

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l081cbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 1. Ultra-low-power STM32L081xx device features and peripheral counts

Perip	oheral	STM32L081CB	STM32L081KZ	STM32L081CZ		
Flash (Kbytes)		128 Kbytes 192 Kbytes				
Data EEPROM (Kb	oytes)					
RAM (Kbytes)			20 Kbytes			
AES			1			
	General- purpose	4				
Timers	Basic		2			
	LPTIMER		1			
RTC/SYSTICK/IWDG/WWDG			1/1/1/1			
	SPI/I2S	6(4) ⁽¹⁾ /1	4(3) ⁽²⁾ /0	6(4) ⁽¹⁾ /1		
Com. interfaces	l ² C	3	2	3		
	USART	4	3	4		
	LPUART		1			
GPIOs		40	25 ⁽³⁾	40		
Clocks: HSE/LSE/	HSI/MSI/LSI		1/1/1/1/1			
12-bit synchronize Number of channe		1 1 1 13 10 13				
Comparators			2			
Max. CPU frequen	су	32 MHz				
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option				
Operating tempera	atures	Ambient temperature: -40 to +125 °C Junction temperature: -40 to +130 °C				
Packages LQFP48 LQFP3			LQFP32, UFQFPN32	LQFP48		

 $1. \quad 4 \; \text{SPI interfaces are USARTs operating in SPI master mode.}$

2. 3 SPI interfaces are USARTs operating in SPI master mode.

3. UFQFPN32 has 2 GPIOs less than LQFP32.

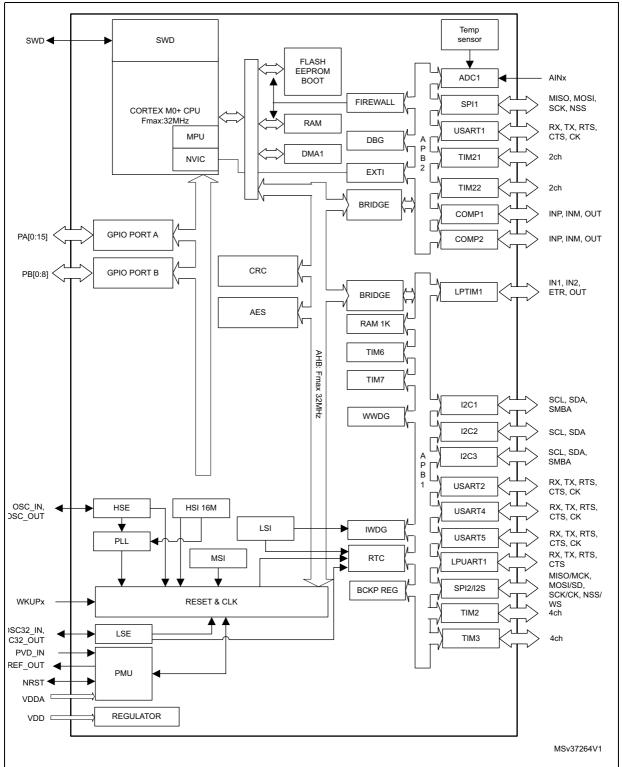


Figure 1. STM32L081xx block diagram

DocID027513 Rev 4

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode.

Operating newsrawark	Functionalities depending on the operating power supply range					
Operating power supply range	ADC operation Dynamic voltage scaling range		I/O operation			
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance			
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance			
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance			

Table 4. Functionalities depending on the working mode	
(from Run/active down to standby) (continued) ⁽¹⁾⁽²⁾	

			Low-	Low-	Stop	S	Standby
IPs	Run/Active	Sleep	power run	power sleep	Wakeup capability		Wakeup capability
					4 μΑ (No V _{DD} =1.8 V		28 µA (No) V _{DD} =1.8 V
Consumption V _{DD} =1.8 to 3.6 V	Down to 140 µA/MHz	Down to 37 µA/MHz	Down to	Down to	β μΑ (with V _{DD} =1.8 V		5 µA (with) V _{DD} =1.8 V
(Typ)	(from Flash memory)	(from Flash memory)	8 μΑ	4.5 µA	4 μΑ (No V _{DD} =3.0 V		29 µA (No) V _{DD} =3.0 V
					 (with RTC) _{DD} =3.0 V		5 μΑ (with) V _{DD} =3.0 V

1. Legend:

"Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available

2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.

