E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Details	
Product Status	Last Time Buy
Applications	RKE, Security Systems
Core Processor	PIC
Program Memory Type	FLASH (1.75kB)
Controller Series	rfPIC™
RAM Size	64 x 8
Interface	-
Number of I/O	6
Voltage - Supply	2V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/rfpic12f675kt-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	PIN	BUI	FER	WEAK	DESCRIPTION
	FIIN	IN	OUT	PULL-UP	DESCRIPTION
1	Vdd	Direct	_	—	Power Supply
	GP5	TTL	CMOS	Prog	General purpose I/O. Individually controlled interrupt-on-chang Individually enabled pull-up.
2	T1CKI	ST	_	—	Timer1 clock
	OSC1	Xtal	_	Bias	XTAL connection
	CLKIN	ST	_	—	External RC network or clock input
	GP4	TTL	CMOS	Prog	General purpose I/O. Individually controlled interrupt-on-chang Individually enabled pull-up.
3	T1G	ST	_		Timer1 gate
3	AN3	Analog		—	A/D Channel 3 input
	OSC2	—	Xtal	Bias	XTAL connection
	CLKOUT	—	CMOS	—	Tosc/4 reference clock
	GP3	TTL	_		General purpose input. Individually controlled interrupt-on- change.
4	MCLR	ST	_	No	Master Clear Reset
	Vpp	HV	_	—	Programming voltage
5	RFXTAL	Xtal	Xtal	Bias	RF Crystal
6	RFEN	TTL	_	—	RF Enable
7	REFCLK	—	CMOS	_	Reference Clock/4 Output (on rfPIC12F675K/F) Reference Clock/8 Output (on rfPIC12F675H)
8	PS	Analog	_	Bias	Power Select
9	VDDRF	Direct	_	—	RF Power Supply
10	VSSRF	Direct	_	—	RF Ground Reference
11	ANT	—	OD	—	RF power amp output to antenna
12	VSSRF	Direct	_	—	RF Ground Reference
13	LF	Analog	Analog	—	Loop Filter
14	DATAASK	TTL	_	_	ASK modulation data
15	DATAFSK	TTL	_	—	FSK modulation data
16	FSKOUT	—	OD	—	FSK output to modulate reference crystal
	GP2	ST	CMOS	Prog	General purpose I/O. Individually controlled interrupt-on-chang Individually enabled pull up.
17	AN2	Analog	_	_	A/D Channel 2 input
17	COUT	—	CMOS	—	Comparator output
	T0CKI	ST	—	—	External clock for Timer0
	INT	ST	—	—	External interrupt
	GP1	TTL	CMOS	Prog	General purpose I/O. Individually controlled interrupt-on-chang Individually enabled pull-up.
18	AN1	Analog	_	—	A/D Channel 1 input
10	CIN-	Analog		—	Comparator input - negative
	Vref	Analog		—	External voltage reference
	ICSPCLK	ST	_	—	Serial programming clock
	GP0	TTL	CMOS	Prog	General purpose I/O. Individually controlled interrupt-on-chang Individually enabled pull-up.
19	AN0	Analog			A/D Channel 0 input
	CIN+	Analog		_	Comparator input - positive
	ICSPDAT	TTL	CMOS	—	Serial Programming Data I/O
20	Vss	Direct		_	Ground reference

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conte	nts of FSR to	Address Dat	a Memory			0000 0000	16,63
81h	OPTION_REG	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	10,26
82h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	15
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	9
84h	FSR	Indirect Data	a Memory Ac	dress Pointe	er			•	•	xxxx xxxx	16
85h	TRISIO	_	_	TRISI05	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	17
86h	—	Unimpleme	nted							—	_
87h	—	Unimpleme	nted							—	_
88h	—	Unimpleme	nted							—	_
89h	—	Unimpleme	nted							_	—
8Ah	PCLATH	_	_	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	15
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	11
8Ch	PIE1	EEIE	ADIE	_	_	CMIE		_	TMR1IE	00 00	12
8Dh	—	Unimpleme	nted							—	—
8Eh	PCON	-	—	_	_			POR	BOD	0x	14
8Fh	—	Unimpleme	nted							—	—
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	—	1000 00	14
91h	—	Unimpleme	nted							—	—
92h	—	Unimpleme	nted							—	—
93h	—	Unimpleme	nted							—	—
94h	—	Unimpleme	nted							—	—
95h	WPU	—	—	WPU5	WPU4	-	WPU2	WPU1	WPU0	11 -111	18
96h	IOC	—	—	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	19
97h	—	Unimpleme	nted							—	—
98h	—	Unimpleme	nted							—	—
99h	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	38
9Ah	EEDATA	Data EEPR	OM Data Reg	gister						0000 0000	45
9Bh	EEADR	—	Data EEPR	OM Address	Register					-000 0000	45
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	46
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	er 2							46
9Eh	ADRESL	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		XXXX XXXX	40
9Fh	ANSEL	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	42,63

