |       |
| FB1 | Clock period                            | 20   | _      | ns   |       |
| FB2 | Address, data, and control output valid | —    | 11.5   | ns   | 1     |
| FB3 | Address, data, and control output hold  | 0.5  | —      | ns   | 1     |
| FB4 | Data and FB_TA input setup              | 8.5  | —      | ns   | 2     |
| FB5 | Data and FB_TA input hold               | 0.5  | _      | ns   | 2     |

Table 25. Flexbus limited voltage range switching specifications

- 1. Specification is valid for all FB\_AD[31:0], FB\_BE/BWEn, FB\_CSn, FB\_OE, FB\_R/W, FB\_TBST, FB\_TSIZ[1:0], FB\_ALE, and FB\_TS.
- 2. Specification is valid for all FB\_AD[31:0] and  $\overline{FB_TA}$ .

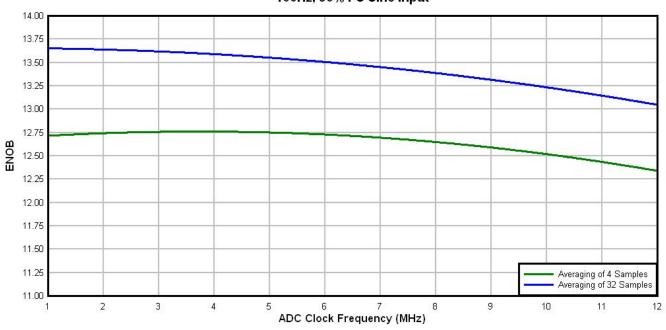
### Table 26. Flexbus full voltage range switching specifications


| Num | Description                             | Min.     | Max.   | Unit | Notes |
|-----|-----------------------------------------|----------|--------|------|-------|
|     | Operating voltage                       | 1.71     | 3.6    | V    |       |
|     | Frequency of operation                  | _        | FB_CLK | MHz  |       |
| FB1 | Clock period                            | 1/FB_CLK | —      | ns   |       |
| FB2 | Address, data, and control output valid | _        | 13.5   | ns   | 1     |
| FB3 | Address, data, and control output hold  | 0        | _      | ns   | 1     |
| FB4 | Data and FB_TA input setup              | 13.7     | —      | ns   | 2     |
| FB5 | Data and FB_TA input hold               | 0.5      | —      | ns   | 2     |


- 1. Specification is valid for all FB\_AD[31:0], FB\_BE/BWEn, FB\_CSn, FB\_OE, FB\_R/W, FB\_TBST, FB\_TSIZ[1:0], FB\_ALE, and FB\_TS.
- 2. Specification is valid for all FB\_AD[31:0] and  $\overline{\text{FB}}_{-}T\overline{\text{A}}.$

| Symbol              | Description            | Conditions <sup>1</sup>                         | Min.                              | Typ. <sup>2</sup> | Max. | Unit  | Notes                                                                     |
|---------------------|------------------------|-------------------------------------------------|-----------------------------------|-------------------|------|-------|---------------------------------------------------------------------------|
| E <sub>IL</sub>     | Input leakage<br>error |                                                 | I <sub>In</sub> × R <sub>AS</sub> |                   |      | mV    | I <sub>In</sub> =<br>leakage<br>current                                   |
|                     |                        |                                                 |                                   |                   |      |       | (refer to<br>the MCU's<br>voltage<br>and current<br>operating<br>ratings) |
|                     | Temp sensor<br>slope   | Across the full temperature range of the device | 1.55                              | 1.62              | 1.69 | mV/°C |                                                                           |
| V <sub>TEMP25</sub> | Temp sensor<br>voltage | 25 °C                                           | 706                               | 716               | 726  | mV    |                                                                           |

## Table 28. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)


- 1. All accuracy numbers assume the ADC is calibrated with  $V_{REFH} = V_{DDA}$
- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25°C, f<sub>ADCK</sub> = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.







