

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	FR60 RISC
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, WDT
Number of I/O	48
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	14K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb91f463ncpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number Parameter	CY91V460A	CY91F463NA CY91F463NC			
16-bit PFM	1 channel	No			
Sound Generator	1 channel	No			
8/16-bit up/down counter	4 channels (8-bit) / 2 channels (16-bit)	2 channels (8-bit) /1 channel (16-bit)			
C_CAN	6 channels (128 message buffers)	2 channels (32 message buffers)			
LIN-USART	4 channels + 4 channels (FIFO) + 8 channels	4 channels			
l ² C (400 kbps)	4 channels	2 channels			
FR external bus	Yes (32-bit address, 32-bit data)	No			
External interrupt	16 channels	10 channels			
NMI interrupts	Yes	No			
Stepping motor controller (SMC)	6 channels	No			
LCD controller (40 4)	1 channel	No			
10-bit A/D converter	32 channels	8 channels			
Alarm comparator	2 channels	No			
Clock supervisor	Yes	No			
Main clock oscillator	4 M	Hz			
Sub clock oscillator	32 kHz	-			
CR oscillator	100 kHz	100 kHz / 2 MHz			
PLL	× 2	20			
DSU4	Yes	No			
EDSU	Yes (32 BP) ^[1]	Yes (8 BP) ^[1]			
Power supply voltage	3 V /	5 V			
Regulator	Yes				
Power consumption	n.a.	< 700 mW			
Temperature range (T _A)	0 °C to +70°C	- 40 °C to + 105°C			
Package	BGA-660	LQFP-64			

1. MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).

5. Precautions for Handling The Devices

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

5.1 **Precautions for Product Design**

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such over voltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

Note:

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

(a) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.

(b) Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

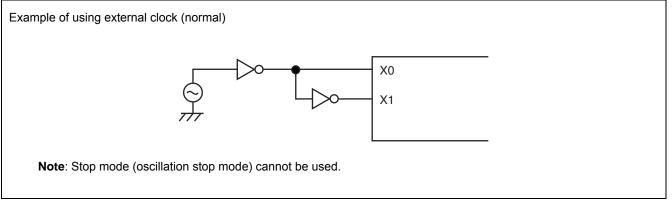
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

5.3 **Precautions for Use Environment**

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

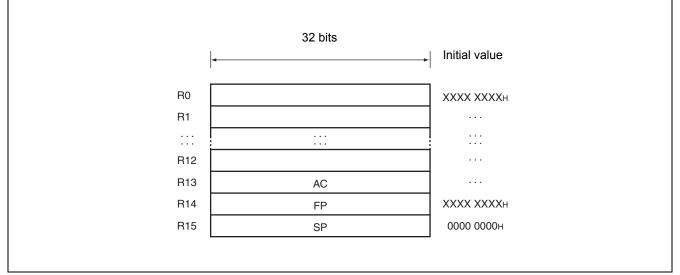

- Discharge of Static Electricity
 When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use
 anti-static measures or processing to prevent discharges.
- Corrosive Gases, Dust, or Oil
 Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you
 use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- 5. Smoke, Flame

Note: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with Cypress sales representatives.

Notes on using external clock

When using the external clock, as a general rule you should simultaneously supply X0 and X1 pins. And also, the clock signal to X0 should be supplied a clock signal with the reverse phase to X1 pins. However, in this case the stop mode (oscillation stop mode) must not be used.



Notes on operating in PLL clock mode

If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

9.4 Registers

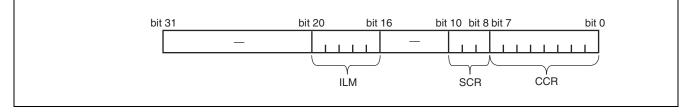
9.4.1 General-purpose Register

Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Enhanced commands are provided for some of the 16 registers to enable their use for particular applications.

R13 : Virtual accumulator

R14 : Frame pointer


R15 : Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 0000000_H (SSP value).

9.4.2 PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.

All undefined bits (-) in the diagram are reserved bits. The values are always read "0". Write access to these bits is invalid.

10. Mode Setting

In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating mode.