- 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
COMPx	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-
COMPX	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-

Table 5. STM32L0xx peripherals interconnect matrix
--

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: AES, SPI, I²C, USART, LPUART, general-purpose timers, and ADC.

3.11 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L081xx device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.

The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 μ A at 10 kSPS, ~240 μ A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.

The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V.

The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.12 Temperature sensor

The temperature sensor (T_{SENSE}) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

DocID027513 Rev 4

3.15.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

Up to three I²C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.

Each I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

 Table 9. Comparison of I2C analog and digital filters

In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match.

Each I2C interface can be served by the DMA controller.

Refer to *Table 10* for an overview of I2C interface features.

Table 10. STM32L081xx I ² C implementat	ion
--	-----

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х

3.16.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.16.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 12* for the differences between SPI1 and SPI2.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 12. SPI/I2S implementation

1. X = supported.

പ
S
321
000
X
X

5

				Table 15.	Alternate fund	tions port A			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1 TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/ I2C1/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/LPTIM1/ TIM2/3/ EVENTOUT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/L PUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3
	PA0	-	-	TIM2_CH1	-	USART2_CTS	TIM2_ETR	USART4_TX	COMP1_OUT
	PA1	EVENTOUT	-	TIM2_CH2	-	USART2_RTS_D E	TIM21_ETR	USART4_RX	-
	PA2	TIM21_CH1	-	TIM2_CH3	-	USART2_TX	-	LPUART1_TX	COMP2_OUT
	PA3	TIM21_CH2	-	TIM2_CH4	-	USART2_RX	-	LPUART1_RX	-
	PA4	SPI1_NSS	-	-	-	USART2_CK	TIM22_ETR	-	-
	PA5	SPI1_SCK	-	TIM2_ETR	-		TIM2_CH1	-	-
	PA6	SPI1_MISO	-	TIM3_CH1	-	LPUART1_CTS	TIM22_CH1	EVENTOUT	COMP1_OUT
∢	PA7	SPI1_MOSI	-	TIM3_CH2	-	-	TIM22_CH2	EVENTOUT	COMP2_OUT
Port A	PA8	MCO	-	-	EVENTOUT	USART1_CK	-	-	I2C3_SCL
	PA9	MCO	-	-	-	USART1_TX	-	I2C1_SCL	I2C3_SMBA
	PA10	-	-	-	-	USART1_RX	-	I2C1_SDA	-
	PA11	SPI1_MISO	-	EVENTOUT	-	USART1_CTS	-	-	COMP1_OUT
	PA12	SPI1_MOSI	-	EVENTOUT	-	USART1_RTS_D E	-	-	COMP2_OUT
	PA13	SWDIO	-	-	-	-	-	LPUART1_RX	-
	PA14	SWCLK	-	-	-	USART2_TX	-	LPUART1_TX	-
	PA15	SPI1_NSS	-	TIM2_ETR	EVENTOUT	USART2_RX	TIM2_CH1	USART4_RTS_D E	-