Peripheral operating requirements and behaviors



Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 15. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

| 6.6.1.3 | 16-bit ADC with PGA operating conditions           |
|---------|----------------------------------------------------|
|         | Table 29. 16-bit ADC with PGA operating conditions |

| Symbol              | Description                | Conditions        | Min.             | Typ. <sup>1</sup> | Max.             | Unit | Notes                   |
|---------------------|----------------------------|-------------------|------------------|-------------------|------------------|------|-------------------------|
| V <sub>DDA</sub>    | Supply voltage             | Absolute          | 1.71             | —                 | 3.6              | V    |                         |
| V <sub>REFPGA</sub> | PGA ref voltage            |                   | VREF_OU<br>T     | VREF_OU<br>T      | VREF_OU<br>T     | V    | 2, 3                    |
| V <sub>ADIN</sub>   | Input voltage              |                   | V <sub>SSA</sub> | —                 | V <sub>DDA</sub> | V    |                         |
| V <sub>CM</sub>     | Input Common<br>Mode range |                   | V <sub>SSA</sub> | _                 | V <sub>DDA</sub> | V    |                         |
| R <sub>PGAD</sub>   | Differential input         | Gain = 1, 2, 4, 8 | —                | 128               | —                | kΩ   | IN+ to IN- <sup>4</sup> |
|                     | impedance                  | Gain = 16, 32     | —                | 64                | —                |      |                         |
|                     |                            | Gain = 64         | _                | 32                | —                |      |                         |
| R <sub>AS</sub>     | Analog source resistance   |                   | _                | 100               | —                | Ω    | 5                       |
| Τ <sub>S</sub>      | ADC sampling time          |                   | 1.25             | _                 | _                | μs   | 6                       |

Table continues on the next page...

| Symbol               | Description                                   | Conditions                            | Min. | Typ. <sup>1</sup>                                                                          | Max. | Unit | Notes                                                                  |
|----------------------|-----------------------------------------------|---------------------------------------|------|--------------------------------------------------------------------------------------------|------|------|------------------------------------------------------------------------|
| G                    | Gain <sup>4</sup>                             | • PGAG=0                              | 0.95 | 1                                                                                          | 1.05 |      | R <sub>AS</sub> < 100Ω                                                 |
|                      |                                               | • PGAG=1                              | 1.9  | 2                                                                                          | 2.1  |      |                                                                        |
|                      |                                               | • PGAG=2                              | 3.8  | 4                                                                                          | 4.2  |      |                                                                        |
|                      |                                               | • PGAG=3                              | 7.6  | 8                                                                                          | 8.4  |      |                                                                        |
|                      |                                               | • PGAG=4                              | 15.2 | 16                                                                                         | 16.6 |      |                                                                        |
|                      |                                               | • PGAG=5                              | 30.0 | 31.6                                                                                       | 33.2 |      |                                                                        |
|                      |                                               | • PGAG=6                              | 58.8 | 63.3                                                                                       | 67.8 |      |                                                                        |