10.1 Mode Pins

The three pins MD2, MD1, MD0 are used to specify the mode vector fetch.

Settings other than shown in the table are prohibited.

Мо	Mode Pins ^[1]		Mode Name	Reset Vector	Remarks	
MD2	MD1	MD0	mode Name	Access Area	Keinarks	
0	0	0	Internal ROM mode vector	Internal		
0	0	1	External ROM mode vector	External	Not allowed	

1. Always use MD3 with "0".

10.2 Mode Register (MODR)

The data written to the mode register using mode vector fetch is called mode data.

After the mode register (MODR) is set, the device operates according to the operation mode set in this register.

The mode register is set by all reset sources. User programs cannot write data to the mode register.

Rewriting is allowed in the emulator mode. In this case, use an 8-bit length data transfer instruction.

Data cannot be written by the transfer instruction of the 16/32-bit length.

Be sure to set these bits to " 00000111_B ".

Operation is not guaranteed when any value other than " 00000111_B " is set.

Note: The mode data needs to be allocated in $000FFFF8_H$ as byte data. The mode data (00000111_B) must be allocated in bit 31 to bit 24, as the FR family uses the big endian architecture.

11. Recommended Setting

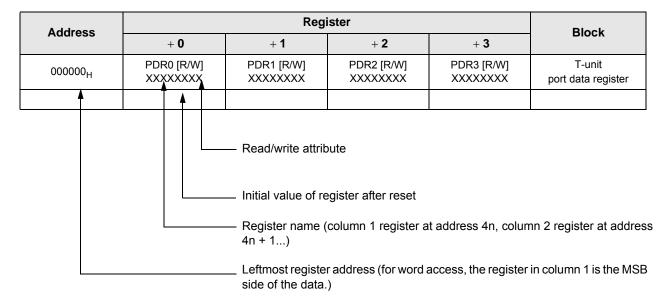
11.1 Setting of PLL and Clock Gear

Clock Input	PLL Multiplied Setting		Clock Gea	r Setting	PLL (vco) Output (X)	Base Clock
[MHz]	DIVM	DIVN	DIVG	MULG	[MHz]	[MHz]
4	2	20	16	20	160	80
4	2	19	16	20	152	76
4	2	18	16	20	144	72
4	2	17	16	16	136	68
4	2	16	16	16	128	64
4	2	15	16	16	120	60
4	2	14	16	16	112	56
4	2	13	16	12	104	52
4	2	12	16	12	96	48
4	2	11	16	12	88	44
4	4	10	16	24	160	40
4	4	9	16	24	144	36
4	4	8	16	24	128	32
4	4	7	16	24	112	28
4	6	6	16	24	144	24
4	8	5	16	28	160	20
4	10	4	16	32	160	16
4	12	3	16	32	144	12

11.2 Setting of Flash Memory Controller

11.2.1 Setting of Flash Access Timing

For executing programs with a Flash memory, follow the settings below according to the frequency of CPU clock (CLKB). This setting is the most suitable for a high-speed access to the Flash memory.


Table 2. Flash Memory Read Operating

CPU Clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC
To 24 MHz	0	0	0	0	1
To 48 MHz	0	0	1	0	2
To 80 MHz	1	1	3	0	4

Table 3. Flash Memory Write Operating

CPU Clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC
To 32 MHz	1	0	1	0	4
To 48 MHz	1	0	3	0	5
To 64 MHz	1	1	3	0	6
To 80 MHz	1	1	3	0	7

13. I/O Map

Note: Initial values of register bits are represented as follows:

- "1 ": Initial value "1 "
- " 0 ": Initial value " 0 "
- " X ": Initial value " undefined "
- " ": No physical register at this location

Access is prohibited to areas where the data access attributes are undefined.

