

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	4964
Number of Logic Elements/Cells	118143
Total RAM Bits	8315904
Number of I/O	260
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx125df25c4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1-1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
V _I	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator	_	3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.21	V
$V_{\text{CCH_GXB}}$	Supplies power to the transceiver PMA output (TX) buffer		1.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within t_{RAMP} .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1-5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power to the configuration RAM bits	_	1.425	1.50	1.575	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key registers	_	1.2	_	3.3	V
M	Supplies power to the I/O pre-drivers,	_	3.135	3.3	3.465	V
V _{CCPD} (3)	differential input buffers, and MSEL		2.85	3.0	3.15	V
(0)	circuitry	I	2.375	2.5	2.625	٧
			3.135	3.3	3.465	V
	Supplies power to the I/O banks (4)	_	2.85	3.0	3.15	V
V		_	2.375	2.5	2.625	V
V _{CCIO}	Supplies power to the I/O banks (4)	_	1.71	1.8	1.89	V
		_	1.425	1.5	1.575	V
		_	1.14	1.2	1.26	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL		0.87	0.90	0.93	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	_	2.375	2.5	2.625	V
V _I	DC Input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA}	Supplies power to the transceiver PMA regulator	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.045	1.1	1.155	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.425	1.5	1.575	V
т	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

I/O Pin Leakage Current

Table 1–7 lists the Arria II GX I/O pin leakage current specifications.

Table 1-7. I/O Pin Leakage Current for Arria II GX Devices

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-10	_	10	μΑ
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$	-10	_	10	μΑ

Table 1–8 lists the Arria II GZ I/O pin leakage current specifications.

Table 1–8. I/O Pin Leakage Current for Arria II GZ Devices

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V to V_{CCIOMAX}$	-20	_	20	μΑ
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 \text{ V to } V_{\text{CCIOMAX}}$	-20	_	20	μΑ

Bus Hold

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–9 lists bus hold specifications for Arria II GX devices.

Table 1–9. Bus Hold Parameters for Arria II GX Devices (Note 1)

				V _{CCIO} (V)									V _{CCIO} (V)						
Parameter	Symbol	Cond.	1	.2	1.	.5	1	.8	2.	.5	3	.0	3	.3	Unit				
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max					
Bus-hold low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	8	_	12	_	30	_	50	_	70	_	70	_	μА				
Bus-hold high, sustaining current	I _{SUSH}	V _{IN} < V _{IL} (min.)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА				
Bus-hold low, overdrive current	I _{ODL}	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА				
Bus-hold high, overdrive current	I _{ODH}	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μА				
Bus-hold trip point	V_{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V				

Note to Table 1-9:

(1) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 2 of 2)

Combal	Description	Conditions (II)	Calibration	1 Accuracy	II.m.i.k
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCIO} = 2.5	± 30	± 30	%

Note to Table 1-11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note 1)

Oumbal Bassinkian		6 1111 (115	Ca	libration Accura	cy	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,I4	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	$50-\Omega$ internal parallel OCT with calibration	$V_{CCIO} = 2.5, 1.8,$ 1.5, 1.2	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 (3)	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

- (1) OCT calibration accuracy is valid at the time of calibration only.
- (2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.
- (3) $20-\Omega$ R_S is not supported for 1.5 V and 1.2 V in Row I/O.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

0	Paradotta:	0	Resistance	Tolerance	1114
Symbol	Description	Conditions (V)	C3,I3	C4,I4	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCIO} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCIO} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO}.

