E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	RKE, Security Systems
Core Processor	PIC
Program Memory Type	FLASH (1.75kB)
Controller Series	rfPIC ™
RAM Size	64 x 8
Interface	-
Number of I/O	6
Voltage - Supply	2V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/rfpic12f675ft-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the rfPIC12F675. Additional information may be found in the *PICmicroTM Mid-Range Reference Manual* (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this Data Sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

The rfPIC12F675 comes in a 20-pin SSOP package. Figure 1-1 shows a block diagram of the rfPIC12F675 device. Table 1-1 shows the pinout description.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

The rfPIC12F675 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the rfPIC12F675 devices is physically implemented. Accessing a location above these boundaries will cause a wrap around within the first 1K x 14 space. The RESET vector is at 0000h and the interrupt vector is at 0004h (see Figure 2-1).

2.2 Data Memory Organization

The data memory (see Figure 2-2) is partitioned into two banks, which contain the General Purpose registers and the Special Function registers. The Special Function registers are located in the first 32 locations of each bank. Register locations 20h-5Fh are General Purpose registers, implemented as static RAM and are mapped across both banks. All other RAM is unimplemented and returns '0' when read. RP0 (STATUS<5>) is the bank select bit.

- RP0 = 0 Bank 0 is selected
- RP0 = 1 Bank 1 is selected

Note:	The IRP and RP1 bits STATUS<7:6> are
	reserved and should always be maintained
	as '0's.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 64×8 in the rfPIC12F675 devices. Each register is accessed, either directly or indirectly, through the File Select Register FSR (see Section 2.4).

IADLL	Z-1. JFL				LK3 30						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	ta Memory			0000 0000	16,63
81h	OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	10,26
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	15
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	9
84h	FSR	Indirect Dat	a Memory Ac	dress Pointe	er					xxxx xxxx	16
85h	TRISIO	_	—	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	17
86h	_	Unimpleme	nted							—	_
87h	_	Unimpleme	nted							_	_
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							—	—
8Ah	PCLATH	_	_	—	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	15
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	11
8Ch	PIE1	EEIE	ADIE	_	—	CMIE	—	_	TMR1IE	0000	12
8Dh	—	Unimpleme	nted							_	—
8Eh	PCON	—	—	—	—	—	—	POR	BOD	0x	14
8Fh		Unimpleme	nted							—	—
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	-	—	1000 00	14
91h	_	Unimpleme	Jnimplemented							—	_
92h	_	Unimpleme	Unimplemented							—	_
93h	_	Unimpleme	nted							—	_
94h	_	Unimpleme	nted							—	—
95h	WPU		—	WPU5	WPU4	—	WPU2	WPU1	WPU0	11 -111	18
96h	IOC	_	-	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	19
97h		Unimpleme	nted							_	—
98h	_	Unimpleme	Unimplemented				_	—			
99h	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	38
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	45
9Bh	EEADR	—	Data EEPR	OM Address	Register					-000 0000	45
9Ch	EECON1	—	—	-	—	WRERR	WREN	WR	RD	x000	46
9Dh	EECON2 ⁽¹⁾	EEPROM C	Control Regist	er 2							46
9Eh	ADRESL	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		xxxx xxxx	40
9Fh	ANSEL	—	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	42,63

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

2.2.2.6 PCON Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Detect (BOD)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON Register bits are shown in Register 2-6.

REGISTER 2-6: PCON — POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
_	—	—	—	_	_	POR	BOD
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR:** Power-on Reset STATUS bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 **BOD:** Brown-out Detect STATUS bit

- 1 = No Brown-out Detect occurred
- 0 = A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.7 OSCCAL Register

bit 7-2

bit 1-0

The Oscillator Calibration register (OSCCAL) is used to calibrate the internal 4 MHz oscillator. It contains 6 bits to adjust the frequency up or down to achieve 4 MHz.

The OSCCAL register bits are shown in Register 2-7.

REGISTER 2-7: OSCCAL — OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_
bit 7							bit 0
111111 = N 100000 = 0 000000 = N	Maximum fre Center frequ Minimum fre	equency lency equency					
Unimpleme	ented: Read	d as '0'					
Legend:							
R = Readal	ole bit	W = W	ritable bit	U = Unin	nplemented	bit, read as '	ʻ0'
- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown

3.0 GPIO PORT

There are as many as six general purpose I/O pins available. Depending on which peripherals are enabled, some or all of the pins may not be available as general purpose I/O. In general, when a peripheral is enabled, the associated pin may not be used as a general purpose I/O pin.

