

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	4964
Number of Logic Elements/Cells	118143
Total RAM Bits	8315904
Number of I/O	260
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx125df25c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1-1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
V _I	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator	_	3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.21	V
V_{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within t_{RAMP} .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1-5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power to the configuration RAM bits	_	1.425	1.50	1.575	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key registers	_	1.2	_	3.3	V
M	Supplies power to the I/O pre-drivers,		3.135	3.3	3.465	V
V _{CCPD} (3)	differential input buffers, and MSEL		2.85	3.0	3.15	V
(0)	circuitry	I	2.375	2.5	2.625	٧
			3.135	3.3	3.465	V
		_	2.85	3.0	3.15	V
V _{CCIO}	Supplies power to the I/O banks (4)	_	2.375	2.5	2.625	V
	Supplies power to the 1/O banks (4)	_	1.71	1.8	1.89	V
		_	1.425	1.5	1.575	V
		_	1.14	1.2	1.26	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL		0.87	0.90	0.93	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	_	2.375	2.5	2.625	V
V _I	DC Input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA}	Supplies power to the transceiver PMA regulator	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.045	1.1	1.155	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.425	1.5	1.575	V
т	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Table 1-5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 2 of 2)

Symbol	Description	Condition	ndition Minimum		Maximum	Unit
t _{RAMP}	Power Supply Ramp time	Normal POR	0.05	_	100	ms
	Fower Supply hamp time	Fast POR	0.05	_	4	ms

Notes to Table 1-5:

- (1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.
- (2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.
- (3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .
- (4) V_{CCIO} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1-6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V (0)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
V_{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V_{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	_	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.3	V
V _I	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	_	0.05/0.075	0.0/0.E./4\	0.45/0.005	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.85/2.375	3.0/2.5 (4)	3.15/2.625	V
V _{CCHIP_L}	Transceiver HIP digital power (left side)	_	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	_	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	_	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	_	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	_	1.05	1.1	1.15	V

Table 1-6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 2 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit	
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V	
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V	
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 <i>(5)</i>	1 575	V	
V _{CCH_GXBRn}	Transmitter output buffer power (right side)	_	1.55/1.425	1.4/1.5 (5)	1.575	V	
т	Operating junction temperature	Commercial	0	_	85	°C	
T _J	Operating junction temperature	Industrial	-40	_	100	°C	
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	_	100	ms	
t _{RAMP}	Trower supply famp time	Fast POR (PORSEL=1)	0.05	_	4	ms	

Notes to Table 1-6:

- (1) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.
- (2) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (3) n = 0, 1, or 2.
- (4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.
- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter.

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 2 of 2)

Combal	Description	Conditions (II)	Calibration	II.m.i.k		
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit	
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%	
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCIO} = 2.5	± 30	± 30	%	

Note to Table 1-11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note 1)

		6 1111 (115	Ca	libration Accura	cy	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,I4	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50-Ω internal parallel OCT with calibration	$V_{CCIO} = 2.5, 1.8, 1.5, 1.2$	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 (3)	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2 ± 10		± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

- (1) OCT calibration accuracy is valid at the time of calibration only.
- (2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.
- (3) $20-\Omega$ R_S is not supported for 1.5 V and 1.2 V in Row I/O.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

0	Paradotta:	0	Resistance	Tolerance	1114
Symbol	Description	Conditions (V)	C3,I3	C4,I4	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	OCT without $V_{CCIO} = 3.0, 2.5$		± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCIO} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO}.

