




Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Obsolete                                                      |
| Number of LABs/CLBs            | 4964                                                          |
| Number of Logic Elements/Cells | 118143                                                        |
| Total RAM Bits                 | 8315904                                                       |
| Number of I/O                  | 372                                                           |
| Number of Gates                | -                                                             |
| Voltage - Supply               | 0.87V ~ 0.93V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                            |
| Package / Case                 | 780-BBGA, FCBGA                                               |
| Supplier Device Package        | 780-FBGA (29x29)                                              |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep2agx125ef29i5nes |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1-1. Absolute Maximum Ratings for Arria II GX Devices

| Symbol               | Description                                                                                                     | Minimum | Maximum | Unit |
|----------------------|-----------------------------------------------------------------------------------------------------------------|---------|---------|------|
| V <sub>CC</sub>      | Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS | -0.5    | 1.35    | V    |
| V <sub>CCCB</sub>    | Supplies power for the configuration RAM bits                                                                   | -0.5    | 1.8     | V    |
| V <sub>CCBAT</sub>   | Battery back-up power supply for design security volatile key register                                          | -0.5    | 3.75    | V    |
| V <sub>CCPD</sub>    | Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry                           | -0.5    | 3.75    | V    |
| V <sub>CCIO</sub>    | Supplies power to the I/O banks                                                                                 | -0.5    | 3.9     | V    |
| $V_{CCD\_PLL}$       | Supplies power to the digital portions of the PLL                                                               | -0.5    | 1.35    | V    |
| V <sub>CCA_PLL</sub> | Supplies power to the analog portions of the PLL and device-wide power management circuitry                     | -0.5    | 3.75    | V    |
| V <sub>I</sub>       | DC input voltage                                                                                                | -0.5    | 4.0     | V    |
| I <sub>OUT</sub>     | DC output current, per pin                                                                                      | -25     | 40      | mA   |
| V <sub>CCA</sub>     | Supplies power to the transceiver PMA regulator                                                                 | _       | 3.75    | V    |
| $V_{CCL\_GXB}$       | Supplies power to the transceiver PMA TX, PMA RX, and clocking                                                  | _       | 1.21    | V    |
| $V_{CCH\_GXB}$       | Supplies power to the transceiver PMA output (TX) buffer                                                        | _       | 1.8     | V    |
| T <sub>J</sub>       | Operating junction temperature                                                                                  | -55     | 125     | °C   |
| T <sub>STG</sub>     | Storage temperature (no bias)                                                                                   | -65     | 150     | °C   |

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

| Symbol                | Description                                                                                 | Minimum | Maximum | Unit |
|-----------------------|---------------------------------------------------------------------------------------------|---------|---------|------|
| V <sub>CC</sub>       | Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS   | -0.5    | 1.35    | V    |
| V <sub>CCCB</sub>     | Power supply to the configuration RAM bits                                                  | -0.5    | 1.8     | V    |
| V <sub>CCPGM</sub>    | Supplies power to the configuration pins                                                    | -0.5    | 3.75    | V    |
| V <sub>CCAUX</sub>    | Auxiliary supply                                                                            | -0.5    | 3.75    | V    |
| V <sub>CCBAT</sub>    | Supplies battery back-up power for design security volatile key register                    | -0.5    | 3.75    | V    |
| V <sub>CCPD</sub>     | Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry       | -0.5    | 3.75    | V    |
| V <sub>CCIO</sub>     | Supplies power to the I/O banks                                                             | -0.5    | 3.9     | V    |
| V <sub>CC_CLKIN</sub> | Supplies power to the differential clock input                                              | -0.5    | 3.75    | V    |
| V <sub>CCD_PLL</sub>  | Supplies power to the digital portions of the PLL                                           | -0.5    | 1.35    | V    |
| V <sub>CCA_PLL</sub>  | Supplies power to the analog portions of the PLL and device-wide power management circuitry | -0.5    | 3.75    | V    |
| VI                    | DC input voltage                                                                            | -0.5    | 4.0     | V    |
| I <sub>OUT</sub>      | DC output current, per pin                                                                  | -25     | 40      | mA   |

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

| 0                                  | Paradotta:                                         | 0                            | Resistance | Tolerance | 1114 |
|------------------------------------|----------------------------------------------------|------------------------------|------------|-----------|------|
| Symbol                             | Description                                        | Conditions (V)               | C3,I3      | C4,I4     | Unit |
| 25-Ω R <sub>S</sub><br>3.0 and 2.5 | 25-Ω internal series<br>OCT without<br>calibration | $V_{CCIO} = 3.0, 2.5$        | ± 40       | ± 40      | %    |
| 25-Ω R <sub>S</sub><br>1.8 and 1.5 | 25-Ω internal series<br>OCT without<br>calibration | V <sub>CCIO</sub> = 1.8, 1.5 | ± 40       | ± 40      | %    |
| 25-Ω R <sub>S</sub><br>1.2         | 25-Ω internal series<br>OCT without<br>calibration | V <sub>CCIO</sub> = 1.2      | ± 50       | ± 50      | %    |
| 50-Ω R <sub>S</sub><br>3.0 and 2.5 | 50-Ω internal series<br>OCT without<br>calibration | V <sub>CCIO</sub> = 3.0, 2.5 | ± 40       | ± 40      | %    |
| 50-Ω R <sub>S</sub><br>1.8 and 1.5 | 50-Ω internal series<br>OCT without<br>calibration | V <sub>CCIO</sub> = 1.8, 1.5 | ± 40       | ± 40      | %    |
| 50-Ω R <sub>S</sub><br>1.2         | 50-Ω internal series<br>OCT without<br>calibration | V <sub>CCIO</sub> = 1.2      | ± 50       | ± 50      | %    |
| 100-Ω R <sub>D</sub><br>2.5        | 100-Ω internal<br>differential OCT                 | V <sub>CCIO</sub> = 2.5      | ± 25       | ± 25      | %    |

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

#### Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg( 1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

#### Notes to Equation 1–1:

(1) R<sub>OCT</sub> value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V<sub>CCIO</sub>.