| BW                   | Input signal                                  | 16-bit modes                          |      |                                                                                            | 4    | kHz  |                                                                        |
|                      | bandwidth                                     | <ul> <li>&lt; 16-bit modes</li> </ul> | _    | _                                                                                          | 40   | kHz  |                                                                        |
| PSRR                 | Power supply rejection ratio                  | Gain=1                                | _    | -84                                                                                        |      | dB   | V <sub>DDA</sub> = 3V<br>±100mV,<br>f <sub>VDDA</sub> = 50Hz,<br>60Hz  |
| CMRR                 | Common mode                                   | Gain=1                                | _    | -84                                                                                        | _    | dB   | V <sub>CM</sub> =                                                      |
|                      | rejection ratio                               | • Gain=64                             | _    | -85                                                                                        | _    | dB   | 500mVpp,<br>f <sub>VCM</sub> = 50Hz,<br>100Hz                          |
| V <sub>OFS</sub>     | Input offset<br>voltage                       |                                       | _    | 0.2                                                                                        | —    | mV   | Output offset =<br>V <sub>OFS</sub> *(Gain+1)                          |
| T <sub>GSW</sub>     | Gain switching settling time                  |                                       | —    | -                                                                                          | 10   | μs   | 5                                                                      |
| EIL                  | Input leakage<br>error                        | All modes                             |      | $I_{In} \times R_{AS}$                                                                     |      | mV   | I <sub>In</sub> = leakage<br>current                                   |
|                      |                                               |                                       |      |                                                                                            |      |      | (refer to the<br>MCU's voltage<br>and current<br>operating<br>ratings) |
| V <sub>PP,DIFF</sub> | Maximum<br>differential input<br>signal swing |                                       |      | $\frac{V_{x}V_{\text{DDA}} - V_{x}}{\text{Gain}}$ $\mathbf{x} = \mathbf{V}_{\text{REFPG}}$ | )    | V    | 6                                                                      |
| SNR                  | Signal-to-noise                               | Gain=1                                | 80   | 90                                                                                         |      | dB   | 16-bit                                                                 |
| eru i                | ratio                                         | • Gain=64                             | 52   | 66                                                                                         | _    | dB   | differential<br>mode,<br>Average=32                                    |
| THD                  | Total harmonic                                | Gain=1                                | 85   | 100                                                                                        |      | dB   | 16-bit                                                                 |
|                      | distortion                                    | • Gain=64                             | 49   | 95                                                                                         | _    | dB   | differential<br>mode,<br>Average=32,<br>f <sub>in</sub> =100Hz         |
| SFDR                 | Spurious free                                 | Gain=1                                | 85   | 105                                                                                        |      | dB   | 16-bit                                                                 |
|                      | dynamic range                                 | • Gain=64                             | 53   | 88                                                                                         |      | dB   | differential<br>mode,<br>Average=32,<br>f <sub>in</sub> =100Hz         |