Note:	Additional information on I/O ports may be
	found in the PIC Mid-Range Reference
	Manual (DS33023)

3.1 GPIO and the TRISIO Registers

GPIO is an 6-bit wide, bi-directional port. The corresponding data direction register is TRISIO. Setting a TRISIO bit (= 1) will make the corresponding GPIO pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISIO bit (= 0) will make the corresponding GPIO pin an output (i.e., put the contents of the output latch on the selected pin). The exception is GP3, which is input only and its TRISIO bit will always read as '1'. Example 3-1 shows how to initialize GPIO.

Reading the GPIO register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch. GP3 reads '0' when MCLREN = 1.

The TRISIO register controls the direction of the GP pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISIO

register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note:	The ANSEL (9Fh) and CMCON (19h)
	registers (9Fh) must be initialized to
	configure an analog channel as a digital
	input. Pins configured as analog inputs will
	read '0'.

EXAMPLE 3-1: INITIALIZING GPIO

bcf	STATUS, RPO	;Bank 0
clrf	GPIO	;Init GPIO
movlw	07h	;Set GP<2:0> to
movwf	CMCON	;digital IO
bsf	STATUS, RPO	;Bank 1
clrf	ANSEL	;Digital I/O
movlw	0Ch	;Set GP<3:2> as inputs
movwf	TRISIO	;and set GP<5:4,1:0>
		;as outputs

3.2 Additional Pin Functions

Every GPIO pin on the rfPIC12F675 has an interrupton-change option and every GPIO pin, except GP3, has a weak pull-up option. The next two sections describe these functions.

3.2.1 WEAK PULL-UP

Each of the GPIO pins, except GP3, has an individually configurable weak internal pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 3-3. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the GPPU bit (OPTION<7>).

REGISTER 3-1: GPIO — GPIO REGISTER (ADDRESS: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0
bit 7	-		•				bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: **GPIO<5:0>**: General Purpose I/O pin.

1 = Port pin is >VIH 0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3.3 GP2/AN2/T0CKI/INT/COUT

Figure 3-2 shows the diagram for this pin. The GP2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D
- the clock input for TMR0
- an external edge triggered interrupt
- a digital output from the comparator

FIGURE 3-2: **BLOCK DIAGRAM OF GP2** Analog Input Mode Data Bus Q D Vdd WR CK Q Weak WPU GPPU RD WPU Analog COUT Input Mode Enable Vdd D Q \downarrow WR СК Q PORT COUT 1 \mathbb{X} 0 I/O pin ↓ Vss Q D WR СК Q TRISI Analog Input Mode Ŷ. RD TRISI ð RD PORT Q D Q D WR CK Q IOC EN• RD IOC D Q ΕN Interrupt-on-Change RD PORT To TMR0 To INT To A/D Converter

3.3.4 GP3/MCLR/VPP

Figure 3-3 shows the diagram for this pin. The GP3 pin is configurable to function as one of the following:

- a general purpose input
- as Master Clear Reset

FIGURE 3-3: BLOCK DIAGRAM OF GP3

7.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 7-3. The maximum recommended impedance for analog sources is 10 k\Omega. As the impedance

EQUATION 7-1: ACQUISITION TIME

is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 7-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the *PIC Mid-Range Reference Manual* (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
Тс	= TAMP + TC + TCOFF = $2\mu s$ + TC + [(Temperature -25°C)(0.05 μs /°C)] = CHOLD (RIC + RSS + RS) In(1/2047) = -120pF (1k Ω + 7k Ω + 10k Ω) In(0.0004885)
TACQ	= $16.47\mu s$ = $2\mu s + 16.47\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$ = $19.72\mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper four bits are nonimplemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

- n = V

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following RESET, the user can check the WRERR bit, clear it, and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be reinitialized.

Interrupt flag bit EEIF in the PIR1 register is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

REGISTER 8-3: EECON1 — EEPROM CONTROL REGISTER (ADDRESS: 9Ch)

					•		,			
	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0		
	—	—	—	—	WRERR	WREN	WR	RD		
	bit 7							bit 0		
bit 7-4	Unimplem	ented: Rea	d as '0'							
bit 3	WRERR: E	EPROM Er	ror Flag bit							
	1 =A write normal 0 =The wri	operation is operation of te operation	prematurel r BOD detection completed	y terminated t)	I (any MCLR	Reset, any	WDT Reset	t during		
bit 2	WREN: EE	PROM Writ	e Enable bit							
	1 = Allows 0 = Inhibits	write cycles	data FFPR	ОМ						
bit 1	WR: Write	Control bit								
	1 = Initiates can onl 0 = Write c	s a write cyc y be set, no ycle to the d	le (The bit is t cleared, in ata EEPRO	s cleared by software.) M is comple	hardware o	nce write is	complete. Ti	he WR bit		
bit 0	RD: Read	Control bit								
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.)									
	0 = Does n	0 = Does not initiate an EEPROM read								
	Legend:									
	S = Bit can	only be set								
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'		