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

| I/O                    | 1     | V <sub>CCIO</sub> (V | 1)    |     | V <sub>ID</sub> (mV)     |     | V <sub>ICM(E</sub> | <sub>IC)</sub> (V) | V <sub>OD</sub> (V) <i>(3)</i> |     |     | V <sub>OCM</sub> (V) (3) |      |       |
|------------------------|-------|----------------------|-------|-----|--------------------------|-----|--------------------|--------------------|--------------------------------|-----|-----|--------------------------|------|-------|
| Standard (2)           | Min   | Тур                  | Max   | Min | Cond.                    | Max | Min                | Max                | Min                            | Тур | Max | Min                      | Тур  | Max   |
| 2.5 V<br>LVDS<br>(HIO) | 2.375 | 2.5                  | 2.625 | 100 | V <sub>CM</sub> = 1.25 V | _   | 0.05               | 1.8                | 0.247                          | _   | 0.6 | 1.125                    | 1.25 | 1.375 |
| 2.5 V<br>LVDS<br>(VIO) | 2.375 | 2.5                  | 2.625 | 100 | V <sub>CM</sub> = 1.25 V | _   | 0.05               | 1.8                | 0.247                          | _   | 0.6 | 1                        | 1.25 | 1.5   |
| RSDS<br>(HIO)          | 2.375 | 2.5                  | 2.625 | 100 | V <sub>CM</sub> = 1.25 V | _   | 0.3                | 1.4                | 0.1                            | 0.2 | 0.6 | 0.5                      | 1.2  | 1.4   |
| RSDS<br>(VIO)          | 2.375 | 2.5                  | 2.625 | 100 | V <sub>CM</sub> = 1.25 V | _   | 0.3                | 1.4                | 0.1                            | 0.2 | 0.6 | 0.5                      | 1.2  | 1.5   |
| Mini-LVDS<br>(HIO)     | 2.375 | 2.5                  | 2.625 | 200 | l                        | 600 | 0.4                | 1.32<br>5          | 0.25                           |     | 0.6 | 1                        | 1.2  | 1.4   |
| Mini-LVDS<br>(VIO)     | 2.375 | 2.5                  | 2.625 | 200 |                          | 600 | 0.4                | 1.32<br>5          | 0.25                           |     | 0.6 | 1                        | 1.2  | 1.5   |
| LVPECL                 | 2.375 | 2.5                  | 2.625 | 300 |                          |     | 0.6                | 1.8                |                                |     | _   | _                        |      | _     |
| BLVDS (4)              | 2.375 | 2.5                  | 2.625 | 100 |                          | _   | _                  | _                  | _                              | _   | _   | _                        | _    | _     |

#### Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3)  $R_1$  range:  $90 \le RL \le 110 \Omega$ .
- (4) There are no fixed V<sub>ICM</sub>, V<sub>OD</sub>, and V<sub>OCM</sub> specifications for BLVDS. These specifications depend on the system topology.

# **Power Consumption for the Arria II Device Family**

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus<sup>®</sup> II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.



For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

December 2013 Altera Corporation

Arria II Device Handbook Volume 3: Device Datasheet and Addendum

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

| Symbol/                                             |                        |     | 13                       |      |     | C4     |                             |           | C5 and I | 5    |     | C6  |      |      |
|-----------------------------------------------------|------------------------|-----|--------------------------|------|-----|--------|-----------------------------|-----------|----------|------|-----|-----|------|------|
| Description                                         | Condition              | Min | Тур                      | Max  | Min | Тур    | Max                         | Min       | Тур      | Max  | Min | Тур | Max  | Unit |
| LTD lock time (11)                                  | _                      | 0   | 100                      | 4000 | 0   | 100    | 4000                        | 0         | 100      | 4000 | 0   | 100 | 4000 | ns   |
| Data lock time<br>from rx_<br>freqlocked<br>(12)    | _                      | _   | _                        | 4000 | _   | _      | 4000                        | _         | _        | 4000 | _   | _   | 4000 | ns   |
|                                                     | DC Gain<br>Setting = 0 | _   | 0                        | _    | _   | 0      | _                           | _         | 0        | _    | _   | 0   | _    | dB   |
| Programmable<br>DC gain                             | DC Gain<br>Setting = 1 | _   | 3                        | _    | _   | 3      | _                           | _         | 3        | _    | _   | 3   | _    | dB   |
|                                                     | DC Gain<br>Setting = 2 | _   | 6                        | _    | _   | 6      | _                           | _         | 6        | _    | _   | 6   | _    | dB   |
| Transmitter                                         |                        |     |                          |      |     |        |                             |           |          |      |     |     |      |      |
| Supported I/O<br>Standards                          |                        |     |                          |      |     |        | 1.5-V PCM                   | L         |          |      |     |     |      |      |
| Data rate                                           | _                      | 600 | _                        | 6375 | 600 | _      | 3750                        | 600       |          | 3750 | 600 | _   | 3125 | Mbps |
| V <sub>OCM</sub>                                    | 0.65 V<br>setting      | _   | 650                      | _    | _   | 650    | _                           | _         | 650      | _    | _   | 650 | _    | mV   |
| Differential<br>on-chip<br>termination<br>resistors | 100–Ω<br>setting       | _   | 100                      | _    | _   | 100    | _                           | _         | 100      | _    | _   | 100 | _    | Ω    |
| Return loss                                         | PCIe                   |     |                          |      | ı   | ı      | 50 MHz to                   | 1.25 GHz: | -10dB    | l .  | 1   |     |      |      |
| differential mode                                   | XAUI                   |     |                          |      |     | 625 MI | 312 MHz to<br>Hz to 3.125 ( |           |          | lope |     |     |      |      |
| Return loss common mode                             | PCle                   |     | 50 MHz to 1.25 GHz: –6dB |      |     |        |                             |           |          |      |     |     |      |      |
| Rise time (2)                                       | _                      | 50  | _                        | 200  | 50  | _      | 200                         | 50        |          | 200  | 50  | _   | 200  | ps   |
| Fall time                                           | _                      | 50  | _                        | 200  | 50  | _      | 200                         | 50        | _        | 200  | 50  | _   | 200  | ps   |

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

| Symbol/                   | Condition |     | 13                                 |     |     | C4  |     |     | C5 and I5 | j   |     | C6  |     | Unit |
|---------------------------|-----------|-----|------------------------------------|-----|-----|-----|-----|-----|-----------|-----|-----|-----|-----|------|
| Description               | Gununtiun | Min | Тур                                | Max | Min | Тур | Max | Min | Тур       | Max | Min | Тур | Max |      |
| Digital reset pulse width | _         |     | Minimum is 2 parallel clock cycles |     |     |     |     |     |           |     |     |     |     |      |

#### Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz \* 100/f.
- (4) The minimum reconfig\_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig\_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to AN 558: Implementing Dynamic Reconfiguration in Arria II Devices.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx\_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig\_clk sources for these altgx\_reconfig instances, the delta time between any two of these reconfig\_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V<sub>ICM</sub> setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to  $\pm 300$  parts per million (ppm).
- (9) Time taken to rx pll locked goes high from rx analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx pll locked goes high and before rx locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1–1.
- (12) The time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–1. Lock Time Parameters for Manual Mode

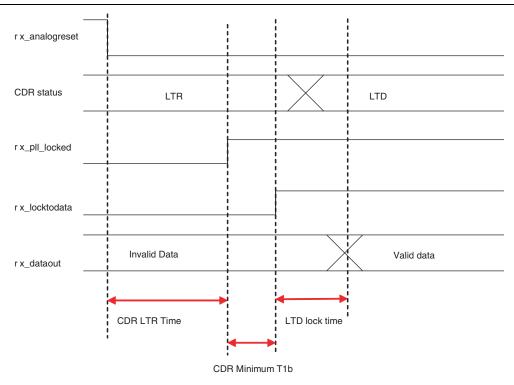



Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

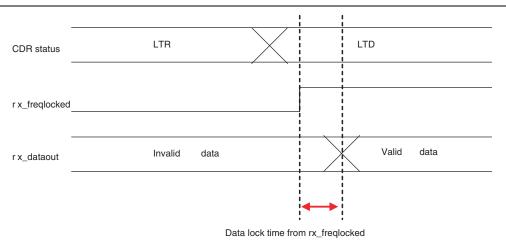



Table 1–37 lists the typical  $V_{OD}$  for TX term that equals  $100~\Omega$  for Arria II GX and GZ devices.