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

2.2.2.2 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External GP2/INT interrupt
- TMR0
- Weak pull-ups on GPIO

REGISTER 2-2: OPTION_REG — OPTION REGISTER (ADDRESS: 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	GPPU: GPIO Pull-up Enable bit 1 = GPIO pull-ups are disabled 0 = GPIO pull-ups are enabled by individual port latch values											
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of GP2/INT pin 0 = Interrupt on falling edge of GP2/INT pin											
bit 5	1 = Transit	TOCS: TMR0 Clock Source Select bit 1 = Transition on GP2/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)										
bit 4	T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on GP2/T0CKI pin 0 = Increment on low-to-high transition on GP2/T0CKI pin											
bit 3	1 = Presca		ned to the V	VDT IMER0 modu	ıle							
bit 2-0	PS2:PS0:	Prescaler	Rate Select I	oits								
	l	Bit Value	TMR0 Rate	WDT Rate								
	Dit value Hikko Kale WDT Kale 000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128											
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION<3>). See Section 4.4.

2.2.2.5 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-5.

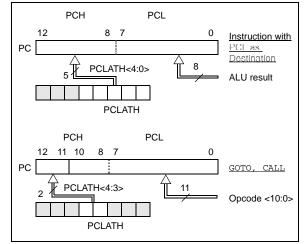
- n = Value at POR

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 — PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

R/W-0) R/W-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0					
EEIF	ADIF	—	—	CMIF	—	_	TMR1IF					
bit 7							bit 0					
	EPROM Write											
	write operation											
	-		-	ias not beer	started							
	ADIF: A/D Converter Interrupt Flag bit											
	 1 = The A/D conversion is complete (must be cleared in software) 0 = The A/D conversion is not complete 											
			piero									
-												
	•				(
		-		eared in soi	tware)							
-	• •		igeu									
Unimple	emented: Rea	d as 0										
	: TMR1 Overfl	-	-									
	•	•		d in software	e)							
0 = IMR	R1 register did	not overflow	1									
Legend:	:											
R = Read	adable bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as '	0'					
0 = The v ADIF: A/ 1 = The A 0 = The A 4 Unimple CMIF: Co 1 = Com 0 = Com 1 Unimple TMR1IF: 1 = TMR 0 = TMR Legend:	write operation A/D Converter I A/D conversion A/D conversion a A/D conver	n has not co nterrupt Flag n is complet n is not com d as '0' errupt Flag b has changed has not char d as '0' ow Interrupt rflowed (mu not overflow	mpleted or h g bit e (must be o plete it d (must be cl nged Flag bit st be cleared	as not beer cleared in so eared in sof	n started oftware) tware)	bit, read as '	0'					

'1' = Bit is set


'0' = Bit is cleared

x = Bit is unknown

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

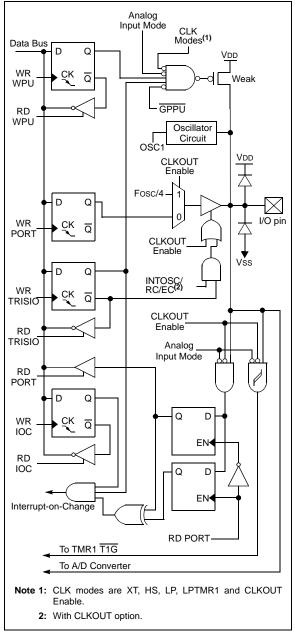
2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The rfPIC12F675 Family has an 8-level deep x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

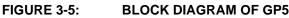
The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