Use the following with Equation 1–1:

- \blacksquare R_{SCAL} is the OCT resistance value at power up.
- lacktriangle ΔT is the variation of temperature with respect to the temperature at power up.
- lacksquare ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- \blacksquare dR/dT is the percentage change of R_{SCAL} with temperature.
- $\,\blacksquare\,\, dR/dV$ is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Table 1–14. OCT Variation after Power-up Calibration for Arria II GX Devices

Nominal Voltage V _{CC10} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Note to Table 1-15:

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1-16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),$ and dedicated clock input pins	7	pF

⁽¹⁾ Valid for V_{CCIO} range of ±5% and temperature range of 0° to 85°C.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$\begin{array}{c} C_{\text{CLK1}},C_{\text{CLK3}},C_{\text{CLK8}},\\ \text{and}C_{\text{CLK10}} \end{array}$	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (2)	7	28	47	kΩ
R _{PU}	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (2)	8	35	61	kΩ
тър	programmable pull-up resistor	$V_{CCIO} = 1.8 \text{ V } \pm 5\% $ (2)	10	57	108	kΩ
	option is enabled.	$V_{CCIO} = 1.5 \text{ V } \pm 5\% $ (2)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$	6	19	29	kΩ
	Value of TOV also still datum	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$	6	25	42	kΩ
		$V_{CCIO} = 1.8 \text{ V } \pm 5\%$	7	35	70	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\%$	8	50	112	kΩ

Notes to Table 1-18:

⁽¹⁾ All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

⁽²⁾ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 3 of 7)

Symbol/	0		13			C4			C5 and IS	5		C6		Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	_	125	_	_	125	_	MHz
reconfig_ clk clock frequency	Dynamic reconfig. clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 (4)	_	50	2.5/ 37.5 (4)	_	50	2.5/ 37.5 (4)	_	50	MHz
Delta time between reconfig_ clks (5)	_	_	_	2	_	_	2	_	_	2	_	_	2	ms
Transceiver block minimum power-down pulse width	_	_	1	_	_	1	_	_	1	_	_	1	_	μѕ
Receiver														
Supported I/O Standards				1.4-V PCN	1L, 1.5-V	PCML, 2.	5-V PCML, 2	2.5-V PCM	L, LVPECL,	and LVDS				
Data rate (13)	_	600	_	6375	600	_	3750	600		3750	600	_	3125	Mbps
Absolute V _{MAX} for a receiver pin (6)	_		_	1.5	_	_	1.5		_	1.5	_		1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak	V _{ICM} = 0.82 V setting	_	_	2.7	_	_	2.7	_	_	2.7	_	_	2.7	V
differential input voltage V _{ID} (diff p-p)	V _{ICM} =1.1 V setting (7)	_	_	1.6	_		1.6	_	_	1.6	_	_	1.6	V

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/	Condition	13			C4			C5 and I5			C6			Unit
Description	Conuntion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullit
Digital reset pulse width	_					М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to AN 558: Implementing Dynamic Reconfiguration in Arria II Devices.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ± 300 parts per million (ppm).
- (9) Time taken to rx pll locked goes high from rx analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx pll locked goes high and before rx locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1–1.
- (12) The time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 1 of 5)

Symbol/		_	C3 and –I3	(1)		-C4 and -	14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock			•		•	•		
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LVI	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	_	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a REFCLK pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a REFCLK pin	_	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)	_	_	_	0.2	_	—	0.2	UI
Duty cycle	_	45		55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5%		_	0 to -0.5%		
On-chip termination resistors	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz	_	_	-50	_	_	-50	dBc/Hz
	100 Hz	_	_	-80	_	_	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz			-110		_	-110	dBc/Hz
Noise	10 KHz		_	-120	_		-120	dBc/Hz
	100 KHz	_	_	-120	_	_	-120	dBc/Hz
	≥ 1 MHz	_		-130	_		-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3	_	_	3	ps
R _{REF}	_	_	2000 ± 1%	_		2000 ± 1%		Ω

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 4 of 5)