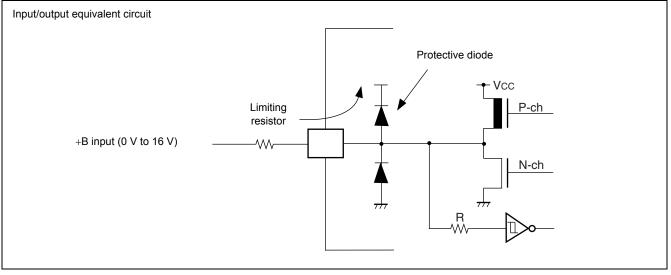
Address		Pleak				
Address –	+0	+1	+2	+3	Block	
000060 _H to 00007C _H		Rese	erved		Reserved	
000080 _H	BGR100 [R/W] 00000000	BGR000 [R/W] 00000000	BGR101 [R/W] 00000000	BGR001 [R/W] 00000000		
000084 _H	BGR102 [R/W] 00000000	BGR002 [R/W] 00000000	BGR103 [R/W] 00000000	BGR003 [R/W] 00000000	Baud rate Generator LIN-USART0 to 3	
000088 _H , 00008C _H		Rese	erved			
000090 _H to 0000FC _H		Rese	erved		Reserved	
000100 _H	GCN10 00110010		Reserved	GCN20 [R/W] 0000	PPG Control 0 to 3	
000104 _H	GCN11 00110010		Reserved	GCN21 [R/W] 0000	PPG Control 4 to 7	
000108 _H		Rese	erved		Reserved	
000110 _H	PTMR 11111111	• •		00 [W] XXXXXXXX		
000114 _H	PDUT XXXXXXXX		PCNH00 [R/W] 0000000 -	PCNL00 [R/W] 000000 - 0	- PPG 0	
000118 _H	PTMR01 [R] PCSR01 [W] 11111111 1111111 XXXXXXXX XXXXXXX					
00011C _H	PDUT01 [W] XXXXXXXX XXXXXXX		PCNH01 [R/W] 0000000 -	PCNL01 [R/W] 000000 - 0	- PPG 1	
000120 _H	PTMR 11111111		PCSR XXXXXXXX			
000124 _H	PDUT XXXXXXXX		PCNH02 [R/W] 0000000 -	PCNL02 [R/W] 000000 - 0	- PPG 2	
000128 _H	PTMR 11111111			03 [W] XXXXXXXX		
00012C _H	PDUT XXXXXXXX	03 [W] XXXXXXXX	PCNH03 [R/W] 0000000 -	PCNL03 [R/W] 000000 - 0	- PPG 3	
000130 _H	PTMR 11111111			04 [W] XXXXXXXX	- PPG 4	
000134 _H	PDUT XXXXXXXX		PCNH04 [R/W] 0000000 -	PCNL04 [R/W] 000000 - 0	- PPG 4	
000138 _H	PTMR 11111111			05 [W] XXXXXXXX	DD0 5	
00013C _H	PDUT XXXXXXXX	05 [W] XXXXXXXX	PCNH05 [R/W] 0000000 -	PCNL05 [R/W] 000000 - 0	- PPG 5	
000140 _H	PTMR06 [R] 11111111 1111111			06 [W] XXXXXXXX	DDO 0	
000144 _H	PDUT XXXXXXXX	06 [W] XXXXXXXX	PCNH06 [R/W] 0000000 -	PCNL06 [R/W] 000000 - 0	PPG 6	
000148 _H	PTMR 11111111			07 [W] XXXXXXXX	000 7	
00014C _H	PDUT XXXXXXXX		PCNH07 [R/W] 0000000 -	PCNL07 [R/W] 000000 - 0	- PPG 7	