Table 1–37. Typical V<sub>OD</sub> Setting, TX Termination = 100  $\Omega$  for Arria II Devices

| Quartus II Setting | V <sub>op</sub> Setting (mV) |
|--------------------|------------------------------|
| 1                  | 400                          |
| 2                  | 600                          |
| 3 (Arria II GZ)    | 700                          |
| 4                  | 800                          |
| 5                  | 900                          |
| 6                  | 1000                         |
| 7                  | 1200                         |

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Table 1-38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

| Arria II GX                                           |                | Ar  | ria II GX (Quartu | s II Software) V( | OD Setting |     |      |
|-------------------------------------------------------|----------------|-----|-------------------|-------------------|------------|-----|------|
| (Quartus II<br>Software)<br>First Post Tap<br>Setting | 1              | 2   | 4                 | 5                 | 6          | 7   | Unit |
| 0 (off)                                               | 0              | 0   | 0                 | 0                 | 0          | 0   | _    |
| 1                                                     | 0.7            | 0   | 0                 | 0                 | 0          | 0   | dB   |
| 2                                                     | 2.7            | 1.2 | 0.3               | 0                 | 0          | 0   | dB   |
| 3                                                     | 4.9            | 2.4 | 1.2               | 0.8               | 0.5        | 0.2 | dB   |
| 4                                                     | 7.5            | 3.8 | 2.1               | 1.6               | 1.2        | 0.6 | dB   |
| 5                                                     | _              | 5.3 | 3.1               | 2.4               | 1.8        | 1.1 | dB   |
| 6                                                     | <del>-</del> 7 |     | 4.3               | 3.3               | 2.7        | 1.7 | dB   |

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

| Pre-<br>Emphasis           |     |     |      | V <sub>od</sub> S | etting |     |     | T   |
|----------------------------|-----|-----|------|-------------------|--------|-----|-----|-----|
| 1st<br>Post-Tap<br>Setting | 0   | 1   | 2    | 3                 | 4      | 5   | 6   | 7   |
| 0                          | 0   | 0   | 0    | 0                 | 0      | 0   | 0   | 0   |
| 1                          | N/A | 0.7 | 0    | 0                 | 0      | 0   | 0   | 0   |
| 2                          | N/A | 1   | 0.3  | 0                 | 0      | 0   | 0   | 0   |
| 3                          | N/A | 1.5 | 0.6  | 0                 | 0      | 0   | 0   | 0   |
| 4                          | N/A | 2   | 0.7  | 0.3               | 0      | 0   | 0   | 0   |
| 5                          | N/A | 2.7 | 1.2  | 0.5               | 0.3    | 0   | 0   | 0   |
| 6                          | N/A | 3.1 | 1.3  | 0.8               | 0.5    | 0.2 | 0   | 0   |
| 7                          | N/A | 3.7 | 1.8  | 1.1               | 0.7    | 0.4 | 0.2 | 0   |
| 8                          | N/A | 4.2 | 2.1  | 1.3               | 0.9    | 0.6 | 0.3 | 0   |
| 9                          | N/A | 4.9 | 2.4  | 1.6               | 1.2    | 0.8 | 0.5 | 0.2 |
| 10                         | N/A | 5.4 | 2.8  | 1.9               | 1.4    | 1   | 0.7 | 0.3 |
| 11                         | N/A | 6   | 3.2  | 2.2               | 1.7    | 1.2 | 0.9 | 0.4 |
| 12                         | N/A | 6.8 | 3.5  | 2.6               | 1.9    | 1.4 | 1.1 | 0.6 |
| 13                         | N/A | 7.5 | 3.8  | 2.8               | 2.1    | 1.6 | 1.2 | 0.6 |
| 14                         | N/A | 8.1 | 4.2  | 3.1               | 2.3    | 1.7 | 1.3 | 0.7 |
| 15                         | N/A | 8.8 | 4.5  | 3.4               | 2.6    | 1.9 | 1.5 | 0.8 |
| 16                         | N/A | N/A | 4.9  | 3.7               | 2.9    | 2.2 | 1.7 | 0.9 |
| 17                         | N/A | N/A | 5.3  | 4                 | 3.1    | 2.4 | 1.8 | 1.1 |
| 18                         | N/A | N/A | 5.7  | 4.4               | 3.4    | 2.6 | 2   | 1.2 |
| 19                         | N/A | N/A | 6.1  | 4.7               | 3.6    | 2.8 | 2.2 | 1.4 |
| 20                         | N/A | N/A | 6.6  | 5.1               | 4      | 3.1 | 2.4 | 1.5 |
| 21                         | N/A | N/A | 7    | 5.4               | 4.3    | 3.3 | 2.7 | 1.7 |
| 22                         | N/A | N/A | 8    | 6.1               | 4.8    | 3.8 | 3   | 2   |
| 23                         | N/A | N/A | 9    | 6.8               | 5.4    | 4.3 | 3.4 | 2.3 |
| 24                         | N/A | N/A | 10   | 7.6               | 6      | 4.8 | 3.9 | 2.6 |
| 25                         | N/A | N/A | 11.4 | 8.4               | 6.8    | 5.4 | 4.4 | 3   |
| 26                         | N/A | N/A | 12.6 | 9.4               | 7.4    | 5.9 | 4.9 | 3.3 |
| 27                         | N/A | N/A | N/A  | 10.3              | 8.1    | 6.4 | 5.3 | 3.6 |
| 28                         | N/A | N/A | N/A  | 11.3              | 8.8    | 7.1 | 5.8 | 4   |