Symbol/	Conditions	-	C3 and –I3	(1)		14	Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter			•		•	•		•
Supported I/O Standards				1.5-V PCML				
Data rate (14)	_	600	_	6375	600	_	3750	Mbps
V _{OCM}	0.65 V setting		650	_	_	650	_	m۷
	85– Ω setting		85 ± 15%	6		85 ± 15%	0	Ω
Differential on-chip	100–Ω setting		100 ± 15°	%		100 ± 159	%	Ω
termination resistors	120–Ω setting		120 ± 15°	%		120 ± 159	%	Ω
	150-Ω setting		150 ± 15°	%		150 ± 159	%	Ω
Differential and common mode return loss	PCIe Gen1 and Gen2 (TX V_{OD} =4), XAUI (TX V_{OD} =6), HiGig+ (TX V_{OD} =6), CEI SR/LR (TX V_{OD} =8), SRIO SR (V_{OD} =8), SRIO LR (V_{OD} =8), CPRI LV (V_{OD} =6), CPRI HV (V_{OD} =6), SATA (V_{OD} =4),			Comp	oliant			_
Rise time (15)	_	50		200	50		200	ps
Fall time (15)	_	50		200	50	_	200	ps
Intra-differential pair skew	_	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×4 PMA and PCS bonded mode Example: XAUI, PCIe ×4, Basic ×4	_	_	120	_	_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	×8 PMA and PCS bonded mode Example: PCle ×8, Basic ×8	_	_	500	_	_	500	ps
CMUO PLL and CMU1 PLL								
Supported Data Range	_	600		6375	600		3750	Mbps
pll_powerdown minimum pulse width (tpll_powerdown)	_		1			1		μS
CMU PLL lock time from pll_powerdown de-assertion	_	_	_	100	_	_	100	μS

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–1. Lock Time Parameters for Manual Mode

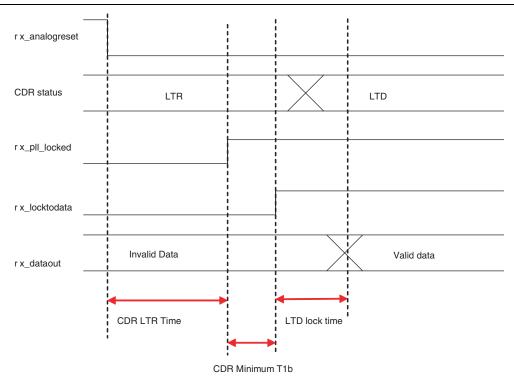


Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

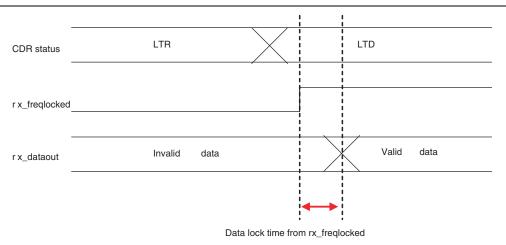


Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre- Emphasis				V _{od} S	etting			T
1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	0		13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter J	itter Generation <i>(8)</i>													
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2	_	_	0.2		_	0.2	_	_	0.2		_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3	_	_	0.3		_	0.3	_	_	0.3		_	UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>										•			
	Jitter frequency = 15 KHz Data rate = 2.97 Gbps (3G) Pattern = single line scramble	> 2			> 2			> 2			> 2		UI	
	color bar Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3		> 0.3		> 0.3			UI		
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3		> 0.3			> 0.3		UI		

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	Oandill	-	-C3 and	-I3	-	-C4 and -	-14			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit		
	Jitter frequency = 0.06 KHz		. 45			. 45				
	Pattern = PRBS15		> 15			> 15		UI		
	Jitter frequency = 100 KHZ		. 1 5			> 1.5		UI		
	Pattern = PRBS15		> 1.5			> 1.0		UI		
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.15		UI		
	Pattern = PRBS15									
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI		
	Pattern = PRBS15		> 0.10			> 0.13		UI		
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>									
Total jitter FC-1	Pattern = CRPAT	_		0.23	_	_	0.23	UI		
Deterministic jitter FC-1	Pattern = CRPAT	_	_	0.11	_	_	0.11	UI		
Total jitter FC-2	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI		
Deterministic jitter FC-2	Pattern = CRPAT	_	_	0.2	_	_	0.2	UI		
Total jitter FC-4	Pattern = CRPAT	_	_	0.52	_	_	0.52	UI		
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI		
Fibre Channel Receiver Jitter Tole	erance <i>(4)</i> , <i>(6)</i>	•						•		
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37			> 0.37				
Random jitter FC-1	Pattern = CJTPAT		> 0.31			> 0.31		UI		
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI		
Siliusuluai jillei FG-1	Fc/1667		> 0.1			> 0.1		UI		
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33			> 0.33		UI		
Random jitter FC-2	Pattern = CJTPAT		> 0.29			> 0.29		UI		
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI		
Siliusoluai jillei 10-2	Fc/1667		> 0.1			> 0.1		UI		
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI		
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI		
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI		
omasolaar jittor 10 4	Fc/1667		> 0.1			> 0.1		UI		
XAUI Transmit Jitter Generation (7)									
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	UI		
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	-	_	0.17	_	_	0.17	UI		
XAUI Receiver Jitter Tolerance (7)	•	•		•					
Total jitter	_		> 0.65			> 0.65		UI		
Deterministic jitter	_		> 0.37			> 0.37		UI		