		1	,
alue at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other RESETS
0Bh, 8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	00 00
8Ch	PIE1	EEIE	ADIE			CMIE	_	_	TMR1IE	00 00	00 00

TABLE 10-8:SUMMARY OF INTERRUPT REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the Interrupt module.

10.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (e.g., W register and STATUS register). This must be implemented in software.

Example 10-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 10-2:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 10-2: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, could be in either bank
SWAPF BCF	STATUS,W STATUS,RPO	;swap status to be saved into W ;change to bank 0 regardless of current bank
MOVWF :	STATUS_TEMP	;save status to bank 0 register
:(ISR)	
: SWAPF	STATUS_TEMP,	W;swap STATUS_TEMP register into W, sets bank to original state
MOVWF	STATUS	;move W into STATUS register
SWAPF SWAPF	W_TEMP,F W_TEMP,W	;swap W_TEMP ;swap W_TEMP into W

10.6 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which requires no external components. This RC oscillator is separate from the external RC oscillator of the CLKIN pin and INTOSC. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped (for example, by execution of a SLEEP instruction). During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 10.1).

10.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

10.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

TABLE 10-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other RESETS
81h	OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
2007h	Config. bits	CP	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0	uuuu uuuu	uuuu uuuu

Legend: u = Unchanged, shaded cells are not used by the Watchdog Timer.

10.7 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 7 bits of the ID locations are used.

10.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	The entire data EEPROM and FLASH
	program memory will be erased when the
	code protection is turned off. The INTOSC
	calibration data is also erased. See
	rfPIC12F675 Programming Specification
	for more information.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0				
Syntax:	[label] INCFSZ f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.				
	tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.				

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$				
Status Affected:	None				

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W					
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$					
Status Affected:	None					
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					

13.5 DC Characteristics: rfPIC12F675-E (Extended)

		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param	Dovice Characteristics	Min	Tunt	Мох	Unito		Conditions
No.	Device Characteristics	IVITT	турт	IVIAX	Units	Vdd	Note
D020E	Power-down Current	—	0.0011	3.5	μA	2.0	WDT, BOD, Comparators, VREF, and
	(IPD) ⁽³⁾	—	0.0012	4.0	μA	3.0	T1OSC disabled
		—	0.0022	8.0	μA	5.0	
D021E		-	0.3	6.0	μA	2.0	WDT Current ⁽¹⁾
		_	1.8	9.0	μA	3.0	
		—	8.4	20	μA	5.0	
D022E		-	58	70	μA	3.0	BOD Current ⁽¹⁾
		—	109	130	μA	5.0	
D023E			3.3	10	μA	2.0	Comparator Current ⁽¹⁾
		—	6.1	13	μA	3.0	
		—	11.5	24	μA	5.0	
D024E			58	70	μA	2.0	CVREF Current ⁽¹⁾
		—	85	100	μA	3.0	
		—	138	165	μΑ	5.0	
D025E			4.0	10	μA	2.0	T1 Osc Current ⁽¹⁾
		_	4.6	12	μΑ	3.0	
		—	6.0	20	μA	5.0	
D026E		_	0.0012	6.0	μA	3.0	A/D Current ⁽¹⁾
		_	0.0022	8.5	μA	5.0	
D027E	Power-down RF Current (IPDRF) ⁽³⁾		0.050	TBD	μA	3.0	RF Transmitter, RFEN=VSSRF

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

- 2: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD.
- 3: Total device current is the sum of IPD from VDD and IPDRF from VDDRF.