Pin descriptions

39/110

6.3 Operating conditions

6.3.1 General operating conditions

Table 20. General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	32	
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz
f _{PCLK2}	Internal APB2 clock frequency - BOR detector disabled		0	32	
		BOR detector disabled	1.65	0 32 0 32 0 32 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 65 3.6 0 5.5 0.3 V_DD+0.3 - 333 - 93 139 - - 83 40 85 40 105 40 105 40 125	
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V
		BOR detector disabled, after power on	1.65	3.6	
V _{DDA}	Analog operating voltage (all features)	icy-incy-incy-incy-incy-BOR detector disabledBOR detector enabled, at power onBOR detector disabled, after power onall features)Must be the same voltage as $V_{DD}^{(1)}$ all features) $2.0 V \le V_{DD} \le 3.6 V$ in- $1.65 V \le V_{DD} \le 2.0 V$ in- $2.0 V \le V_{DD} \le 2.0 V$ in- $V_{DP}^{(1)} \le V_{DD} \le 2.0 V$ in- $V_{DD} \le 0.0 V$ in- $V_{DD} \le 0.0 V$ in- $V_{DD} \le 0.0 V$ in-in-in-in-in-in-in-in-in-in-in- </td <td>3.6</td> <td>V</td>		3.6	V
V _{DDIO2}	Standard operating voltage	-	1.65	3.6	V
	Input voltage on FT, FTf and RST pins ⁽²⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	32 MHz 32 MHz 32 MHz 32 V 3.6 V 5.5 V VDD+0.3 MW 370 MW 333 MW 93 MW 139 MW 83 85 105 °C 105 °C 105 °C	
V _{IN}	input voltage off 1, 1 fr and KST pins	$1.65~V \leq V_{DD} \leq 2.0~V$	-0.3	5.2	V
VIN	Input voltage on BOOT0 pin	-	0	5.5	v
	Input voltage on TC pin	-	-0.3	V _{DD} +0.3	
	Power dissipation at $T_A = 85 \text{ °C}$ (range 6) or $T_A = 105 \text{ °C}$ (rage 7) ⁽³⁾	LQFP48 package	-	370	
		UFQFPN32 package		556	
P _D		LQFP32 package	-	333	m\//
I D		LQFP48 package	-	93	11100
	Power dissipation at $T_A = 125 \degree C$ (range 3) ⁽³⁾	UFQFPN32 package		139	
		LQFP32 package	-	83	
			-40	85	
Та	Temperature range		-40	105	-
		-	-40	125	°C
	Junction temperature range (range 6)	-40 $^\circ C \leq T_A \leq 85 \ ^\circ$	-40	105	
TJ	Junction temperature range (range 7)	-40 $^\circ C \leq T_A \leq$ 105 $^\circ C$	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130	

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

3. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 19: Thermal characteristics on page 45*).

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit				
				Dhrystone		570					
			Range 3,	CoreMark	4 MHz	670					
	Supply current in	f _{HSE} = f _{HCLK} up to 16 MHz included,	V		VOS[1	V _{CORE} =1.2 V, VOS[1:0]=11		Fibonacci	4 M⊡Z	410	μA
I _{DD} (Run	Run mode, code executed from			while(1)		375					
from RAM)	RAM, Flash memory switched	f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL on) ⁽²⁾		Dhrystone		6,65					
	off		Range 1,	CoreMark	32 MHz	6,95	m 4				
			V _{CORE} =1.8 V, VOS[1:0]=01	Fibonacci		5,9	mA				
				while(1)		5,2					

Table 27. Current consumption in Run mode vs code type, code with data processing running from RAM⁽¹⁾

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

			it consumption in		noue			
Symbol	Parameter		Condition		f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9,45	12				
			MSI clock = 65 kHz,	T _A = 85°C	0.000	14	58	
			f _{HCLK} = 32 kHz	T _A = 105°C	0,032	21	64	
				T _A = 125°C		36,5	160	
				$T_A = -40 \text{ to } 25^{\circ}\text{C}$		14,5	18	
			MSI clock = 65 kHz,	T _A = 85°C	0.065	19,5	60	
		RAM, Flash	f _{HCLK} = 65kHz	T _A = 105°C	0,005	26	65	
				T _A = 125°C		42	160	
				$T_A = -40$ to 25°C		26,5	30	
		Supply urrent in w-power		T _A = 55°C	0,131	27,5	60	μΑ
				T _A = 85°C		31	66	
	Supply current in Low-power run mode			T _A = 105°C		37,5	77	
				T _A = 125°C		53,5	170	
(LP Run)			MSI clock = 65 kHz, f _{HCLK} = 32 kHz	$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,032	24,5	34	
	Tun mode			T _A = 85°C		30	82	
				T _A = 105°C	0,032	38,5	90	
				T _A = 125°C		58	120	
		All peripherals		$T_A = -40$ to 25°C		30,5	40	
		OFF, code	MSI clock = 65 kHz,	T _A = 85°C	0,065	36,5	88	
		executed from Flash memory,	f _{HCLK} = 65 kHz	T _A = 105°C	0,005	45	96	
		VDD from 1.65 V		T _A = 125°C		64,5	120	
		to 3.6 V		$T_A = -40 \text{ to } 25^{\circ}\text{C}$		45	56	
			MSI clock =	T _A = 55°C		48	96	
			131 kHz,	T _A = 85°C	0,131	51	110	
			f _{HCLK} = 131 kHz	T _A = 105°C		59,5	120	
				T _A = 125°C		79,5	150	