Address		Block			
Address –	+0	+1	+2	+3	BIOCK
000150 _H to 00017C _H		Rese	erved		Reserved
000180 _H	Reserved	ICS01 [R/W] 00000000	Reserved	ICS23 [R/W] 00000000	
000184 _H	IPCP XXXXXXXX			1 [R] XXXXXXXX	Input Capture 0 to 3
000188 _H	IPCP2 [R] XXXXXXXX XXXXXXX			'3 [R] XXXXXXXX	
00018C _H	OCS07 0 00	[R/W] 0000 00		3 [R/W] 0000 00	
000190 _H) [R/W] XXXXXXXX		1 [R/W] XXXXXXXX	Output Compare 0 to 3
000194 _H	OCCP2 XXXXXXXX			3 [R/W] XXXXXXXX	
000198 _H , 00019C _H		Rese	erved		Reserved
0001A0 _H		Reserved ADERL [R/W] 00000000			
0001A4 _H	ADCS1 [R/W] 00000000	ADCS0 [R/W] 00000000	ADCR1 [R] 000000XX	ADCR0 [R] XXXXXXXX	A/D Converter
0001A8 _H	ADCT1 [R/W] 00010000	ADCT0 [R/W] 00101100	ADSCH [R/W] 00000	ADECH [R/W] 00000	
0001AC _H		Rese	erved		Reserved
0001B0 _H	TMRLF XXXXXXXX			0 [R] XXXXXXXX	Dalaad Timor 0
0001B4 _H	Rese	erved	TMCSRH0 [R/W] 00000	TMCSRL0 [R/W] 0 - 000000	- Reload Timer 0 (PPG0, PPG1)
0001B8 _H	TMRLF XXXXXXXX	R1 [W] XXXXXXXX		1 [R] XXXXXXXX	- Reload Timer 1
0001BC _H	Rese	erved	TMCSRH1 [R/W] 00000	TMCSRL1 [R/W] 0 - 000000	(PPG2, PPG3)
0001C0 _H		2 [W] XXXXXXXX		2 [R] XXXXXXXX	Dalaad Timor O
0001C4 _H	Rese	erved	TMCSRH2 [R/W] 00000	TMCSRL2 [R/W] 0 - 000000	Reload Timer 2 (PPG4, PPG5)
0001C8 _H	TMRLF XXXXXXXX	R3 [W] XXXXXXXX		3 [R] XXXXXXXX	Delas IT
0001CC _H	Rese	erved	TMCSRH3 [R/W] 00000	TMCSRL3 [R/W] 0 - 000000	- Reload Timer 3 (PPG6, PPG7)
0001D0 _H to 0001E7 _H		Rese	erved		Reserved

A . .		Black					
Address	+0	+1	+2	+3	Block		
0001E8 _H	TMRLF XXXXXXXX			7 [R] XXXXXXXX	- Reload Timer 7		
0001EC _H	Rese	rved	TMCSRL7 [R/W] 0 - 000000	(A/D converter)			
0001F0 _H		TCDT0 [R/W]ReservedTCCS0 [R/W]XXXXXXXX XXXXXXX00000000					
0001F4 _H		TCDT1 [R/W] Reserved TCCS1 [R/W] XXXXXXXX XXXXXXXX 00000000					
0001F8 _H	TCDT2 [R/W]ReservedTCCS2 [R/W]XXXXXXXX XXXXXXXX00000000				Free-run Timer 2 (OCU0, OCU1)		
0001FC _H	TCDT3 XXXXXXXX		Reserved	TCCS3 [R/W] 00000000	Free-run Timer 3 (OCU2, OCU3)		
000200 _H		DMACA0 00000000 0000XXXX X	[R/W] * XXXXXXXX XXXXXXXX				
000204 _H) [R/W] XXXXXXX XXXXXXXX				
000208 _H		DMACA1 00000000 0000XXXX X					
00020C _H		DMACB ² 00000000 00000000 X	I [R/W] XXXXXXX XXXXXXXX				
000210 _H		DMACA2 00000000 0000XXXX X					
000214 _H			2 [R/W] XXXXXXX XXXXXXXX				
000218 _H		DMACA3 00000000 0000XXXX X	[R/W] * XXXXXXXX XXXXXXXX		DMAC		
00021C _H			3 [R/W] XXXXXXX XXXXXXXX				
000220 _H		DMACA4 00000000 0000XXXX X	[R/W] * XXXXXXXX XXXXXXXX				
000224 _H			i [R/W] XXXXXXX XXXXXXXX				
000228 _H to 00023C _H	Reserved						
000240 _H	DMACR [R/W] 0 0000		Reserved		-		
000244 _H to 0002FC _H		Reserved					
000300 _H	UDRC1 [W] 00000000	UDRC0 [W] 00000000	UDCR1 [R] 00000000	UDCR0 [R] 00000000			
000304 _H	UDCCH0 [R/W] 00000000	UDCCL0 [R/W] 00001000	Reserved	UDCS0 [R/W] 00000000	Up/Down Counter 0, 1		
000308 _H	UDCCH1 [R/W] 00000000	UDCCL1 [R/W] 00001000	Reserved	UDCS1 [R/W] 00000000			