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

| Symbol/                                                                       |                                             |        | 13     |      |        | C4     |       |       | C5, I  | 5     | C6    |        |       |      |
|-------------------------------------------------------------------------------|---------------------------------------------|--------|--------|------|--------|--------|-------|-------|--------|-------|-------|--------|-------|------|
| Description                                                                   | Conditions                                  | Min    | Тур    | Max  | Min    | Тур    | Max   | Min   | Тур    | Max   | Min   | Тур    | Max   | Unit |
| Total jitter                                                                  | Pattern = CRPAT                             | _      |        | 0.27 | _      | _      | 0.279 | _     |        | 0.279 |       |        | 0.279 | UI   |
| (peak-to-peak)                                                                | Tattom = OTITAL                             |        |        | 9    |        |        | 0.270 |       |        | 0.270 |       |        | 0.270 | 0.   |
| GIGE Receiver Jitt                                                            | er Tolerance <i>(6)</i>                     |        |        |      |        |        |       |       |        |       |       |        |       | 1    |
| Deterministic<br>jitter tolerance<br>(peak-to-peak)                           | Pattern = CJPAT                             | > 0.4  |        |      |        | > 0.4  | ļ     | > 0.4 |        |       | > 0.4 |        |       | UI   |
| Combined<br>deterministic and<br>random jitter<br>tolerance<br>(peak-to-peak) | Pattern = CJPAT                             | > 0.66 |        |      |        | > 0.66 |       |       | > 0.66 |       |       | > 0.66 |       | UI   |
| HiGig Transmit Jit                                                            | ter Generation <i>(7)</i>                   |        |        |      |        |        |       |       |        |       |       |        |       |      |
| Deterministic jitter                                                          | Data rate =<br>3.75 Gbps                    | _      | _      | 0.17 | _      | _      | 0.17  | _     | _      | _     | _     | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |        |        |      |        |        |       |       |        |       |       |        |       |      |
| Total jitter                                                                  | Data rate =<br>3.75 Gbps                    |        |        | 0.35 |        | _      | 0.35  | _     |        |       |       | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |        |        | 0.00 |        |        | 0.00  |       |        |       |       |        |       | 01   |
| HiGig Receiver Jit                                                            | ter Tolerance <i>(7)</i>                    | I      |        | I    | ı      |        |       |       | I      | I     | I     |        |       |      |
| Deterministic jitter tolerance                                                | Data rate =<br>3.75 Gbps                    |        | > 0.37 |      |        | > 0.3  | 7     | _     | _      | _     | _     | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |        |        |      |        |        |       |       |        |       |       |        |       |      |
| Combined<br>deterministic and<br>random jitter<br>tolerance<br>(peak-to-peak) | Data rate =<br>3.75 Gbps<br>Pattern = CJPAT |        | > 0.65 |      | > 0.65 |        | _     | _     | _      | _     | _     | _      | UI    |      |
|                                                                               | Jitter frequency = 22.1 KHz                 |        |        |      |        |        |       |       |        |       |       |        |       |      |
|                                                                               | Data rate =<br>3.75 Gbps                    |        | > 8.5  |      |        | > 8.5  | j     | _     | _      | _     | _     | _      | _     | UI   |
|                                                                               | Pattern = CJPAT                             |        |        |      |        |        |       |       |        |       |       |        |       |      |
| Sinusoidal jitter                                                             | Jitter frequency =<br>1.875MHz              |        |        |      |        |        |       |       |        |       |       |        |       |      |
| tolerance<br>(peak-to-peak)                                                   | Data rate =<br>3.75 Gbps                    |        | > 0.1  |      |        | > 0.1  |       | _     |        | _     |       | _      | _     | UI   |
|                                                                               | Pattern = CJPAT                             |        |        |      |        |        |       |       |        |       |       |        |       |      |
|                                                                               | Jitter frequency = 20 MHz                   |        |        |      |        |        |       |       |        |       |       |        |       |      |
|                                                                               | Data rate =<br>3.75 Gbps                    |        | > 0.1  |      | > 0.1  |        | _     | _     | _      | _     | _     | _      | UI    |      |
|                                                                               | Pattern = CJPAT                             |        |        |      |        |        |       |       |        |       |       |        |       |      |

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 6 of 10)

| Symbol/                                               | 0                                                                                             |        | 13  |        |       | C4     |        |       | C5, I  | 5      | C6    |     |      | 1114 |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|-----|--------|-------|--------|--------|-------|--------|--------|-------|-----|------|------|
| Description                                           | Conditions                                                                                    | Min    | Тур | Max    | Min   | Тур    | Max    | Min   | Тур    | Max    | Min   | Тур | Max  | Unit |
|                                                       | Jitter frequency = 20 KHz                                                                     |        |     |        |       |        |        |       |        |        |       |     |      |      |
|                                                       | Data rate =<br>1.485 Gbps (HD)<br>Pattern = 75%<br>color bar                                  |        | >1  |        |       | > 1    |        |       | > 1    |        |       | > 1 |      | UI   |
| Sinusoidal jitter<br>tolerance<br>(peak-to-peak)      | Jitter frequency =<br>100 KHz<br>Data rate = 1.485<br>Gbps (HD)<br>Pattern = 75%<br>color bar | > 0.2  |     |        | > 0.2 |        |        | > 0.2 |        |        | > 0.2 |     |      | UI   |
|                                                       | Jitter frequency = 148.5 MHz                                                                  |        |     |        |       |        |        |       |        |        |       |     |      |      |
|                                                       | Data rate =<br>1.485 Gbps (HD)<br>Pattern =75%<br>color bar                                   | > 0.2  |     |        | > 0.2 |        |        | > 0.2 |        |        | > 0.2 |     |      | UI   |
| SATA Transmit Jitt                                    | ter Generation <i>(10)</i>                                                                    |        |     |        |       |        |        |       |        |        |       |     |      |      |
| Total jitter at<br>1.5 Gbps (G1)                      | Compliance<br>pattern                                                                         | _      | _   | 0.55   | _     | _      | 0.55   | _     | _      | 0.55   | _     |     | 0.55 | UI   |
| Deterministic<br>jitter at 1.5 Gbps<br>(G1)           | Compliance pattern                                                                            | _      | _   | 0.35   | _     | _      | 0.35   | _     | _      | 0.35   | _     |     | 0.35 | UI   |
| Total jitter at<br>3.0 Gbps (G2)                      | Compliance<br>pattern                                                                         | _      | _   | 0.55   | _     | _      | 0.55   | _     | _      | 0.55   | _     |     | 0.55 | UI   |
| Deterministic<br>jitter at 3.0 Gbps<br>(G2)           | Compliance pattern                                                                            |        | _   | 0.35   |       | _      | 0.35   | _     | _      | 0.35   | _     |     | 0.35 | UI   |
| Total jitter at<br>6.0 Gbps (G3)                      | Compliance<br>pattern                                                                         | _      | _   | 0.52   | _     | _      | _      | _     | _      | _      | _     |     | _    | UI   |
| Random jitter at<br>6.0 Gbps (G3)                     | Compliance<br>pattern                                                                         | _      | _   | 0.18   | _     | _      | _      | _     | _      | _      | _     | _   | _    | UI   |
| SATA Receiver Jit                                     | ter Tolerance (10)                                                                            |        |     |        |       |        |        |       |        |        |       |     |      |      |
| Total jitter<br>tolerance at<br>1.5 Gbps (G1)         | Compliance<br>pattern                                                                         | > 0.65 |     | > 0.65 |       | > 0.65 |        |       | > 0.65 |        |       | UI  |      |      |
| Deterministic<br>jitter tolerance at<br>1.5 Gbps (G1) | Compliance pattern                                                                            | > 0.35 |     | > 0.35 |       |        | > 0.35 |       |        | > 0.35 |       |     | UI   |      |
| SSC modulation<br>frequency at<br>1.5 Gbps (G1)       | Compliance<br>pattern                                                                         | 33     |     | 33     |       |        | 33     |       |        | 33     |       |     | kHz  |      |

| Table 1-40. Tran | nsceiver Block Jitter | Specifications for | Arria II GX Devices | (Note 1) | (Part 10 of 10) |
|------------------|-----------------------|--------------------|---------------------|----------|-----------------|
|------------------|-----------------------|--------------------|---------------------|----------|-----------------|