## Table 30. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...



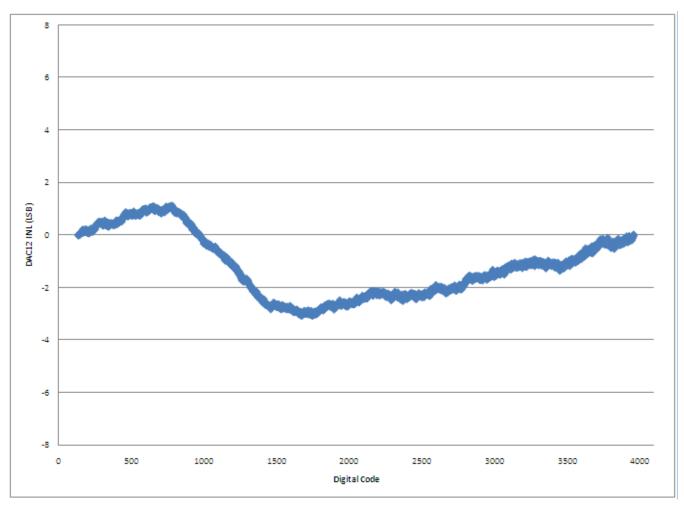
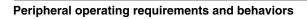




Figure 18. Typical INL error vs. digital code



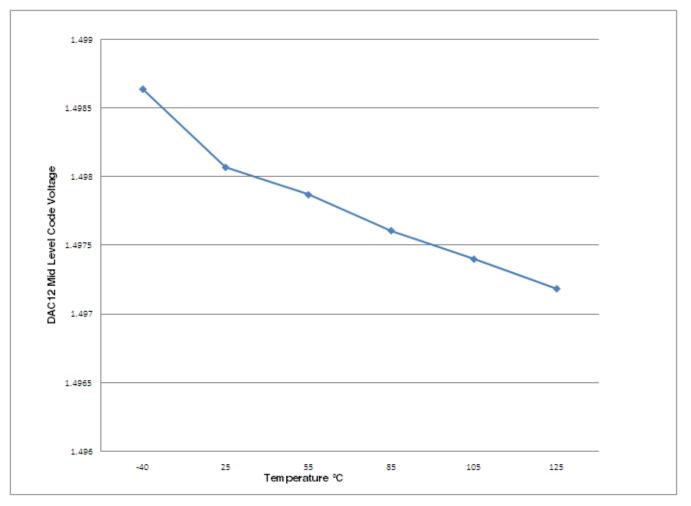



Figure 19. Offset at half scale vs. temperature

# 6.6.4 Voltage reference electrical specifications

| Table 34. | VREF full-range | operating | requirements |
|-----------|-----------------|-----------|--------------|
|-----------|-----------------|-----------|--------------|

| Symbol           | Description             | Min.                                         | Max. | Unit | Notes |
|------------------|-------------------------|----------------------------------------------|------|------|-------|
| V <sub>DDA</sub> | Supply voltage          | 1.71                                         | 3.6  | V    |       |
| T <sub>A</sub>   | Temperature             | Operating temperature<br>range of the device |      | °C   |       |
| CL               | Output load capacitance | 100                                          |      | nF   | 1, 2  |

1. C<sub>L</sub> must be connected to VREF\_OUT if the VREF\_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C<sub>L</sub> value over the operating temperature range of the device.

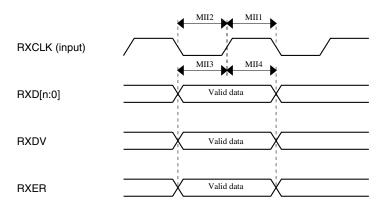



Figure 21. MII receive signal timing diagram

## 6.8.1.2 RMII signal switching specifications

The following timing specs meet the requirements for RMII style interfaces for a range of transceiver devices.

| Num   | Description                                 | Min. | Max. | Unit               |
|-------|---------------------------------------------|------|------|--------------------|
| —     | EXTAL frequency (RMII input clock RMII_CLK) | —    | 50   | MHz                |
| RMII1 | RMII_CLK pulse width high                   | 35%  | 65%  | RMII_CLK<br>period |
| RMII2 | RMII_CLK pulse width low                    | 35%  | 65%  | RMII_CLK<br>period |
| RMII3 | RXD[1:0], CRS_DV, RXER to RMII_CLK setup    | 4    | —    | ns                 |
| RMII4 | RMII_CLK to RXD[1:0], CRS_DV, RXER hold     | 2    | _    | ns                 |
| RMII7 | RMII_CLK to TXD[1:0], TXEN invalid          | 4    | —    | ns                 |
| RMII8 | RMII_CLK to TXD[1:0], TXEN valid            | —    | 15   | ns                 |

 Table 39. RMII signal switching specifications

# 6.8.2 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

## 6.8.3 USB DCD electrical specifications Table 40. USB DCD electrical specifications

| Symbol               | Description                                        | Min.  | Тур. | Max. | Unit |
|----------------------|----------------------------------------------------|-------|------|------|------|
| V <sub>DP_SRC</sub>  | USB_DP source voltage (up to 250 µA)               | 0.5   | —    | 0.7  | V    |
| V <sub>LGC</sub>     | Threshold voltage for logic high                   | 0.8   | —    | 2.0  | V    |
| I <sub>DP_SRC</sub>  | USB_DP source current                              | 7     | 10   | 13   | μA   |
| I <sub>DM_SINK</sub> | USB_DM sink current                                | 50    | 100  | 150  | μA   |
| R <sub>DM_DWN</sub>  | D- pulldown resistance for data pin contact detect | 14.25 | —    | 24.8 | kΩ   |
| V <sub>DAT_REF</sub> | Data detect voltage                                | 0.25  | 0.33 | 0.4  | V    |