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

I/O	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM(E}	_{IC)} (V)	V ₀	_D (V) <i>(</i> 3	3)	V _{OCM} (V) <i>(3)</i>		
Standard (2)	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	l	600	0.4	1.32 5	0.25		0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200		600	0.4	1.32 5	0.25		0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300			0.6	1.8			_	_		_
BLVDS (4)	2.375	2.5	2.625	100		_	_	_	_	_	_	_	_	_

Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3) R_1 range: $90 \le RL \le 110 \Omega$.
- (4) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Chapter 1: Device Datasheet for Arria II Devices
Switching Characteristics

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Symbol/	0		13			C4			C5 and Is	j	C6			Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100	_	_	mV
V	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
V _{ICM}	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	$100-\Omega$ setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCle							50	MHz to 1.2	25 GHz: –10d	dB			•
differential mode	XAUI							100	MHz to 2	.5 GHz: –10d	dB			
Return loss	PCle							50	MHz to 1.	25 GHz: –6d	В			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	В			
Programmable PPM detector (8)	_						62.5, 100, 1 250, 300, 500							ppm
Run length	_	_	80	_	_	80	_	_	80	_	_	80	_	UI
Programmable equalization	_	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time	_	_	_	75	_	_	75	_	_	75	_	_	75	μs
CDR minimum T1b (10)	_	15			15			15			15			μѕ

December 2013 Altera Corporation

Arria II Device Handbook Volume 3: Device Datasheet and Addendum

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/			13			C4			C5 and I	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_	_	_	4000	_	_	4000	_	_	4000	_	_	4000	ns
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	_	600	_	6375	600	_	3750	600		3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	_	650	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe				ı	ı	50 MHz to	1.25 GHz:	-10dB	l .	1			
differential mode	XAUI	312 MHz to 625 MHz: -10dB 625 MHz to 3.125 GHz: -10dB/decade slope												
Return loss common mode	PCle		50 MHz to 1.25 GHz: –6dB											
Rise time (2)	_	50	_	200	50	_	200	50		200	50	_	200	ps
Fall time	_	50	_	200	50	_	200	50	_	200	50	_	200	ps

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)		-C4 and -	14	Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
	PCIe Gen1			2.5 -	3.5			MHz	
	PCIe Gen2			6 -	8			MHz	
-3 dB Bandwidth	(OIF) CEI PHY at 4.976 Gbps		7 - 11						
	(OIF) CEI PHY at 6.375 Gbps	5 - 10							
	XAUI	2 - 4							
	SRIO 1.25 Gbps	3 - 5.5							
	SRIO 2.5 Gbps			3 -	5.5			MHz	
	SRIO 3.125 Gbps			2 -	4			MHz	
	GIGE			2.5 -	4.5			MHz	
	SONET OC12			1.5 -	2.5			MHz	
	SONET OC48			3.5	- 6			MHz	
Transceiver-FPGA Fabric In	terface								
Interface speed	_	25	_	325	25	_	250	MHz	
Digital reset pulse width	_		Minimu	ım is two pa	arallel cloc	k cycles		_	

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–1. Lock Time Parameters for Manual Mode

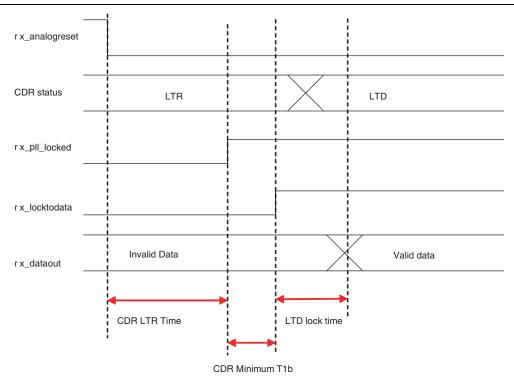


Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

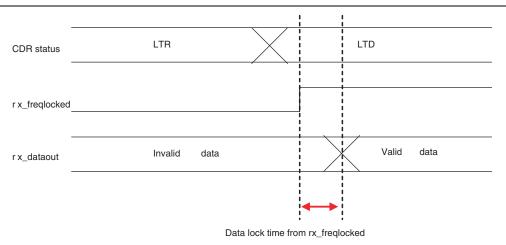


Figure 1–3 shows the differential receiver input waveform.

Figure 1-3. Receiver Input Waveform

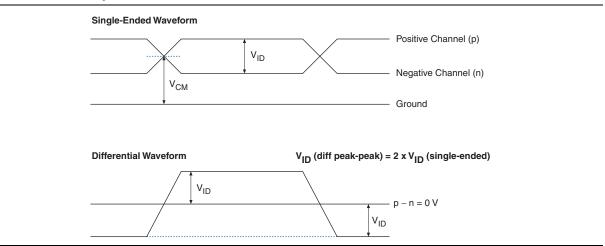


Figure 1–4 shows the transmitter output waveform.