13.12 AC CHARACTERISTICS: rfPIC12F675 (INDUSTRIAL, EXTENDED)

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		37	kHz	LP Osc mode
			DC	—	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	—	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	_	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	_	8	μS	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50		1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External CLKIN (OSC1) High	2*		_	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty
							cycle
			100 *	—	—	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
				_	15*	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

TABLE 13-11: rfPIC12F675K RF TRANSMITTER SPECIFICATIONS (315 MHz)

RF Transmitter Specifications		Standard TA = +23° VDDRF = 3 FC = 315	Standard Operating ConditionsTA = +23°C (unless otherwise stated)VDDRF = 3.0V (unless otherwise stated)Fc = 315 MHz (unless otherwise stated)					
Sym	Characteristics	Min	Тур	Max	Units	Comments		
Fc	VCO Frequency	290	_	350	MHz	32 x Frfxtal		
FXTAL	Crystal Frequency	9.06	—	10.94	MHz	Fundamental mode		
Fref	Reference Frequency	2.265	—	2.735	MHz	FRFXTAL / 4		
CL	Load Capacitance	10	—	15	pF			
Со	Static Capacitance	—	—	7	pF			
Rs	Series Resistance	—	—	70	Ω			
ASPUR	Spurious response	—	—	-10	dB	For FSK operation		
ΔF VDD	Frequency Stability vs VDDRF	—	—	±3	ppm			
ΔFTA	Frequency Stability vs Temp	—	—	±10	ppm	Crystal temp constant		
ΔF	FSK Deviation	±5	—	±80	kHz	Depends on crystal parameters		
RFSK	FSK Data Rate	—	—	40	Kbit/s	NRZ		
RASK	ASK Data Rate	—	—	40	Kbit/s	NRZ		
TON	RFEN High to Transmit	—	1.2	1.5	ms			
Poff	RF Output Power in Step 0	—	—	-70	dBm	RFEN=1		
P1	RF Output Power in Step 1	—	-12	—	dBm	RFEN=1		
P2	RF Output Power in Step 2	_	-4	—	dBm	RFEN=1		
Рз	RF Output Power in Step 3	—	2	—	dBm	RFEN=1		
P4	RF Output Power in Step 4	—	4	—	dBm	RFEN=1, VDDRF=2.0V		
		—	7.5	—	dBm	RFEN=1, VDDRF=3.0V		
		—	8.5	9.5	dBm	RFEN=1, VDDRF=4.0V		
		—	9.0	10.5	dBm	RFEN=1, VDDRF=5.0V		
L(FM)	Phase Noise	_	-86	—	dBc/Hz	200 kHz offset		
PSPUR	Spurious Emissions	_	—	-54	dBm	47 MHz < f < 74 MHz 87.5 MHz < f < 118 MHz 174 MHz < f < 230 MHz 470 MHz < f < 862 MHz RBW = 100 kHz		
		_	—	-36	dBm	f < 1 GHz RBW = 100 kHz		
		_	—	-30	dBm	f > 1 GHz RBW = 1 MHz		

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

NOTES:

INDEX

ļ	4	

A
A/D
Acquisition Requirements43
Block Diagram
Calculating Acquisition Time
Configuration and Operation 39
Effects of a RESET
Internal Sampling Switch (Rss) Impedance
Operation During SI EEP
DIC12E675 Converter Characteristics
FIG 12F075 CONVENENCIALACIENSILS
Source Impedance
Summary of Registers
Absolute Maximum Ratings
AC Characteristics
Industrial and Extended
Additional Pin Functions17
Interrupt-on-Change19
Weak Pull-up17
Analog Input Connection Considerations
Analog-to-Digital Converter. See A/D
Assembler
MPASM Assembler81
В
Block Diagram
TWR0/WDT Flescalet
Block Diagrams
Analog Input Mode
Analog Input Model 43
Comparator Output
Comparator Voltage Reference
GP0 and GP1 Pins20
GP221
GP321
GP422
GP522
On-Chip Reset Circuit59
RC Oscillator Mode
Timer1
Watchdog Timer69
Brown-out
Associated Registers 62
Brown-out Detect (BOD) 61
Brown-out Detect Timing and Characteristics 102
C Compilers
MPLAB C1782
MPLAB C18 82
MPLAB C30 82
Calibrated Internal RC Frequencies100
CLKOUT 58
Code Examples
Changing Prescaler27
Data EEPROM Read 47
Data EEPROM Write47
Initializing GPIO17
Saving STATUS and W Registers in RAM68
Write Verify