# 6.8.4 USB VREG electrical specifications

### Table 41. USB VREG electrical specifications

| Symbol                | Description                                                                             | Min. | Typ. <sup>1</sup> | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------------------------------------------------|------|-------------------|------|------|-------|
| VREGIN                | Input supply voltage                                                                    | 2.7  | —                 | 5.5  | V    |       |
| I <sub>DDon</sub>     | Quiescent current — Run mode, load current<br>equal zero, input supply (VREGIN) > 3.6 V | _    | 120               | 186  | μA   |       |
| I <sub>DDstby</sub>   | Quiescent current — Standby mode, load current equal zero                               | _    | 1.27              | 30   | μA   |       |
| I <sub>DDoff</sub>    | Quiescent current — Shutdown mode                                                       |      |                   |      |      |       |
|                       | <ul> <li>VREGIN = 5.0 V and temperature=25 °C</li> </ul>                                | —    | 650               | _    | nA   |       |
|                       | Across operating voltage and temperature                                                | —    | _                 | 4    | μA   |       |
| I <sub>LOADrun</sub>  | Maximum load current — Run mode                                                         | —    | —                 | 120  | mA   |       |
| I <sub>LOADstby</sub> | Maximum load current — Standby mode                                                     | _    | —                 | 1    | mA   |       |
| V <sub>Reg33out</sub> | Regulator output voltage — Input supply<br>(VREGIN) > 3.6 V                             |      |                   |      |      |       |
|                       | Run mode                                                                                | 3    | 3.3               | 3.6  | v    |       |
|                       | Standby mode                                                                            | 2.1  | 2.8               | 3.6  | v    |       |
| V <sub>Reg33out</sub> | Regulator output voltage — Input supply<br>(VREGIN) < 3.6 V, pass-through mode          | 2.1  | —                 | 3.6  | V    | 2     |
| C <sub>OUT</sub>      | External output capacitor                                                               | 1.76 | 2.2               | 8.16 | μF   |       |
| ESR                   | External output capacitor equivalent series resistance                                  | 1    | -                 | 100  | mΩ   |       |
| I <sub>LIM</sub>      | Short circuit current                                                                   | _    | 290               | —    | mA   |       |

1. Typical values assume VREGIN = 5.0 V, Temp = 25  $^\circ\text{C}$  unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I<sub>Load</sub>.

| Num  | Description                              | Min.                      | Max.                      | Unit |
|------|------------------------------------------|---------------------------|---------------------------|------|
|      | Operating voltage                        | 2.7                       | 3.6                       | V    |
|      | Frequency of operation                   |                           | 12.5                      | MHz  |
| DS9  | DSPI_SCK input cycle time                | 4 x t <sub>BUS</sub>      | _                         | ns   |
| DS10 | DSPI_SCK input high/low time             | (t <sub>SCK</sub> /2) – 2 | (t <sub>SCK</sub> /2) + 2 | ns   |
| DS11 | DSPI_SCK to DSPI_SOUT valid              | —                         | 10                        | ns   |
| DS12 | DSPI_SCK to DSPI_SOUT invalid            | 0                         | _                         | ns   |
| DS13 | DSPI_SIN to DSPI_SCK input setup         | 2                         | —                         | ns   |
| DS14 | DSPI_SCK to DSPI_SIN input hold          | 7                         | —                         | ns   |
| DS15 | DSPI_SS active to DSPI_SOUT driven       | —                         | 14                        | ns   |
| DS16 | DSPI_SS inactive to DSPI_SOUT not driven | —                         | 14                        | ns   |