Address –	+0	+1	+2	+3	Block
000D40 _H to 000D48 _H					
000D4C _H	Rese				
000D50 _H	Reserved DDR17 [R/W] Reserved				R-bus Port Direction
000D54 _H	DDR20 [R/W] -000- 000	DDR21 [R/W] -000- 000	DDR22 [R/W] 0000	Reserved	Register
000D58 _H	DDR24 [R/W] 00000000		Reserved		
000D5C _H	Reserved	DDR29 [R/W] 00000000	Rese	erved	
000D60 _H		Rese	rved		
000D64 _H to 000D7C _H		Rese	rved		Reserved
000D80 _H to 000D88 _H	Reserved				
000D8C _H	Rese	erved	PFR14 [R/W] 0000	PFR15 [R/W] 0000	
000D90 _H	Reserved	PFR17 [R/W] 00000000	Rese	erved	R-bus Port Function
000D94 _H	PFR20 [R/W] -000- 000	PFR21 [R/W] -000- 000	PFR22 [R/W] 0000	Reserved	Register
000D98 _H	PFR24 [R/W] 00000000		Reserved		
000D9C _H	Reserved	PFR29 [R/W] 00000000	Rese	erved	
000DA0 _H		Rese	rved		
000DA4 _H to 000DBC _H		Rese	rved		Reserved
000DC0 _H to 000DC8 _H		R-bus Extension Port			
000DCC _H	Rese	erved	EPFR14 [R/W] 0000	EPFR15 [R/W] 0000	Function Register
000DD0 _H					
000DD4 _H	EPFR20 [R/W] - 000- 000	R-bus Extension Port			
000DD8 _H	Reserved				Function Register
000DDC _H	Reserved				
000DE0 _H		Rese	rved		
000DE4 _H to 000DFC _H		Rese	rved		Reserved

Address	Register					
Audress	+0	+1	+2	+3	Block	
001000 _H						
001004 _H		DMADA XXXXXXXX XXXXXXXX				
001008 _H		DMASA XXXXXXXX XXXXXXXX				
00100C _H		DMADA XXXXXXXX XXXXXXXX				
001010 _H		DMASA XXXXXXXX XXXXXXXX			DMAC	
001014 _H		DMADA XXXXXXXX XXXXXXXX			DIVIAG	
001018 _H		DMASA XXXXXXXX XXXXXXXX				
00101C _H		DMADA XXXXXXXX XXXXXXXX				
001020 _H		DMASA XXXXXXXX XXXXXXXX				
001024 _H		DMADA XXXXXXXX XXXXXXXX				
001028 _H to 006FFC _H		Reserved				
007000 _H	FMCS [R/W] 01101000	FMCR [R/W] 0000	FCHCF 00			
007004 _H	FMWT 11111111		FMWT2 [R/W] - 101	FMPS [R/W] 000	Flash Memory/ I-Cache Control Register	
007008 _H		FMA 00000	C [R] 00000000 00000000			
00700C _H		FCHA0) [R/W] 00000000 00000000		I-Cache Non-cacheable area	
007010 _H		setting Register				
007014 _H to		Reserved				
00AFFC _H						
00B000 _H to 00BFFC _H		BI-ROM size is 4 Kbytes	: 00B000 _H to 00BFFF _H		BI-ROM 4 Kbytes	
00C000 _H to 00C3FC _H		Rese	rved		Reserved	