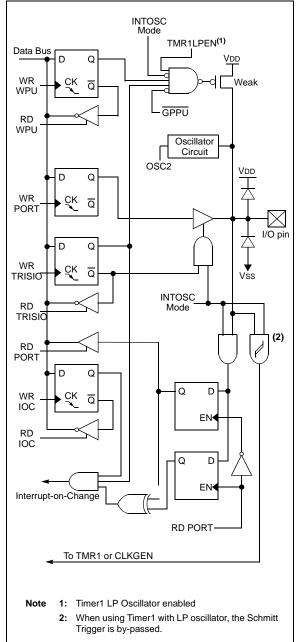

- Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

3.3.5 GP4/AN3/T1G/OSC2/CLKOUT

Figure 3-4 shows the diagram for this pin. The GP4 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D
- a TMR1 gate input
- · a crystal/resonator connection
- a clock output


FIGURE 3-4: BLOCK DIAGRAM OF GP4



3.3.6 GP5/T1CKI/OSC1/CLKIN

Figure 3-5 shows the diagram for this pin. The GP5 pin is configurable to function as one of the following:

- a general purpose I/O
- · a TMR1 clock input
- a crystal/resonator connection
- a clock input

6.1 Comparator Operation

A single comparator is shown in Figure 6-1, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 6-1 represent the uncertainty due to input offsets and response time.

Note:	To use	CIN+ and CIN	I- pins as analog
	inputs,	the appropriat	te bits must be
	program	med in the CMC	CON (19h) register.

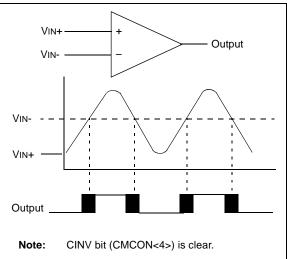

The polarity of the comparator output can be inverted by setting the CINV bit (CMCON<4>). Clearing CINV results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 6-1.

TABLE 6-1: OUTPUT STATE VS. INPUT CONDITIONS

Input Conditions	CINV	COUT
VIN- > VIN+	0	0
Vin- < Vin+	0	1
VIN- > VIN+	1	1
Vin- < Vin+	1	0

SINGLE COMPARATOR

		VOLTAGE NEI ENENGE GONTINGE NEGIGTEN (ADDREGG. 331)											
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	VREN	—	VRR	—	VR3	VR2	VR1	VR0					
	bit 7							bit 0					
bit 7	1 = CVREF	REF Enable circuit powe	ered on	io IDD drain									
bit 6	Unimplem	Unimplemented: Read as '0'											
bit 5	1 = Low ra	VRR: CVREF Range Selection bit 1 = Low range 0 = High range											
bit 4	Unimplem	ented: Rea	d as '0'										
bit 3-0	VR3:VR0: CVREF value selection $0 \le VR$ [3:0] ≤ 15 When VRR = 1: CVREF = (VR3:VR0 / 24) * VDD When VRR = 0: CVREF = VDD/4 + (VR3:VR0 / 32) * VDD												
	Legend:												
	R = Reada	able bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'					
	- n = Value	e at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown					

REGISTER 6-2: VRCON — VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)

6.9 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of the comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<6>, to determine the actual change that has occurred. The CMIF bit, PIR1<3>, is the comparator interrupt flag. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<3>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition, and allow flag bit CMIF to be cleared.

Note:	If a change in the CMCON register (COUT)
	should occur when a read operation is
	being executed (start of the Q2 cycle), then
	the CMIF (PIR1<3>) interrupt flag may not
	get set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other RESETS
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	—	_	CMIF	_	_	TMR1IF	00 00	00 00
19h	CMCON	—	COUT	—	CINV	CIS	CM2	CM1	CM0	-0-0 0000	-0-0 0000
8Ch	PIE1	EEIE	ADIE	—	_	CMIE	_	_	TMR1IE	00 00	00 00
85h	TRISIO	—	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	11 1111
99h	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

TABLE 6-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the comparator module.

8.1 EEADR

The EEADR register can address up to a maximum of 128 bytes of data EEPROM. Only seven of the eight bits in the register (EEADR<6:0>) are required. The MSb (bit 7) is ignored.

The upper bit should always be '0' to remain upward compatible with devices that have more data EEPROM memory.