Figure 1-4. Transmitter Output Waveform

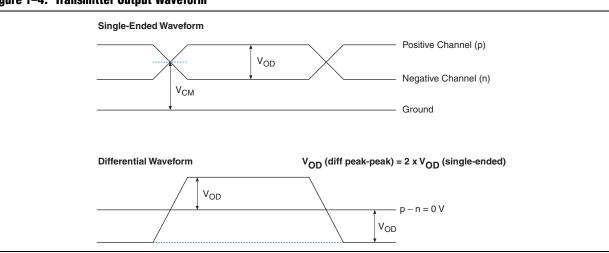


Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1–36. Typical $\mbox{V}_{\mbox{\scriptsize 0D}}$ Setting, TX Term = 85 Ω for Arria II GZ Devices

Cumbal	V _{OD} Setting (mV)									
Symbol	0	1	2	3	4	5	6	7		
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%		

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

Symbol/	O-ndiki-n-		13			C4			C5, I5	5	C6			11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5		> 1.5		> 1.5		UI		
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitt	er Generation <i>(3)</i>													
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	_		0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.17		_	0.17	_		0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter	_		> 0.65			> 0.6	5		> 0.65	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	i		> 8.5	l		> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1		> 0.1 > 0.1		> 0.1			UI				
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>				•			•			•			
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

Symbol/			13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Total jitter	Pattern = CRPAT	_		0.27	_	_	0.279	_		0.279			0.279	UI
(peak-to-peak)	Tattom = OTITAL			9			0.270			0.270			0.270	0.
GIGE Receiver Jitt	er Tolerance <i>(6)</i>													1
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4	ļ		> 0.4	ļ		> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66			> 0.6	6		> 0.60	ô		> 0.60	ô	UI
HiGig Transmit Jit	ter Generation <i>(7)</i>													
Deterministic jitter	Data rate = 3.75 Gbps	_	_	0.17	_	_	0.17	_	_	_	_	_	_	UI
(peak-to-peak)	Pattern = CJPAT													
Total jitter	Data rate = 3.75 Gbps			0.35		_	0.35	_				_	_	UI
(peak-to-peak)	Pattern = CJPAT			0.00			0.00							01
HiGig Receiver Jit	ter Tolerance <i>(7)</i>	I		I	ı				I	I				
Deterministic jitter tolerance	Data rate = 3.75 Gbps		> 0.37			> 0.3	7	_	_	_	_	_	_	UI
(peak-to-peak)	Pattern = CJPAT													
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65			> 0.6	5	_	_	_	_	_	_	UI
	Jitter frequency = 22.1 KHz													
	Data rate = 3.75 Gbps		> 8.5			> 8.5	j	_	_	_	_	_	_	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875MHz													
tolerance (peak-to-peak)	Data rate = 3.75 Gbps		> 0.1			> 0.1		_		_		_	_	UI
	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 3.75 Gbps		> 0.1			> 0.1		_	_	_	_	_	_	UI
	Pattern = CJPAT													

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 5 of 7)

Symbol/	O and Hillians		-C3 and	-l3	-	-C4 and	-14	11-24
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter Frequency = 38.2 KHz							
	Data rate = 6.375 Gbps		> 0.5		_	_	_	UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 3.82 MHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps		> 0.05		_	_	_	UI
io-peak)	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 20 MHz							
	Data rate = 6.375 Gbps		> 0.05		_	_	_	UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
SDI Transmitter Jitter Generatio	n <i>(12)</i>				•			
	Data rate = 1.485 Gbps (HD)	_			_			
Alignment jitter	Pattern = color bar Low-frequency roll-off = 100 KHz	0.2	_	_	0.2	_	_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = color bar Low-frequency roll-off = 100 KHz	0.3	_	_	0.3	_	_	UI
SDI Receiver Jitter Tolerance (1	(2)				•			•
	Jitter frequency = 15 KHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 2			> 2		UI
Cinunaidal iittar talaranaa (naak	Jitter frequency = 100 KHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 20 KHz							
	Data rate = 1.485 Gbps (HD) pattern = 75% color bar		>1			>1		UI
Sinusoidal iittar talaranaa (naak	Jitter frequency = 100 KHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
SAS Transmit Jitter Generation	,				1			
Total jitter at 1.5 Gbps (G1)	Pattern = CJPAT		_	0.55	_	_	0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Pattern = CJPAT	_	_	0.35	_	_	0.35	UI
Total jitter at 3.0 Gbps (G2)	Pattern = CJPAT			0.55	_		0.55	UI