14. Interrupt Source Table

	Interrupt number		Interrupt level		Interrupt vector		Resource
Interrupt source	Decimal	Hexa- decimal	Setting register	Register address	Offset	Default vector address	number ^[1]
Reset	0	00	-	-	3FC _H	000FFFFC _H	-
Mode vector	1	01	-	-	3F8 _H	000FFFF8 _H	-
System reserved	2	02	-	-	3F4 _H	000FFFF4 _H	-
System reserved	3	03	-	-	3F0 _H	000FFFF0 _H	-
System reserved	4	04	-	-	3EC _H	000FFFEC _H	-
CPU supervisor mode (INT #5 instruction) ^[2]	5	05	-	-	3E8 _H	000FFFE8 _H	-
Memory protection exception ^[2]	6	06	-	-	3E4 _H	000FFFE4 _H	-
System reserved	7	07	-	-	3E0 _H	000FFFE0 _H	-
System reserved	8	08	-	-	3DC _H	000FFFDC _H	-
System reserved	9	09	-	-	3D8 _H	000FFFD8 _H	-
System reserved	10	0A	-	-	3D4 _H	000FFFD4 _H	-
System reserved	11	0B	-	-	3D0 _H	000FFFD0 _H	-
System reserved	12	0C	-	-	3CC _H	000FFFCC _H	-
System reserved	13	0D	-	-	3C8 _H	000FFFC8 _H	-
Undefined instruction exception	14	0E	-	-	3C4 _H	000FFFC4 _H	-
NMI request	15	0F	F _H 1	fixed	3C0 _H	000FFFC0 _H	-
External interrupt 0	16	10	10000	440	3BC _H	000FFFBC _H	0, 16
External interrupt 1	17	11	ICR00	440 _H	3B8 _H	000FFFB8 _H	1, 17
External interrupt 2	18	12	10004		3B4 _H	000FFFB4 _H	2, 18
External interrupt 3	19	13	ICR01	441 _H	3B0 _H	000FFFB0 _H	3, 19
External interrupt 4	20	14	10000	440	3AC _H	000FFFAC _H	20
External interrupt 5	21	15	ICR02	442 _H	3A8 _H	000FFFA8 _H	21
External interrupt 6	22	16	10000	440	3A4 _H	000FFFA4 _H	22
External interrupt 7	23	17	ICR03	443 _H	3A0 _H	000FFFA0 _H	23
System reserved	24	18	10504		39C _H	000FFF9C _H	-
System reserved	25	19	ICR04	444 _H	398 _H	000FFF98 _H	-
System reserved	26	1A	10005		394 _H	000FFF94 _H	-
System reserved	27	1B	ICR05	445 _H	390 _H	000FFF90 _H	-
External interrupt 12	28	1C	10500		38C _H	000FFF8C _H	-
External interrupt 13	29	1D	ICR06	446 _H	388 _H	000FFF88 _H	-
System reserved	30	1E	1000		384 _H	000FFF84 _H	-
System reserved	31	1F	ICR07	447 _H	380 _H	000FFF80 _H	-
Reload timer 0	32	20	10500		37C _H	000FFF7C _H	4, 32
Reload timer 1	33	21	ICR08	448 _H	378 _H	000FFF78 _H	5, 33
Reload timer 2	34	22	105		374 _H	000FFF74 _H	34
Reload timer 3	35	23	ICR09	449 _H	370 _H	000FFF70 _H	35
System reserved	36	24			36C _H	000FFF6C _H	36
System reserved	37	25	ICR10	44A _H	368 _H	000FFF68 _H	37

4.