| Symbol/           | Conditions                                    |     | 13    |     | C4  |       |     | C4 C5, I5 |       |     | C6  |       |     | Unit |
|-------------------|-----------------------------------------------|-----|-------|-----|-----|-------|-----|-----------|-------|-----|-----|-------|-----|------|
| Description       | Collultions                                   | Min | Тур   | Max | Min | Тур   | Max | Min       | Тур   | Max | Min | Тур   | Max |      |
| Sinusoidal jitter | Jitter frequency = 21.8 KHz                   |     | > 8.5 |     |     | > 8.5 |     |           | > 8.5 |     |     | > 8.5 |     | UI   |
|                   | Pattern = CJPAT                               |     |       |     |     |       |     |           |       |     |     |       |     |      |
|                   | Jitter frequency =<br>1843.2 KHz to 20<br>MHz |     | > 0.1 |     |     | > 0.1 |     |           | > 0.1 |     |     | > 0.1 |     | UI   |
|                   | Pattern = CJPAT                               |     |       |     |     |       |     |           |       |     |     |       |     |      |

#### Notes to Table 1-40:

- (1) Dedicated refclk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.
- (2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.
- (8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (9) Arria II PCIe receivers are compliant to this specification provided the VTX\_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.
- (11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.
- (12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1–41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

| Symbol/                                | Oouditions                   |        | -C3 and | <b>–13</b> | -      | Min         Typ         Max           —         —         0.1           —         —         0.01           —         —         0.1           —         —         0.01 |      |      |  |
|----------------------------------------|------------------------------|--------|---------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--|
| Description                            | Conditions                   | Min    | Тур     | Max        | Min    | Тур                                                                                                                                                                   | Max  | Unit |  |
| SONET/SDH Transmit Jitter Gener        | ration <i>(3)</i>            |        |         |            |        |                                                                                                                                                                       |      |      |  |
| Peak-to-peak jitter at<br>622.08 Mbps  | Pattern = PRBS15             | _      | _       | 0.1        | _      | _                                                                                                                                                                     | 0.1  | UI   |  |
| RMS jitter at 622.08 Mbps              | Pattern = PRBS15             | _      | _       | 0.01       | _      | _                                                                                                                                                                     | 0.01 | UI   |  |
| Peak-to-peak jitter at 2488.32<br>Mbps | Pattern = PRBS15             | _      | _       | 0.1        | _      | _                                                                                                                                                                     | 0.1  | UI   |  |
| RMS jitter at 2488.32 Mbps             | Pattern = PRBS15             | _      | _       | 0.01       | _      | _                                                                                                                                                                     | 0.01 | UI   |  |
| SONET/SDH Receiver Jitter Tolera       | ance <i>(3)</i>              |        |         |            |        |                                                                                                                                                                       |      |      |  |
|                                        | Jitter frequency = 0.03 KHz  |        | . 15    |            |        | . 15                                                                                                                                                                  |      | UI   |  |
|                                        | Pattern = PRBS15             |        | > 15    |            |        | > 15                                                                                                                                                                  |      | UI   |  |
| Jitter tolerance at 622.08 Mbps        | Jitter frequency =<br>25 KHZ |        | > 1.5   |            | > 1.5  |                                                                                                                                                                       |      | UI   |  |
|                                        | Pattern = PRBS15             |        |         |            |        |                                                                                                                                                                       |      |      |  |
|                                        | Jitter frequency = 250 KHz   |        | \ N 15  |            | . 0.15 |                                                                                                                                                                       |      | UI   |  |
|                                        | Pattern = PRBS15             | > 0.15 |         |            | > 0.15 |                                                                                                                                                                       |      | UI   |  |

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

| Symbol/                               | Oandille                        | -   | -C3 and | -I3  | -   | -C4 and - | -14  |      |
|---------------------------------------|---------------------------------|-----|---------|------|-----|-----------|------|------|
| Description                           | Conditions                      | Min | Тур     | Max  | Min | Тур       | Max  | Unit |
|                                       | Jitter frequency = 0.06 KHz     |     | . 45    |      |     | . 45      |      |      |
|                                       | Pattern = PRBS15                |     | > 15    |      |     | > 15      |      | UI   |
|                                       | Jitter frequency = 100 KHZ      |     | . 1 5   |      |     | > 1.5     |      | UI   |
|                                       | Pattern = PRBS15                |     | > 1.5   |      |     | > 1.0     |      | UI   |
| Jitter tolerance at 2488.32 Mbps      | Jitter frequency =<br>1 MHz     |     | > 0.15  |      |     | > 0.15    |      | UI   |
|                                       | Pattern = PRBS15                |     |         |      |     |           |      |      |
|                                       | Jitter frequency = 10 MHz       |     | > 0.15  |      |     | > 0.15    |      | UI   |
|                                       | Pattern = PRBS15                |     | > 0.10  |      |     | > 0.13    |      | UI   |
| Fibre Channel Transmit Jitter Gen     | eration <i>(4)</i> , <i>(5)</i> |     |         |      |     |           |      |      |
| Total jitter FC-1                     | Pattern = CRPAT                 | _   |         | 0.23 | _   | _         | 0.23 | UI   |
| Deterministic jitter FC-1             | Pattern = CRPAT                 | _   | _       | 0.11 | _   | _         | 0.11 | UI   |
| Total jitter FC-2                     | Pattern = CRPAT                 | _   | _       | 0.33 | _   | _         | 0.33 | UI   |
| Deterministic jitter FC-2             | Pattern = CRPAT                 | _   | _       | 0.2  | _   | _         | 0.2  | UI   |
| Total jitter FC-4                     | Pattern = CRPAT                 | _   | _       | 0.52 | _   | _         | 0.52 | UI   |
| Deterministic jitter FC-4             | Pattern = CRPAT                 | _   | _       | 0.33 | _   | _         | 0.33 | UI   |
| Fibre Channel Receiver Jitter Tole    | erance <i>(4)</i> , <i>(6)</i>  | •   |         |      |     |           |      | •    |
| Deterministic jitter FC-1             | Pattern = CJTPAT                |     | > 0.37  |      |     | > 0.37    |      | UI   |
| Random jitter<br>FC-1                 | Pattern = CJTPAT                |     | > 0.31  |      |     | > 0.31    |      | UI   |
| Sinusoidal jitter FC-1                | Fc/25000                        |     | > 1.5   |      |     | > 1.5     |      | UI   |
| Siliusuluai jillei FG-1               | Fc/1667                         |     | > 0.1   |      |     | > 0.1     |      | UI   |
| Deterministic jitter FC-2             | Pattern = CJTPAT                |     | > 0.33  |      |     | > 0.33    |      | UI   |
| Random jitter<br>FC-2                 | Pattern = CJTPAT                |     | > 0.29  |      |     | > 0.29    |      | UI   |
| Sinusoidal jitter FC-2                | Fc/25000                        |     | > 1.5   |      |     | > 1.5     |      | UI   |
| Siliusoluai jillei 10-2               | Fc/1667                         |     | > 0.1   |      |     | > 0.1     |      | UI   |
| Deterministic jitter FC-4             | Pattern = CJTPAT                |     | > 0.33  |      |     | > 0.33    |      | UI   |
| Random jitter FC-4                    | Pattern = CJTPAT                |     | > 0.29  |      |     | > 0.29    |      | UI   |
| Sinusoidal jitter FC-4                | Fc/25000                        |     | > 1.5   |      |     | > 1.5     |      | UI   |
| omasolaar jittor 10 4                 | Fc/1667                         |     | > 0.1   |      |     | > 0.1     |      | UI   |
| XAUI Transmit Jitter Generation (     | 7)                              |     |         |      |     |           |      |      |
| Total jitter at 3.125 Gbps            | Pattern = CJPAT                 | _   | _       | 0.3  | _   | _         | 0.3  | UI   |
| Deterministic jitter at<br>3.125 Gbps | Pattern = CJPAT                 | -   | _       | 0.17 | _   | _         | 0.17 | UI   |
| XAUI Receiver Jitter Tolerance (7     | )                               | •   | •       |      | •   |           |      |      |
| Total jitter                          | _                               |     | > 0.65  |      |     | > 0.65    |      | UI   |
| Deterministic jitter                  | _                               |     | > 0.37  |      |     | > 0.37    |      | UI   |