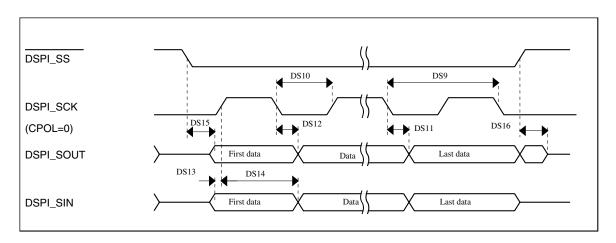



Figure 23. DSPI classic SPI timing — slave mode

# 6.8.7 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

| Num | Description                | Min.                 | Max. | Unit | Notes |
|-----|----------------------------|----------------------|------|------|-------|
|     | Operating voltage          | 1.71                 | 3.6  | V    | 1     |
|     | Frequency of operation     | _                    | 12.5 | MHz  |       |
| DS1 | DSPI_SCK output cycle time | 4 x t <sub>BUS</sub> |      | ns   |       |

Table 44. Master mode DSPI timing (full voltage range)

Table continues on the next page...

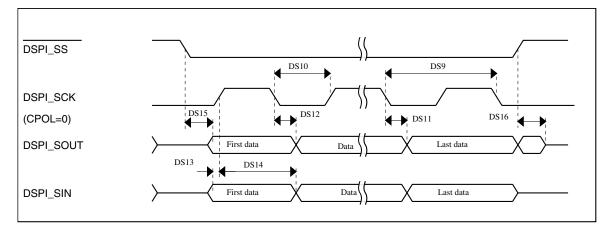



Figure 25. DSPI classic SPI timing — slave mode

## 6.8.8 Inter-Integrated Circuit Interface (I<sup>2</sup>C) timing Table 46. I<sup>2</sup>C timing

| Characteristic                                                                                     | Symbol                | Standa           | andard Mode Fast Mode |                                    | Mode             | Unit |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------------|------------------------------------|------------------|------|
|                                                                                                    |                       | Minimum          | Maximum               | Minimum                            | Maximum          |      |
| SCL Clock Frequency                                                                                | f <sub>SCL</sub>      | 0                | 100                   | 0                                  | 400              | kHz  |
| Hold time (repeated) START condition.<br>After this period, the first clock pulse is<br>generated. | t <sub>HD</sub> ; STA | 4                |                       | 0.6                                | —                | μs   |
| LOW period of the SCL clock                                                                        | t <sub>LOW</sub>      | 4.7              | _                     | 1.3                                | —                | μs   |
| HIGH period of the SCL clock                                                                       | t <sub>HIGH</sub>     | 4                | —                     | 0.6                                | _                | μs   |
| Set-up time for a repeated START condition                                                         | t <sub>SU</sub> ; STA | 4.7              | _                     | 0.6                                | —                | μs   |
| Data hold time for $I_2C$ bus devices                                                              | t <sub>HD</sub> ; DAT | 01               | 3.45 <sup>2</sup>     | 0 <sup>3</sup>                     | 0.9 <sup>1</sup> | μs   |
| Data set-up time                                                                                   | t <sub>SU</sub> ; DAT | 250 <sup>4</sup> | —                     | 100 <sup>2, 5</sup>                | _                | ns   |
| Rise time of SDA and SCL signals                                                                   | t <sub>r</sub>        | —                | 1000                  | 20 +0.1C <sub>b</sub> <sup>6</sup> | 300              | ns   |
| Fall time of SDA and SCL signals                                                                   | t <sub>f</sub>        | —                | 300                   | 20 +0.1C <sub>b</sub> <sup>5</sup> | 300              | ns   |
| Set-up time for STOP condition                                                                     | t <sub>SU</sub> ; STO | 4                | _                     | 0.6                                | _                | μs   |
| Bus free time between STOP and<br>START condition                                                  | t <sub>BUF</sub>      | 4.7              | _                     | 1.3                                | —                | μs   |
| Pulse width of spikes that must be<br>suppressed by the input filter                               | t <sub>SP</sub>       | N/A              | N/A                   | 0                                  | 50               | ns   |

1. The master mode I<sup>2</sup>C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.

- 3. Input signal Slew = 10ns and Output Load = 50pf
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode l<sup>2</sup>C bus device can be used in a Standard mode l2C bus system, but the requirement t<sub>SU; DAT</sub> ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t<sub>rmax</sub> + t<sub>SU; DAT</sub> = 1000 + 250 = 1250 ns (according to the Standard mode l<sup>2</sup>C bus specification) before the SCL line is released.