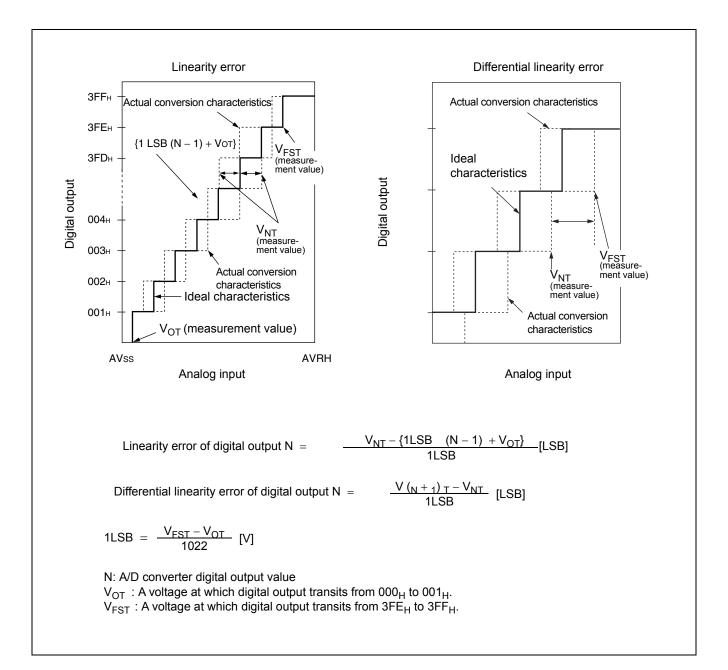
- Corresponding pins: Pin name P29_0 to P29_7, P24_0 to P24_7, P22_0 to P22_3, P20_0 to P20_2, P20_4 to P20_6, P15_0 to P15_3, P17_0 to P17_7, P21_0 to P21_2, P21_4 to P21_6, P14_0 to P14_3
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The + B signal is an input signal exceeding V_{CC} voltage. The + B signal should always be applied by connecting a limiting resistor between the + B signal and the microcontroller.
- The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the + B signal is input.
- Note that when the microcontroller drive current is low, such as in the low power consumption modes, the + B input potential can increase the potential at the VCC pin via a protective diode, possibly affecting other devices.
- Note that if the + B signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
- Note that if the + B signal is input at power-on, since the power is supplied through the pin, the power supply voltage may become the voltage at which a power-on reset does not work.
- Do not leave + B input pins open.
- "Note that analog input/output pins can input the + B signal only at using as a port.
- 5. Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- 6. Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
- 7. Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

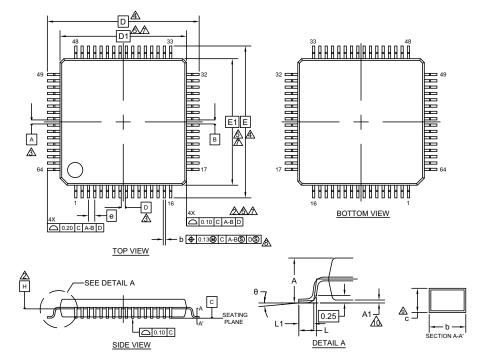
15.3 DC Characteristics

 $(V_{CC}=3.0 \text{ V to } 3.6 \text{ V}/ 4.5 \text{ V to } 5.5 \text{ V}, \text{ } V_{SS}=\text{AV}_{SS}=0 \text{ V}, \text{ } T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C}/-40^{\circ}\text{C to } +85^{\circ}\text{C})$

Paramotor	Symbol	Din Nome	Condition	Value			Unit	Remarks
Parameter	Symbol	Pin Name	Condition	Min	Min Typ Max			
"H" level input voltage	V _{IHS}	Port pin	When CMOS hysteresis input type1 are selected	$0.7 imes V_{CC}$	-	V _{CC} + 0.3	V	
	V _{IHC}	Port pin	When CMOS hysteresis input type2 are selected	$0.8 imes V_{CC}$	-	V _{CC} + 0.3	V	
	V _{IHA}	Port pin	When Automotive inputs are selected	$0.8 imes V_{CC}$	-	V _{CC} + 0.3	V	
	V _{IHT}	Port pin	When TTL input levels are selected	2.0	-	V _{CC} + 0.3	V	
	V _{IH1}	MD2 to MD0	CMOS level input	$0.7 imes V_{CC}$	-	V _{CC} + 0.3	V	
	V _{IH2}	MD3, INITX	CMOS hysteresis input	$0.7 imes V_{CC}$	-	V _{CC} + 0.3	V	
"L" level V _{II} input voltage V _{II}	V _{ILS}	Port pin	When CMOS hysteresis input type1 are selected	V _{SS} - 0.3	-	$0.3 imes V_{CC}$	V	
	V _{ILC}	Port pin	When CMOS hysteresis input type2 are selected	V _{SS} - 0.3	-	$0.2 \times V_{CC}$	V	
	V _{ILA}	Port pin	When Automotive inputs are selected	V _{SS} - 0.3	-	$0.5 imes V_{CC}$	V	
	V _{ILT}	Port pin	When TTL input levels are selected	V _{SS} - 0.3	-	0.8	V	
	V _{IL1}	MD2 to MD0	CMOS level input	V _{SS} – 0.3	-	$0.3 \times V_{CC}$	V	
	V _{IL2}	MD3, INITX	CMOS hysteresis input	V _{SS} - 0.3	-	$0.3 imes V_{CC}$	V	
"H" level output voltage	V _{OH1}	Port pin	$V_{CC} = 5.0 V,$ $I_{OH} = -2.0 mA/$ $V_{CC} = 3.3 V,$ $I_{OH} = -1.0 mA$	V _{CC} – 0.5	-	-	V	[1]
	V _{OH2}	I ² C common port pin	$V_{CC} = 5.0 V,$ $I_{OH} = -3.0 mA/$ $V_{CC} = 3.3 V,$ $I_{OH} = -3.0 mA$	V _{CC} – 0.5	-	-	V	
	V _{OH3}	Port pin	$V_{CC} = 5.0 V,$ $I_{OH} = -5.0 mA/$ $V_{CC} = 3.3 V,$ $I_{OH} = -3.0 mA$	V _{CC} – 0.5	-	-	V	[1]