8.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper four bits are nonimplemented and read as '0's.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion

- n = V

of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, following RESET, the user can check the WRERR bit, clear it, and rewrite the location. The data and address will be cleared, therefore, the EEDATA and EEADR registers will need to be reinitialized.

Interrupt flag bit EEIF in the PIR1 register is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

REGISTER 8-3: EECON1 — EEPROM CONTROL REGISTER (ADDRESS: 9Ch)

	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0		
		—		—	WRERR	WREN	WR	RD		
	bit 7							bit 0		
oit 7-4	Unimpleme	ented: Read	d as '0'							
oit 3	WRERR: E	EPROM Eri	or Flag bit							
		operation or	BOD detec		I (any MCLR	Reset, any	WDT Reset	during		
oit 2	WREN: EE	PROM Write	e Enable bit							
	1 = Allows v 0 = Inhibits	•	data EEPR	ОМ						
oit 1	WR: Write C	Control bit								
		be set, not	cleared, in	software.)	hardware or	nce write is o	complete. Th	ne WR bit		
oit O	RD: Read C	Control bit								
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set, not cleared, in software.) 									
	0 = Does not initiate an EEPROM read									
	Legend:									
	S = Bit can	only be set								
	R = Readat	le hit	$\lambda \Lambda = \lambda \Lambda$	ritable bit	II – I Inin	plemented	hit road as	·O'		

			,
/alue at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

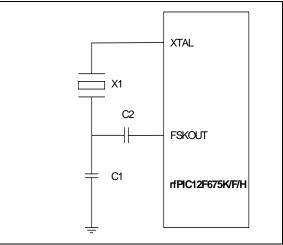
9.5 FSK Modulation

In FSK modulation the transmit data is sent by varying the output frequency. This is done by loading the reference crystal with extra capacitance to pull it to a slightly lower frequency which the PLL then tracks. Switching the capacitance in and out with the data signal toggles the transmitter between two frequencies. These two crystal based frequencies are then multiplied by 32 for the RF transmit frequency.

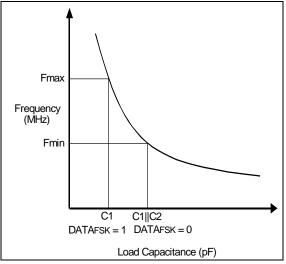
Unlike the ASK transmit frequency the FSK center frequency is not actually transmitted. It is the artificial point half way between the two transmitted frequencies, calculated with this formula.

$$f_c = \frac{f_{\max} + f_{\min}}{2}$$

The other important parameter in FSK is the frequency deviation of the transmit frequency. This measures how far the frequency will swing from the center frequency. Single ended deviation is calculated with this formula.


$$\Delta f = \frac{f_{\max} - f_{\min}}{2}$$

An FSK receiver will specify its optimal value of deviation. The single ended deviation must be greater than data rate/4. The minimum deviation is usually limited by the frequency accuracy of the transmitter and receiver components. The maximum deviation is usually limited by the pulling characteristics of the transmitter crystal.


An extra capacitor and the internal switch are added to the ASK design to build an FSK transmitter as shown in Figure 9-3. The C1 capacitor in series with the crystal determines the maximum frequency.

With the DATAFSK pin high the FSKOUT pin is open and the C2 capacitor does not affect the frequency. When the DATAFSK pin goes low, FSKOUT shorts to ground, and the C2 is thrown in parallel with C1. The sum of the two caps pulls the oscillation frequency lower as shown in Figure 9-4. In FSK mode the DATAASK pin should be tied high to enable the PA. The FSK circuit is shown in Figure 9-6. Use accurate crystals for narrow bandwidth systems and large values for C1 to reduce frequency drift.

FIGURE 9-3: FSK CRYSTAL CIRCUIT

TABLE 9-3:	TYPICAL TRANSMIT CENTER FREQUENCY AND DEVIATION (FSK MO	ODE) ⁽¹⁾

	C2 = 1000 pF	C2 = 100 pF	C2 = 47 pF			
C1 (pF)	Freq (MHz) / Dev (kHz)	Freq (MHz) / Dev (kHz)	Freq (MHz) / Dev (kHz)			
22	433.612 / 34	433.619 / 27	433.625 / 21			
33	433.604 / 25	433.610 / 19	433.614 / 14			
39	433.598 / 20	433.604 / 14	433.608 / 10			
47	433.596 / 17	433.601 / 11.5	433.604 / 8			
68	433.593 / 13	433.598 / 9	433.600 / 5.5			
100	433.587 / 8	—	_			
Note 1: Standard Operating Conditions, TA = 25°C, RFEN = 1, VDDRF = 3V, fXTAL = 13.55 MHz						

© 2003-2013 Microchip Technology Inc.