Table 1-44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{CASC} _ OUTJITTER_	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)	_	_	425	ps (p-p)
PERIOD_ DEDCLK (6), (7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)	_	_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition:
 - a. Upstream PLL: 0.59 Mhz ≤ Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (40° to 100° C).

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
f	Input clock frequency (–3 speed grade)	5	_	717 (1)	MHz
f _{IN}	Input clock frequency (-4 speed grade)	5		717 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f	PLL VCO operating range (-3 speed grade)	600		1,300	MHz
f _{VCO}	PLL VCO operating range (-4 speed grade)	600	_	1,300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for internal global or regional clock (–3 speed grade)	_	_	700 (2)	MHz
f _{OUT}	Output frequency for internal global or regional clock (–4 speed grade)	_	_	500 (2)	MHz
f	Output frequency for external clock output (-3 speed grade)	_		717 (2)	MHz
f _{OUT_EXT}	Output frequency for external clock output (-4 speed grade)	_		717 (2)	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{CONFIGPLL}	Time required to reconfigure scan chain	_	3.5	_	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_	1	_	scanclk cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 2 of 4)

Symbol	Conditions	13		C4		C5,I5		C6		Unit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	UIIIL
Transmitter										
	SERDES factor, J = 3 to 10 (using dedicated SERDES)	150	1250 (2)	150	1250 (2)	150	1050 (2)	150	840	Mbps
f _{HSDR_TX} (true LVDS output data rate)	SERDES factor, J = 4 to 10 (using logic elements as SERDES)	(3)	945	(3)	945	(3)	840	(3)	740	Mbps
	SERDES factor, J = 2 (using DDR registers) and J = 1 (using SDR register)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	Mbps
f _{HSDR_TX_E3R} (emulated LVDS_E_3R output data rate) (7)	SERDES factor, J = 4 to 10	(3)	945	(3)	945	(3)	840	(3)	740	Mbps

Table 1-53.	High-Speed I/O Specifications for Arria II GX Devices	(Part 4 of 4)
-------------	---	---------------

Combal	Conditions 13		3	C4		C5,I5		C6		Ilmit
Symbol	Conuntions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)	_	300	_	300	_	350	_	400	ps

Notes to Table 1-53:

- (1) $f_{HSCLK_IN} = f_{HSDR} / W$. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

Cumbal	Conditions		C3, I3			II!A		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

O	O and Hillians		C3, I3					
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5	_	717 (7)	MHz
Transmitter								
	SERDES factor, $J = 3$ to 10 (using dedicated SERDES) (β)	(4)	_	1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–60 lists the DQS phase shift error for Arria II GX devices.

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices *(Note 1)*

Number of DQS Delay Buffer	C4	13, C5, I5	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Note to Table 1-60:

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GZ Devices (Note 1)

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Parameter	Clock	Cumbal	-4		-5		-6		llnit		
Parameter	Network	Network	Network	Symbol	Min	Max	Min	Max	Min	Max	Unit
Clock period jitter	Global	t _{JIT(per)}	-100	100	-125	125	-125	125	ps		
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-200	200	-250	250	-250	250	ps		
Duty cycle jitter	Global	t _{JIT(duty)}	-100	100	-125	125	-125	125	ps		

Notes to Table 1-62:

- (1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.
- (2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.
- (3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

⁽¹⁾ This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.