Table 1-44. PLL Specifications for Arria II GX Devices (Part 2 of 3)

| Symbol                   | Description                                                                                              | Min | Тур | Max            | Unit           |
|--------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|----------------|----------------|
|                          | Output frequency for internal global or regional clock (–4 Speed Grade)                                  | _   | _   | 500            | MHz            |
| f <sub>OUT</sub>         | Output frequency for internal global or regional clock (–5 Speed Grade)                                  | _   | _   | 500            | MHz            |
|                          | Output frequency for internal global or regional clock (–6 Speed Grade)                                  | _   | _   | 400            | MHz            |
|                          | Output frequency for external clock output (-4 Speed Grade)                                              | _   |     | 670 <i>(5)</i> | MHz            |
| f <sub>OUT_EXT</sub>     | Output frequency for external clock output (-5 Speed Grade)                                              | _   | _   | 622 (5)        | MHz            |
|                          | Output frequency for external clock output (-6 Speed Grade)                                              | _   | _   | 500 (5)        | MHz            |
| toutduty                 | Duty cycle for external clock output (when set to 50%)                                                   | 45  | 50  | 55             | %              |
| 4                        | Dedicated clock output period jitter (f <sub>OUT</sub> ≥ 100 MHz)                                        | _   | _   | 300            | ps (p-p)       |
| t <sub>OUTPJ_DC</sub>    | Dedicated clock output period jitter (f <sub>OUT</sub> < 100 MHz)                                        | _   | _   | 30             | mUI (p-p)      |
| 1                        | Dedicated clock output cycle-to-cycle jitter (f <sub>OUT</sub> ≥ 100 MHz)                                | _   | _   | 300            | ps (p-p)       |
| t <sub>OUTCCJ_DC</sub>   | Dedicated clock output cycle-to-cycle jitter (f <sub>OUT</sub> < 100 MHz)                                | _   | _   | 30             | mUI (p-p)      |
| ſ                        | Regular I/O clock output period jitter (f <sub>OUT</sub> ≥ 100 MHz)                                      | _   | _   | 650            | ps (p-p)       |
| f <sub>OUTPJ_IO</sub>    | Regular I/O clock output period jitter (f <sub>OUT</sub> < 100 MHz)                                      | _   |     | 65             | mUI (p-p)      |
| ı                        | Regular I/O clock output cycle-to-cycle jitter ( $f_{OUT} \ge 100 \text{ MHz}$ )                         | _   | _   | 650            | ps (p-p)       |
| f <sub>OUTCCJ_IO</sub>   | Regular I/O clock output cycle-to-cycle jitter (f <sub>OUT</sub> < 100 MHz)                              | _   | _   | 65             | mUI (p-p)      |
| t <sub>CONFIGPLL</sub>   | Time required to reconfigure PLL scan chains                                                             | _   | 3.5 | _              | SCANCLK cycles |
| t <sub>CONFIGPHASE</sub> | Time required to reconfigure phase shift                                                                 | _   | 1   | _              | SCANCLK cycles |
| f <sub>SCANCLK</sub>     | SCANCLK frequency                                                                                        | _   | _   | 100            | MHz            |
| t <sub>LOCK</sub>        | Time required to lock from end of device configuration                                                   | _   | _   | 1              | ms             |
| t <sub>DLOCK</sub>       | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _   | _   | 1              | ms             |
|                          | PLL closed-loop low bandwidth                                                                            | _   | 0.3 | _              | MHz            |
| f <sub>CL B W</sub>      | PLL closed-loop medium bandwidth                                                                         | _   | 1.5 | _              | MHz            |
|                          | PLL closed-loop high bandwidth                                                                           | _   | 4   | _              | MHz            |
| t <sub>PLL_PSERR</sub>   | Accuracy of PLL phase shift                                                                              | _   | _   | ±50            | ps             |
| t <sub>ARESET</sub>      | Minimum pulse width on areset signal                                                                     | 10  | _   | _              | ns             |

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

| Symbol                      | Parameter                                                                                                | Min | Тур | Max  | Unit      |
|-----------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|------|-----------|
| t <sub>DLOCK</sub>          | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _   | _   | 1    | ms        |
|                             | PLL closed-loop low bandwidth                                                                            | _   | 0.3 | _    | MHz       |
| f <sub>CLBW</sub>           | PLL closed-loop medium bandwidth                                                                         | _   | 1.5 | _    | MHz       |
|                             | PLL closed-loop high bandwidth (7)                                                                       | _   | 4   | _    | MHz       |
| t <sub>PLL_PSERR</sub>      | Accuracy of PLL phase shift                                                                              | _   |     | ±50  | ps        |
| t <sub>ARESET</sub>         | Minimum pulse width on the areset signal                                                                 | 10  |     | _    | ns        |
| + (2) (4)                   | Input clock cycle to cycle jitter (F <sub>REF</sub> ≥ 100 MHz)                                           | _   |     | 0.15 | UI (p-p)  |
| t <sub>INCCJ</sub> (3), (4) | Input clock cycle to cycle jitter (F <sub>REF</sub> < 100 MHz)                                           | _   |     | ±750 | ps (p-p)  |
| + (5)                       | Period Jitter for dedicated clock output ( $F_{OUT} \ge 100 \text{ MHz}$ )                               | _   | _   | 175  | ps (p-p)  |
| t <sub>OUTPJ_DC</sub> (5)   | Period Jitter for dedicated clock output (F <sub>OUT</sub> < 100 MHz)                                    | _   | _   | 17.5 | mUI (p-p) |
| ± (E)                       | Cycle to Cycle Jitter for dedicated clock output $(F_{OUT} \ge 100 \text{ MHz})$                         | _   | _   | 175  | ps (p-p)  |
| t <sub>OUTCCJ_DC</sub> (5)  | Cycle to Cycle Jitter for dedicated clock output (F <sub>OUT</sub> < 100 MHz)                            | _   | _   | 17.5 | mUI (p-p) |
| t <sub>OUTPJ_IO</sub> (5),  | Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$                            | _   | _   | 600  | ps (p-p)  |
| (8)                         | Period Jitter for clock output on regular I/O (F <sub>OUT</sub> < 100 MHz)                               | _   | _   | 60   | mUI (p-p) |
| t <sub>OUTCCJ_IO</sub> (5), | Cycle to Cycle Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$                    | _   | _   | 600  | ps (p-p)  |
| (8)                         | Cycle to Cycle Jitter for clock output on regular I/O (F <sub>OUT</sub> < 100 MHz)                       | _   | _   | 60   | mUI (p-p) |
| t <sub>CASC_OUTPJ_DC</sub>  | Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} \ge 100 MHz)$                        | _   | _   | 250  | ps (p-p)  |
| (5), (6)                    | Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} < 100MHz)$                           | _   | _   | 25   | mUI (p-p) |
| f <sub>DRIFT</sub>          | Frequency drift after PFDENA is disabled for duration of 100 us                                          | _   | _   | ±10  | %         |

#### Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O  $F_{MAX}$  or  $F_{OUT}$  of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4)  $F_{REF}$  is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- $(6) \quad \hbox{The cascaded PLL specification is only applicable with the following condition:}$ 
  - a. Upstream PLL:  $0.59 \text{ Mhz} \leq \text{Upstream PLL BW} < 1 \text{ MHz}$
  - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

Table 1–49 lists the embedded memory block specifications for Arria II GZ devices.

Table 1–49. Embedded Memory Block Performance Specifications for Arria II GZ Devices (Note 1)

|                  |                                                                                     | Resou | rces Used           |     | Perfor | mance |     |      |
|------------------|-------------------------------------------------------------------------------------|-------|---------------------|-----|--------|-------|-----|------|
| Memory           | Mode                                                                                | ALUTs | TriMatrix<br>Memory | C3  | 13     | C4    | 14  | Unit |
|                  | Single port 64 × 10                                                                 | 0     | 1                   | 500 | 500    | 450   | 450 | MHz  |
|                  | Simple dual-port 32 × 20                                                            | 0     | 1                   | 500 | 500    | 450   | 450 | MHz  |
| MLAB<br>(2)      | Simple dual-port 64 × 10                                                            | 0     | 1                   | 500 | 500    | 450   | 450 | MHz  |
| (2)              | ROM 64 × 10                                                                         | 0     | 1                   | 500 | 500    | 450   | 450 | MHz  |
|                  | ROM 32 × 20                                                                         | 0     | 1                   | 500 | 500    | 450   | 450 | MHz  |
|                  | Single-port 256 × 36                                                                | 0     | 1                   | 540 | 540    | 475   | 475 | MHz  |
|                  | Simple dual-port 256 × 36                                                           | 0     | 1                   | 490 | 490    | 420   | 420 | MHz  |
|                  | Simple dual-port 256 × 36, with the read-during-write option set to <b>Old Data</b> | 0     | 1                   | 340 | 340    | 300   | 300 | MHz  |
|                  | True dual port 512 × 18                                                             | 0     | 1                   | 430 | 430    | 370   | 370 | MHz  |
| M9K<br>Block (2) | True dual-port 512 × 18, with the read-during-write option set to <b>Old Data</b>   | 0     | 1                   | 335 | 335    | 290   | 290 | MHz  |
|                  | ROM 1 Port                                                                          | 0     | 1                   | 540 | 540    | 475   | 475 | MHz  |
|                  | ROM 2 Port                                                                          | 0     | 1                   | 540 | 540    | 475   | 475 | MHz  |
|                  | Min Pulse Width (clock high time)                                                   | _     | _                   | 800 | 800    | 850   | 850 | ps   |
|                  | Min Pulse Width (clock low time)                                                    | _     | _                   | 625 | 625    | 690   | 690 | ps   |
|                  | Single-port 2K × 72                                                                 | 0     | 1                   | 440 | 400    | 380   | 350 | MHz  |
|                  | Simple dual-port 2K × 72                                                            | 0     | 1                   | 435 | 375    | 385   | 325 | MHz  |
|                  | Simple dual-port 2K × 72, with the read-during-write option set to <b>Old Data</b>  | 0     | 1                   | 240 | 225    | 205   | 200 | MHz  |
|                  | Simple dual-port 2K × 64 (with ECC)                                                 | 0     | 1                   | 300 | 295    | 255   | 250 | MHz  |
| M144K            | True dual-port 4K × 36                                                              | 0     | 1                   | 375 | 350    | 330   | 310 | MHz  |
| Block (2)        | True dual-port 4K × 36, with the read-during-write option set to <b>Old Data</b>    | 0     | 1                   | 230 | 225    | 205   | 200 | MHz  |
|                  | ROM 1 Port                                                                          | 0     | 1                   | 500 | 450    | 435   | 420 | MHz  |
|                  | ROM 2 Port                                                                          | 0     | 1                   | 465 | 425    | 400   | 400 | MHz  |
|                  | Min Pulse Width (clock high time)                                                   | _     | _                   | 755 | 860    | 860   | 950 | ps   |
|                  | Min Pulse Width (clock low time)                                                    | _     | _                   | 625 | 690    | 690   | 690 | ps   |

#### Notes to Table 1-48:

<sup>(1)</sup> To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to 50% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

<sup>(2)</sup> When you use the error detection CRC feature, there is no degradation in  $F_{\text{MAX}}$ .

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 2 of 4)

| Cumbal                                                             | Conditions                                                                               | I   | 3           | C   | 4           | C5  | ,15         | C   | 6   | Unit  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----|-------------|-----|-------------|-----|-------------|-----|-----|-------|
| Symbol                                                             | Conditions                                                                               | Min | Max         | Min | Max         | Min | Max         | Min | Max | UIIIL |
| Transmitter                                                        |                                                                                          |     |             |     |             |     |             |     |     |       |
|                                                                    | SERDES factor,<br>J = 3 to 10<br>(using<br>dedicated<br>SERDES)                          | 150 | 1250<br>(2) | 150 | 1250<br>(2) | 150 | 1050<br>(2) | 150 | 840 | Mbps  |
| f <sub>HSDR_TX</sub> (true<br>LVDS output data<br>rate)            | SERDES factor,<br>J = 4 to 10<br>(using logic<br>elements as<br>SERDES)                  | (3) | 945         | (3) | 945         | (3) | 840         | (3) | 740 | Mbps  |
|                                                                    | SERDES factor,<br>J = 2 (using<br>DDR registers)<br>and J = 1<br>(using SDR<br>register) | (3) | (3)         | (3) | (3)         | (3) | (3)         | (3) | (3) | Mbps  |
| f <sub>HSDR_TX_E3R</sub> (emulated LVDS_E_3R output data rate) (7) | SERDES factor,<br>J = 4 to 10                                                            | (3) | 945         | (3) | 945         | (3) | 840         | (3) | 740 | Mbps  |