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	from SLEEP
XT, HS, LP	Tpwrt + 1024•Tosc	1024•Tosc	Tpwrt + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC, INTOSC	TPWRT	—	TPWRT	—	—

TABLE 10-3: TIME-OUT IN VARIOUS SITUATIONS

TABLE 10-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOD	ТО	PD	
0	u	1	1	Power-on Reset
1	0	1	1	Brown-out Detect
u	u	0	u	WDT Reset
u	u	0	0	WDT Wake-up
u	u	u	u	MCLR Reset during normal operation
u	u	1	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other RESETS ⁽¹⁾
03h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON		_					POR	BOD	0x	uq

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. **Note 1:** Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during normal operation.

TABLE 10-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

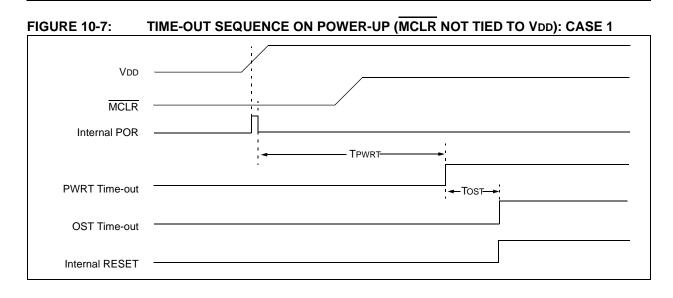
Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 uuuu	uu
WDT Wake-up	PC + 1	սսս0 Օսսս	uu
Brown-out Detect	000h	0001 luuu	10
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 10-7:				
Register	Register Address Power-on Reset • MCLR Reset during normal operation • MCLR Reset during SLE • MCLR Reset during SLE • WDT Reset • WDT Reset • Brown-out Detect ⁽¹⁾		normal operation MCLR Reset during SLEEP WDT Reset 	 Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT time-out
W	_	xxxx xxxx	սսսս սսսս	uuuu uuuu
INDF	00h/80h	_		_
TMR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h/82h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h/83h	0001 1xxx	000q quuu (4)	uuuq quuu ⁽⁴⁾
FSR	04h/84h	xxxx xxxx	uuuu uuuu	uuuu uuuu
GPIO	05h	xx xxxx	uu uuuu	uu uuuu
PCLATH	0Ah/8Ah	0 0000	0 0000	u uuuu
INTCON	0Bh/8Bh	0000 0000	0000 000u	uuuu uuqq ⁽²⁾
PIR1	0Ch	00 00	00 00	qq qq ^(2,5)
T1CON	10h	-000 0000	-uuu uuuu	-uuu uuuu
CMCON	19h	-0-0 0000	-0-0 0000	-u-u uuuu
ADRESH	1Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	1Fh	00 0000	00 0000	uu uuuu
OPTION_REG	81h	1111 1111	1111 1111	uuuu uuuu
TRISIO	85h	11 1111	11 1111	uu uuuu
PIE1	8Ch	00 00	00 00	uu uu
PCON	8Eh	0x	(1,6)	uu
OSCCAL	90h	1000 00	1000 00	uuuu uu
WPU	95h	11 -111	11 -111	uuuu uuuu
IOC	96h	00 0000	00 0000	uu uuuu
VRCON	99h	0-0- 0000	0-0- 0000	u-u- uuuu
EEDATA	9Ah	0000 0000	0000 0000	uuuu uuuu
EEADR	9Bh	-000 0000	-000 0000	-uuu uuuu
EECON1	9Ch	x000	q000	uuuu
EECON2	9Dh			
ADRESL	9Eh	xxxx xxxx	սսսս սսսս	uuuu uuuu
ANSEL	9Fh	-000 1111	-000 1111	-uuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.


Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).