Table 29. Current consumption in Low-power run mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Table 34. Peripheral current consumption in Run or Sleep mode⁽¹⁾

		Typical	consumption, V	/ _{DD} = 3.0 V, T _A =	25 °C	
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	CRS	2.5	2	2	2	
	I2C1	11	9.5	7.5	9	
	I2C3	11	9	7	9	
	LPTIM1	10	8.5	6.5	8	
	LPUART1	8	6.5	5.5	6	
	SPI2	9	4.5	3.5	4	
	USART2	14.5	12	9.5	11	
	USART4	5	4	3	5	µA/MHz
APB1	USART5	5	4	3	5	(f _{HCLK})
	TIM2	10.5	8.5	7	9	
	TIM3	12	10	8	11	
	TIM6	3.5	3	2.5	2	
	TIM7	3.5	3	2.5	2	
	WWDG	3	2	2	2	
	ADC1 ⁽²⁾	5.5	5	3.5	4	
	SPI1	4	3	3	2.5	
	USART1	14.5	11.5	9.5	12	
4002	TIM21	7.5	6	5	5.5	µA/MHz
APB2	TIM22	7	6	5	6	(f _{HCLK})
	FIREWALL	1.5	1	1	0.5	
	DBGMCU	1.5	1	1	0.5	
	SYSCFG	2.5	2	2	1.5	

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz		
R _F	Feedback resistor	-	-	200	-	kΩ		
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V		
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	2	-	ms		

Table 39, HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 18). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{I 1} and C_{I 2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{I 1} and C_{I 2}. Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

f_{HSE} to core R_F ΛΛΛΛ C_{L1} OSC IN Resonator Consumption control Resonator STM32 OSC_OUT

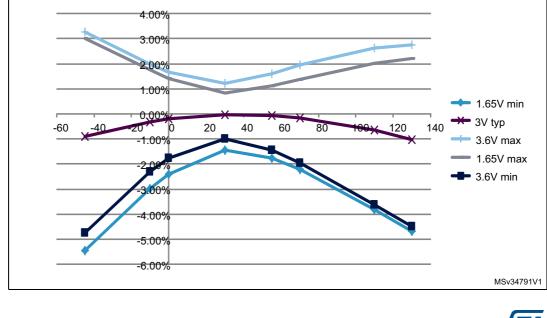
Figure 18. HSE oscillator circuit diagram

ai18235h

 C_{L2}

6.3.7 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.


High-speed internal 16 MHz (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI16 user-	Trimming code is not a multiple of 16	I	±0.4	0.7	%
TRIM	trimmed resolution	Trimming code is a multiple of 16	-	-	± 1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated	V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
ACC .		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI16}		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = - 40 to 125 °C	-5.45	-	3.25	%
t _{SU(HSI16)} ⁽²⁾	HSI16 oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI16)} ⁽²⁾	HSI16 oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Figure 20. HSI16 minimum and maximum value versus temperature

DocID027513 Rev 4

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol Parameter		Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{HCLK} = 32 \text{ MHz}$ conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ $f_{HCLK} = 32 \text{ MHz}$ conforms to IEC 61000-4-4	4A

Table 48. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

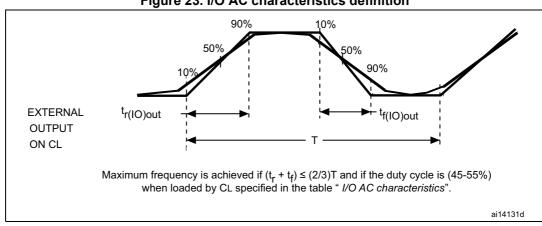
The software flowchart must include the management of runaway conditions such as:

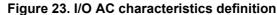
- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).