Operation	
Operation During SLEEP	
Output	
Reference	
Comparator Specifications 105 108 109 110 111	
Comparator Voltage Reference Specifications	
Configuration Bits	
Configuring the Voltage Reference	
Crystal Operation	
Crystal Oscillator 50	
D	
Data EEPROM Memory	
Associated Registers/Bits 48	
Code Protection 48	
EEADR Register 45	
EECON1 Register	
EECON2 Register 45	
EEDATA Register	
Data Memory Organization	
DC Characteristics	
Extended and moustnar	
Demonstration Boards	
PICDEM 1 84	
PICDEM 17. 84	
PICDEM 18R PIC18C601/801	
PICDEM 2 Plus	
PICDEM 3 PIC16C92X 84	
PICDEM 4 84	
PICDEM LIN PIC16C43X 85	
PICDEM USB PIC16C7X5 85	
PICDEM.net Internet/Ethernet	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 8 EEPROM Data Memory 47 Spurious Write 47 Write Verify 47 Write Verify 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F Firmware Instructions 73 G General Purpose Register File 5 GPIO Associated Registers 23	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 8 EEPROM Data Memory 47 Spurious Write 47 Write Verify. 47 Write Verify. 47 Electrical Specifications. 87 Errata 2 Evaluation and Programming Tools. 85 F Firmware Instructions. 73 G General Purpose Register File 5 GPIO Associated Registers. 23 GPIO Port 17	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 8 EEPROM Data Memory 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications. 87 Errata 2 Evaluation and Programming Tools. 85 F 73 G General Purpose Register File 5 GPIO Associated Registers. 23 GPIO Port 17 GPIO, TRISIO Registers. 17	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications. 87 Errata 2 Evaluation and Programming Tools. 85 F F Firmware Instructions 73 G General Purpose Register File 5 GPIO Associated Registers. 23 GPIO Port 17 GPIO, TRISIO Registers. 17	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Reading. 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications. 87 Errata 2 Evaluation and Programming Tools. 85 F F Firmware Instructions 73 G General Purpose Register File 5 GPIO Associated Registers. 23 GPIO Port. 17 17 ID Locations. 69	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port 17 17 GPIO, TRISIO Registers 17 I Locations 69 In-Circuit Debugger. 71	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port 17 17 GPIO, TRISIO Registers 17 ID Locations 69 In-Circuit Debugger. 71 In-Circuit Serial Programming. 71	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify 47 Writing 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port 17 17 GPIO, TRISIO Registers 17 17 ID Locations 69 n-Circuit Debugger 71 In-Circuit Serial Programming 71 16	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Reading. 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications. 87 Errata 2 Evaluation and Programming Tools. 85 F Firmware Instructions 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port. 17 17 GPIO, TRISIO Registers. 17 1 ID Locations. 69 9 n-Circuit Debugger. 71 1 Indirect Addressing, INDF and FSR Registers 16 Instruction Format. 73	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview. 3 E 3 EEPROM Data Memory 47 Reading. 47 Spurious Write 47 Write Verify. 47 Writing 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port. 17 77 I ID Locations 69 In-Circuit Debugger. 71 71 In-Circuit Serial Programming. 71 71 Indirect Addressing, INDF and FSR Registers 16 173 Instruction Format 73 73	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview 3 E 3 EEPROM Data Memory 47 Reading 47 Spurious Write 47 Write Verify 47 Write Verify 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port 17 77 I ID Locations 69 In-Circuit Debugger 71 71 Indirect Addressing, INDF and FSR Registers 16 Instruction Format 73 73 ADDLW 75	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify 47 Write Verify 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File GPIO Associated Registers Associated Registers 23 GPIO Port 17 GPIO, TRISIO Registers 17 ID Locations 69 In-Circuit Debugger 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 16 Instruction Format 73 ADDLW 75 ADDWF 75	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview 3 E 3 EEPROM Data Memory 47 Spurious Write 47 Write Verify 47 Write Verify 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F 73 G General Purpose Register File GPIO Associated Registers 23 GPIO Port 17 GPIO Port 17 In Locations 69 In-Circuit Debugger 71 In-Circuit Serial Programming 71 Indirect Addressing, INDF and FSR Registers 16 Instruction Format 73 ADDLW 75 ADDWF 75 ADDWF 75	
PICDEM.net Internet/Ethernet. 84 Development Support 81 Device Overview 3 E 3 EEPROM Data Memory 47 Reading 47 Spurious Write 47 Write Verify 47 Write Verify 47 Electrical Specifications 87 Errata 2 Evaluation and Programming Tools 85 F Firmware Instructions 73 G General Purpose Register File 5 GPIO Associated Registers 23 GPIO Port 17 17 GPIO Port 17 17 ID Locations 69 69 In-Circuit Debugger 71 11 Indirect Addressing, INDF and FSR Registers 16 Instruction Format 73 73 ADDLW 75 ADDWF 75 ANDLW 75 ANDLW 75	

© 2003-2013 Microchip Technology Inc.

Effects of a RESET 37

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769683

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.