3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 10-6 for RESET value for specific condition.

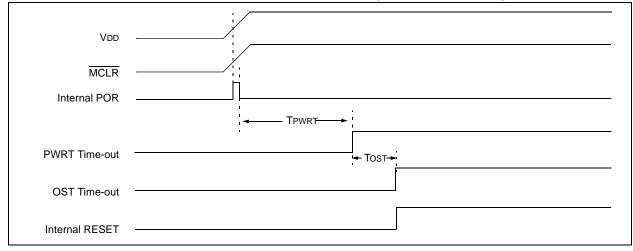

- 5: If wake-up was due to data EEPROM write completing, Bit 7 = 1; A/D conversion completing, Bit 6 = 1; Comparator input changing, bit 3 = 1; or Timer1 rolling over, bit 0 = 1. All other interrupts generating a wake-up will cause these bits to = u.
- **6:** If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

FIGURE 10-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Value on all other RESETS
0Bh, 8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	0000 000u
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	00 00
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00 00	00 00

TABLE 10-8:SUMMARY OF INTERRUPT REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the Interrupt module.

10.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (e.g., W register and STATUS register). This must be implemented in software.

Example 10-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W_TEMP is defined at 0x20 in Bank 0 and it must also be defined at 0xA0 in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 10-2:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- · Restores the W register

EXAMPLE 10-2: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, could be in either bank
SWAPF	STATUS,W	;swap status to be saved into W
BCF	STATUS, RPO	;change to bank 0 regardless of current bank
MOVWF	STATUS_TEMP	;save status to bank 0 register
:		
: (ISR)	
:		
SWAPF	STATUS_TEMP	W;swap STATUS_TEMP register into
		W, sets bank to original state
MOVWF	STATUS	;move W into STATUS register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

10.6 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which requires no external components. This RC oscillator is separate from the external RC oscillator of the CLKIN pin and INTOSC. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped (for example, by execution of a SLEEP instruction). During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 10.1).

10.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

10.6.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (i.e., VDD = Min., Temperature = Max., Max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

12.14 PICDEM 1 PIC MCU Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include analog input, push button switches and eight LEDs.

12.15 PICDEM.net Internet/Ethernet Demonstration Board

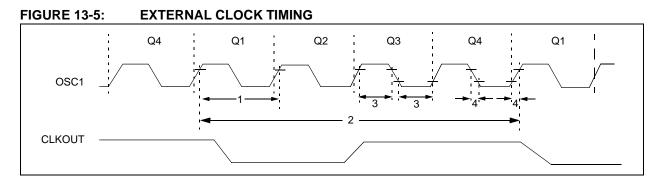
The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

12.16 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 FLASH microcontrollers.

12.17 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.


12.18 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8-, 14-, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 Family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the supercapacitor circuit, and jumpers allow onboard hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

12.19 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board FLASH memory. A generous prototype area is available for user hardware expansion.

13.12 AC CHARACTERISTICS: rfPIC12F675 (INDUSTRIAL, EXTENDED)

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	37	kHz	LP Osc mode
			DC	_	4	MHz	XT mode
			DC	—	20	MHz	HS mode
			DC	—	20	MHz	EC mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode
			DC	—	4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			1	_	20	MHz	HS Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	27	_	∞	μs	LP Osc mode
			50	—	∞	ns	HS Osc mode
			50	—	∞	ns	EC Osc mode
			250	—	∞	ns	XT Osc mode
		Oscillator Period ⁽¹⁾	27		200	μS	LP Osc mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	1,000	ns	HS Osc mode
2	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
3	TosL,	External CLKIN (OSC1) High	2*	—	_	μS	LP oscillator, Tosc L/H duty cycle
	TosH	External CLKIN Low	20*	—	—	ns	HS oscillator, Tosc L/H duty
							cycle
			100 *	—	—	ns	XT oscillator, Tosc L/H duty cycle
4	TosR,	External CLKIN Rise	—	—	50*	ns	LP oscillator
	TosF	External CLKIN Fall	—	—	25*	ns	XT oscillator
т		romotors are observatorized but	—	—	15	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

© 2003-2013 Microchip Technology Inc.