Electromagnetic Interference (EMI)


The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range at 32 MHz	Unit
	Deek level	eak level $V_{DD} = 3.6 V$, $T_A = 25 °C$, compliant with IEC 61967-2	0.1 to 30 MHz	-7	
6			30 to 130 MHz	14	dBµV
S _{EMI}	reak level		130 MHz to 1 GHz	9	
			EMI Level	2	-

Table 49. EMI characteristics

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} , except when it is internally driven low (see *Table 56*).

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	V_{SS}	-	0.8	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	1.4	-	V_{DD}	
V _{OL(NRST)} ⁽¹⁾	NRST output low level	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	V
♥OL(NRST)`´	voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	-	-	ns

 Table 56. NRST pin characteristics

1. Guaranteed by design.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

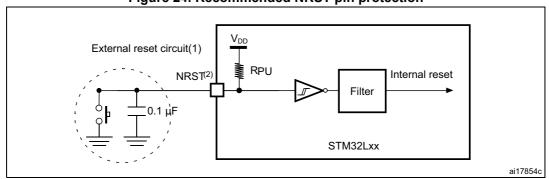


Figure 24. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 56. Otherwise the reset will not be taken into account by the device.

6.3.15 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 20: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply voltage for ADC on	Fast channel	1.65	-	3.6	V	
		Standard channel	1.75 ⁽¹⁾	-	3.6	v	
I _{DDA (ADC)}	Current consumption of the ADC on V_{DDA}	1.14 Msps	-	200	-		
		10 ksps	-	40	-		
	Current consumption of the ADC on $V_{DD}^{(2)}$	1.14 Msps	-	70	-	- μΑ	
		10 ksps	-	1	-		
	ADC clock frequency	Voltage scaling Range 1	0.14	-	16	MHz	
f _{ADC}		Voltage scaling Range 2	0.14	-	8		
		Voltage scaling Range 3	0.14	-	4		
f _S ⁽³⁾	Sampling rate	12-bit resolution	0.01	-	1.14	MHz	
f _{TRIG} ⁽³⁾	External trigger frequency	f _{ADC} = 16 MHz, 12-bit resolution	-	-	941	kHz	
		-	-	-	17	1/f _{ADC}	
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V	
R _{AIN} ⁽³⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ	
R _{ADC} ⁽³⁾⁽⁴⁾	Sampling switch resistance	-	-	-	1	kΩ	
C _{ADC} ⁽³⁾	Internal sample and hold capacitor	-	-	-	8	pF	

Table 57. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comparator startup time	Fast mode	-	15	20	
t _{START}	Comparator startup time	Slow mode	-	20	25	- µs
+	Propagation delay ⁽²⁾ in slow mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	1.8	3.5	
t _{d slow}		$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6	
+	Propagation delay ⁽²⁾ in fast mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2	
t _{d fast}		$2.7~V \leq V_{DDA} \leq 3.6~V$	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	±20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	$\label{eq:VDDA} \begin{split} &V_{DDA} = 3.3 \text{V}, \text{T}_{\text{A}} = 0 \text{ to } 50 ^{\circ}\text{C}, \\ &V- = V_{\text{REFINT}}, \\ &3/4 V_{\text{REFINT}}, \\ &1/2 V_{\text{REFINT}}, \\ &1/4 V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C
1	Current consumption ⁽³⁾	Fast mode	-	3.5	5	μA
I _{COMP2}		Slow mode	-	0.5	2	

Table 63. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

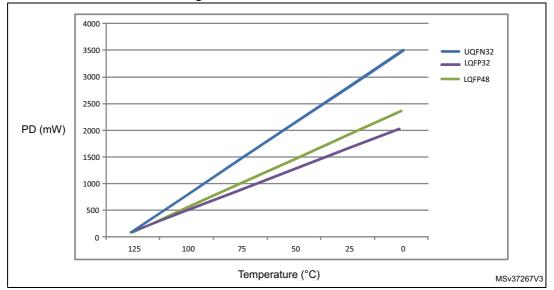
7.4 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.


P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	
Θ_{JA}	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	°C/W
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60]

Figure 40. Thermal resistance