6.  $C_b$  = total capacitance of the one bus line in pF.

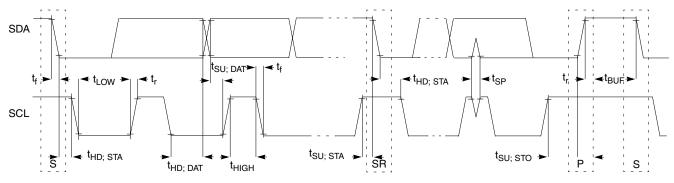



Figure 26. Timing definition for fast and standard mode devices on the I<sup>2</sup>C bus

# 6.8.9 UART switching specifications

See General switching specifications.

## 6.8.10 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

| Num | Symbol           | Description                                     | Min.          | Max.      | Unit |
|-----|------------------|-------------------------------------------------|---------------|-----------|------|
|     |                  | Card input clock                                |               |           |      |
| SD1 | fpp              | Clock frequency (low speed)                     | 0             | 400       | kHz  |
|     | fpp              | Clock frequency (SD\SDIO full speed\high speed) | 0             | 25\50     | MHz  |
|     | fpp              | Clock frequency (MMC full speed\high speed)     | 0             | 20\50     | MHz  |
|     | f <sub>OD</sub>  | Clock frequency (identification mode)           | 0             | 400       | kHz  |
| SD2 | t <sub>WL</sub>  | Clock low time                                  | 7             | —         | ns   |
| SD3 | t <sub>WH</sub>  | Clock high time                                 | 7             | —         | ns   |
| SD4 | t <sub>TLH</sub> | Clock rise time                                 | _             | 3         | ns   |
| SD5 | t <sub>THL</sub> | Clock fall time                                 | _             | 3         | ns   |
|     |                  | SDHC output / card inputs SDHC_CMD, SDHC_DAT    | (reference to | SDHC_CLK) |      |
| SD6 | t <sub>OD</sub>  | SDHC output delay (output valid)                | -5            | 8.3       | ns   |
|     |                  | SDHC input / card inputs SDHC_CMD, SDHC_DAT (   | reference to  | SDHC_CLK) |      |
| SD7 | t <sub>ISU</sub> | SDHC input setup time                           | 5             | —         | ns   |
| SD8 | t <sub>IH</sub>  | SDHC input hold time                            | 0             | —         | ns   |

Table 47. SDHC switching specifications

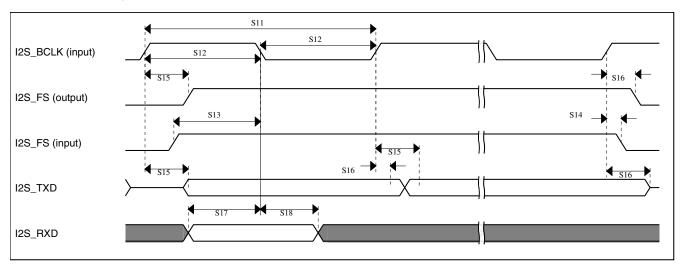



Figure 29. I<sup>2</sup>S timing — slave modes

| Table 50. | I <sup>2</sup> S master | <sup>,</sup> mode timing (f | ull voltage range) |
|-----------|-------------------------|-----------------------------|--------------------|
|-----------|-------------------------|-----------------------------|--------------------|