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5	_	MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		_	ns
+ (2) (4)	Input clock cycle to cycle jitter (F _{REF} ≥ 100 MHz)	_		0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	_		±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{OUTPJ_DC} (5)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
± (E)	Cycle to Cycle Jitter for dedicated clock output $(F_{OUT} \ge 100 \text{ MHz})$	_	_	175	ps (p-p)
t _{OUTCCJ_DC} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{OUTPJ_IO} (5),	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} (5),	Cycle to Cycle Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC}	Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} \ge 100 MHz)$	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} < 100MHz)$	_	_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	_	_	±10	%

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- $(6) \quad \hbox{The cascaded PLL specification is only applicable with the following condition:}$
 - a. Upstream PLL: $0.59 \text{ Mhz} \leq \text{Upstream PLL BW} < 1 \text{ MHz}$
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46. DSP Block Performance Specifications for Arria II GX Devices (Note 1)

Mada	Resources Used		Perfor	mance		1114
Mode	Number of Multipliers	C4	13	C5,I5	C6	Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

- (1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.
- (2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Table 1-47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 1 of 2)

Mode	Resources Used	Perfor	nance	Unit
Wide	Number of Multipliers	-3	-4	Ullit
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 x 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Configuration

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Table 1–50. Configuration Mode Specifications for Arria II Devices

Dragramming Made	D	CLK Frequen	СУ	llmit
Programming Mode	Min	Тур	Max	Unit
Passive serial	_	_	125	MHz
Fast passive parallel	_	_	125	MHz
Fast active serial (fast clock)	17	26	40	MHz
Fast active serial (slow clock)	8.5	13	20	MHz
Remote update only in fast AS mode	_	_	10	MHz

JTAG Specifications

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

Symbol	Description	Min	Max	Unit
t_{JCP}	TCK clock period	30	_	ns
t _{JCH}	TCK clock high time	14	_	ns
t _{JCL}	TCK clock low time	14	_	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t_{JPH}	JTAG port hold time	5	_	ns
t _{JPCO}	JTAG port clock to output	_	11	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14	ns

Chip-Wide Reset (Dev_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset ($\texttt{Dev_CLRn}$) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev_CLRn) Specifications for Arria II Devices

Description	Min	Тур	Max	Unit
Dev_CLRn	500	_	_	μS

Table 1-53.	High-Speed I/O Specifications for Arria II GX Devices ((Part 4 of 4)
-------------	---	---------------

Cumbal	Conditions	13		C4		C5,I5		C6		lleit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	PM Soft-CDR mode		300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)			300	_	300	_	350	_	400	ps

Notes to Table 1-53:

- (1) $f_{HSCLK_IN} = f_{HSDR} / W$. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

Cumbal	Conditions		C3, I3		C4, I4			Unit	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Uiiit	
Clock									
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz	

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1–66. IOE Programmable Delay for Arria II GX Devices

Parameter	Available		Maximum Offset								
	Settings (1)		Fast Model			Slow Model					Unit
			13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

- (1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.
- (2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE programmable delay settings for Arria II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

Parameter	Avoilable			Max	ximum Off	set			
	Available Settings	Minimum Offset <i>(2)</i>	Fast		Unit				
	(1)	(2)	Industrial	Commercial	C3	13	C4	14	
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

- (1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.
- (2) Minimum offset does not include the intrinsic delay.