15.5 Electrical Characteristics for A/D Converter

 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}/ 4.5 \text{ V to } 5.5 \text{ V}, V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 105 \text{ }^{\circ}\text{C}/-40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$


Parameter	Symbol	Pin Name	Value				
Parameter			Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error ^[1]	-	-	-	-	± 3	LSB	
Linearity error ^[1]	-	-	_	-	± 2.5	LSB	
Differential linearity error ^[1]	-	-	-	-	± 1.9	LSB	
Zero transition voltage ^[1]	V _{OT}	AN0 to AN7	AV _{SS} -1.5 LSB	AV _{SS} -0.5 LSB	AV _{SS} -2.5 LSB	V	
Full scale transition voltage ^[1]	V _{FST}	AN0 to AN7	AVRH-3.5 LSB	AVRH-1.5 LSB	AVRH-0.5 LSB	V	
Conversion time	-	_	1 ^[2]	_	_	μS	Using at 5 V
			3 [2]	_	_	μS	Using at 3.3 V
Analog port input current	I _{AIN}	AN0 to AN7	-	_	10	μA	
Analog input voltage	V _{AIN}	AN0 to AN7	AV _{SS}	_	AVRH	V	
Reference voltage	-	AVRH	AV _{SS}	_	AV _{CC}	V	
Analog power supply current (analog + digital)	Ι _Α	AVCC	_	2.4	4.7	mA	Including reference supply
Reference voltage supply current	I _R	AVRH	_	0.65	1.0	mA	
Analog input equivalent capacitance	Cin	AN0 to AN7	_	-	8.5	pF	
Analog input equivalent resistance	Rin	Rin AN0 to AN7	_	_	2.6	kΩ	AVcc ? 4.5 V
			_	_	12.1	kΩ	AVcc ? 3.0 V
Output impedance of analog signal source	Rext	-	_	_	4.2	kΩ	

1. Measured in the CPU sleep state

2. Set no shorter than this time period in the peripheral clock and conversion setting register

17. Package Dimension

SYMBOL	DIMENSION				
STIVIBOL	MIN.	NOM.	MAX.		
A		—	1.70		
A1	0.00		0.20		
b	0.27	0.32	0.37		
С	0.09		0.20		
D	14.00 BSC				
D1	12.00 BSC				
е	0.65 BSC		с 🔰		
E	14.00 BSC		С		
E1	12.00 BSC				
L	0.45	0.60	0.75		
L1	0.30	0.50	0.70		
θ	0°		8°		

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ▲ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- \triangle TO BE DETERMINED AT SEATING PLANE C.
- ▲ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ▲ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- ☆ REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ▲ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13881 **

PACKAGE OUTLINE, 64 LEAD LQFP 12.0X12.0X1.7 MM LQG064 REV**

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

© Cypress Semiconductor Corporation, 2007-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries that one to the property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any ibaility arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.