| Num | Description                                | Min.                 | Max. | Unit        |
|-----|--------------------------------------------|----------------------|------|-------------|
|     | Operating voltage                          | 1.71                 | 3.6  | V           |
| S1  | I2S_MCLK cycle time                        | 2 x t <sub>SYS</sub> |      | ns          |
| S2  | I2S_MCLK pulse width high/low              | 45%                  | 55%  | MCLK period |
| S3  | I2S_BCLK cycle time                        | 5 x t <sub>SYS</sub> | _    | ns          |
| S4  | I2S_BCLK pulse width high/low              | 45%                  | 55%  | BCLK period |
| S5  | I2S_BCLK to I2S_FS output valid            | —                    | 15   | ns          |
| S6  | I2S_BCLK to I2S_FS output invalid          | -4.3                 | _    | ns          |
| S7  | I2S_BCLK to I2S_TXD valid                  | —                    | 15   | ns          |
| S8  | I2S_BCLK to I2S_TXD invalid                | -4.6                 | _    | ns          |
| S9  | I2S_RXD/I2S_FS input setup before I2S_BCLK | 23.9                 | —    | ns          |
| S10 | I2S_RXD/I2S_FS input hold after I2S_BCLK   | 0                    |      | ns          |

 Table 51.
 I<sup>2</sup>S slave mode timing (full voltage range)

| Num | Description                               | Min.                 | Max. | Unit        |
|-----|-------------------------------------------|----------------------|------|-------------|
|     | Operating voltage                         | 1.71                 | 3.6  | V           |
| S11 | I2S_BCLK cycle time (input)               | 8 x t <sub>SYS</sub> | _    | ns          |
| S12 | I2S_BCLK pulse width high/low (input)     | 45%                  | 55%  | MCLK period |
| S13 | I2S_FS input setup before I2S_BCLK        | 10                   | _    | ns          |
| S14 | I2S_FS input hold after I2S_BCLK          | 3.5                  | _    | ns          |
| S15 | I2S_BCLK to I2S_TXD/I2S_FS output valid   | —                    | 28.6 | ns          |
| S16 | I2S_BCLK to I2S_TXD/I2S_FS output invalid | 0                    | _    | ns          |
| S17 | I2S_RXD setup before I2S_BCLK             | 10                   | _    | ns          |
| S18 | I2S_RXD hold after I2S_BCLK               | 2                    | _    | ns          |

| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6        | 01/2012 | <ul> <li>Added AC electrical specifications.</li> <li>Replaced TBDs with silicon data throughout.</li> <li>In "Power mode transition operating behaviors" table, removed entry times.</li> <li>Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP.</li> <li>Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram".</li> <li>Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures.</li> <li>Updated I<sub>DD_RUN</sub> numbers in 'Power consumption operating behaviors' section.</li> <li>Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure.</li> <li>In 'Voltage reference electrical specifications' section, updated V<sub>DP_SRC</sub>, I<sub>DDstby</sub>, and 'V<sub>Reg33out</sub> values.</li> </ul> |
| 7        | 02/2013 | <ul> <li>In "ESD handling ratings", added a note for I<sub>LAT</sub>.</li> <li>Updated "Voltage and current operating requirements".</li> <li>Updated "Voltage and current operating behaviors".</li> <li>Updated "Power mode transition operating behaviors" to add MAPBGA data.</li> <li>In "MCG specifications", updated the description of f<sub>ints_t</sub>.</li> <li>In "16-bit ADC operating conditions", updated the max spec of V<sub>ADIN</sub>.</li> <li>In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs.</li> <li>Updated "I2C switching specifications".</li> <li>In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs.</li> <li>In "I2S switching specifications", added separate specification tables for the full operating voltage range.</li> </ul>                                                                                        |

## Table 53. Revision History (continued)

### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$ 

© 2011–2013 Freescale Semiconductor, Inc.





Document Number: K60P144M100SF2 Rev. 7, 02/2013