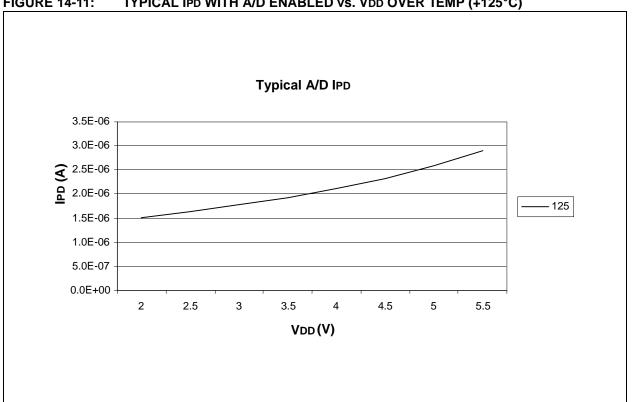
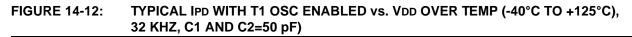
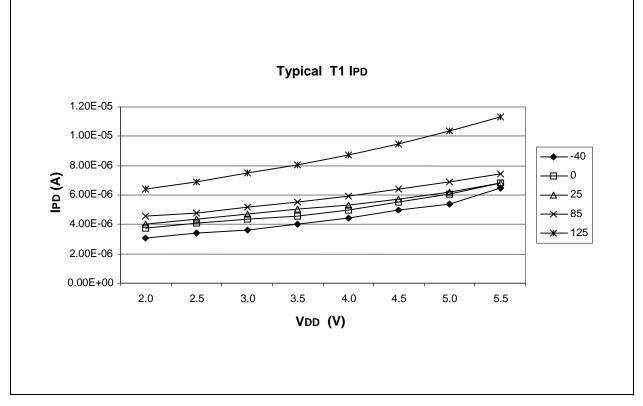
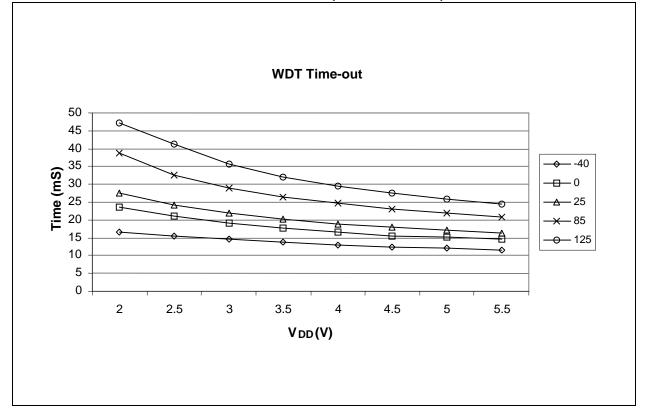
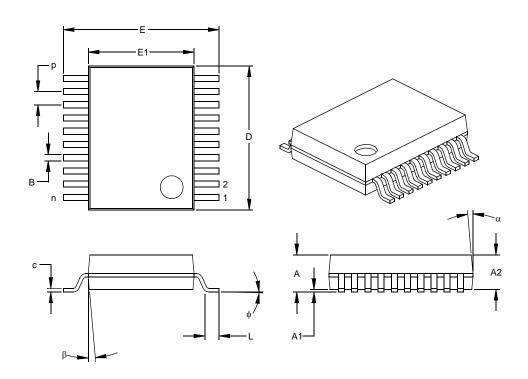





FIGURE 14-11: TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+125°C)



Package Type: 20-Lead SSOP

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ф	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150

Drawing No. C04-072

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent						
	: Name							
TION	Company							
	Address							
	City / State / ZIP / Country							
	Telephone: ()	FAX: ()						
Appli	cation (optional):							
Woul	d you like a reply?YN							
Devid	Ce:	Literature Number: DS70091B						
Ques	tions:							
1. What are the best features of this document?								
_								
2. How does this document meet your hardware and software development needs?								
	-							
_								
3. E	. Do you find the organization of this document easy to follow? If not, why?							
_								
_								
4. V	4. What additions to the document do you think would enhance the structure and subject?							
-								
5. V	5. What deletions from the document could be made without affecting the overall usefulness?							
_								
6. ls	s there any incorrect or misleading information (what and	where)?						
_	· · ·							
_								
7. H	low would you improve this document?							
_								
_								