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 3 of 4)

| Ohal                                                                        | Ocuditions                                                                                | I   | 3     | C   | 34    | C5  | ,I5   | C   | 6    | 11   |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|-------|-----|-------|-----|-------|-----|------|------|
| Symbol                                                                      | Conditions                                                                                | Min | Max   | Min | Max   | Min | Max   | Min | Max  | Unit |
|                                                                             | True LVDS with<br>dedicated<br>SERDES<br>(data rate<br>600–1,250<br>Mbps)                 | _   | 175   | _   | 175   | _   | 225   | _   | 300  | ps   |
|                                                                             | True LVDS with dedicated SERDES (data rate < 600 Mbps)                                    | _   | 0.105 | _   | 0.105 | _   | 0.135 | _   | 0.18 | UI   |
| t <sub>tx_Jitter</sub> (4)                                                  | True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate 600 – 945 Mbps) |     | 260   | ı   | 260   | _   | 300   | ı   | 350  | ps   |
|                                                                             | True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate < 600 Mbps)     | _   | 0.16  | _   | 0.16  | _   | 0.18  | _   | 0.21 | UI   |
| t <sub>TX_DCD</sub>                                                         | True LVDS and emulated LVDS_E_3R                                                          | 45  | 55    | 45  | 55    | 45  | 55    | 45  | 55   | %    |
| t <sub>RISE</sub> and t <sub>FALL</sub>                                     | True LVDS and emulated LVDS_E_3R                                                          | _   | 200   | _   | 200   | _   | 225   | _   | 250  | ps   |
| TOOS                                                                        | True LVDS (5)                                                                             | _   | 150   | _   | 150   | _   | 175   | _   | 200  | ps   |
| TCCS                                                                        | Emulated<br>LVDS_E_3R                                                                     | _   | 200   | _   | 200   | _   | 250   | _   | 300  | ps   |
| Receiver (6)                                                                |                                                                                           |     | •     |     | •     |     | •     |     | ·    | •    |
| True differential<br>I/O standards -<br>f <sub>HSDRDPA</sub> (data<br>rate) | SERDES factor<br>J = 3 to 10                                                              | 150 | 1250  | 150 | 1250  | 150 | 1050  | 150 | 840  | Mbps |

| Table 1-53. | High-Speed I/O Specifications for Arria II GX Devices | (Part 4 of 4) |
|-------------|-------------------------------------------------------|---------------|
|-------------|-------------------------------------------------------|---------------|

| Combal                        | Conditions                                | I   | 3                 | C   | 34                | C5  | ,I5               | C   | 6                 | IIiA |
|-------------------------------|-------------------------------------------|-----|-------------------|-----|-------------------|-----|-------------------|-----|-------------------|------|
| Symbol                        | Conuntions                                | Min | Max               | Min | Max               | Min | Max               | Min | Max               | Unit |
|                               | SERDES factor<br>J = 3 to 10              | (3) | 945<br><i>(7)</i> | (3) | 945<br><i>(7)</i> | (3) | 740<br><i>(7)</i> | (3) | 640<br><i>(7)</i> | Mbps |
| f <sub>HSDR</sub> (data rate) | SERDES factor J = 2 (using DDR registers) | (3) | (7)               | (3) | (7)               | (3) | (7)               | (3) | (7)               | Mbps |
|                               | SERDES factor J = 1 (using SDR registers) | (3) | (7)               | (3) | (7)               | (3) | (7)               | (3) | (7)               | Mbps |
| Soft-CDR PPM tolerance        | Soft-CDR<br>mode                          | _   | 300               | _   | 300               | _   | 300               | _   | 300               | ±PPM |
| DPA run length                | DPA mode                                  | _   | 10,000            | _   | 10,000            | _   | 10,000            | _   | 10,000            | UI   |
| Sampling<br>window (SW)       | Non-DPA mode (5)                          | _   | 300               | _   | 300               | _   | 350               | _   | 400               | ps   |

#### Notes to Table 1-53:

- (1)  $f_{HSCLK\_IN} = f_{HSDR} / W$ . Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

| Cumbal                                                                                 | Conditions                            |     | C3, I3 |     |     | C4, I4 |     | IIi. |  |
|----------------------------------------------------------------------------------------|---------------------------------------|-----|--------|-----|-----|--------|-----|------|--|
| Symbol                                                                                 | Conditions                            | Min | Тур    | Max | Min | Тур    | Max | Unit |  |
| Clock                                                                                  |                                       |     |        |     |     |        |     |      |  |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) true<br>differential I/O<br>standards | Clock boost factor<br>W = 1 to 40 (3) | 5   | _      | 717 | 5   | _      | 717 | MHz  |  |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) single<br>ended I/O standards<br>(9)  | Clock boost factor<br>W = 1 to 40 (3) | 5   | _      | 717 | 5   | _      | 717 | MHz  |  |
| f <sub>HSCLK_in</sub> (input clock<br>frequency) single<br>ended I/O standards<br>(10) | Clock boost factor<br>W = 1 to 40 (3) | 5   | _      | 420 | 5   | _      | 420 | MHz  |  |

Figure 1–6 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Figure 1–6. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for Arria II GZ Devices at a 1.25 Gbps Data Rate

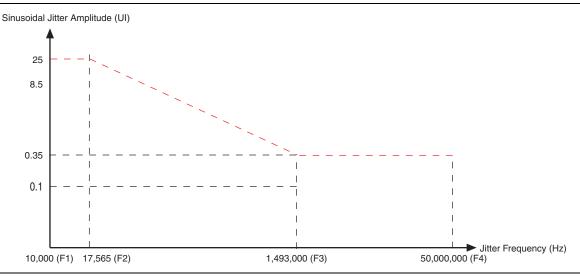



Table 1–56 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Table 1–56. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for Arria II GZ Devices at 1.25 Gbps Data Rate

| Jitter Freq | Sinusoidal Jitter (UI) |        |  |
|-------------|------------------------|--------|--|
| F1          | 10,000                 | 25.000 |  |
| F2          | 17,565                 | 25.000 |  |
| F3          | 1,493,000              | 0.350  |  |
| F4          | 50,000,000             | 0.350  |  |

### **External Memory Interface Specifications**



For the maximum clock rate supported for Arria II GX and GZ device family, refer to the External Memory Interface Spec Estimator page on the Altera website.

Table 1–57 lists the external memory interface specifications for Arria II GX devices.

Table 1–57. External Memory Interface Specifications for Arria II GX Devices (Part 1 of 2)

| Frequency | Frequency Range (MHz) |         | Resolution | DQS Delay<br>Buffer Mode<br>(1) | Number of<br>Delay Chains |    |
|-----------|-----------------------|---------|------------|---------------------------------|---------------------------|----|
| Mode      | C4 13, C5, 15 C6 (°)  | (°)     |            |                                 |                           |    |
| 0         | 90-140                | 90-130  | 90-110     | 22.5                            | Low                       | 16 |
| 1         | 110-180               | 110-170 | 110-150    | 30                              | Low                       | 12 |
| 2         | 140-220               | 140-210 | 140-180    | 36                              | Low                       | 10 |
| 3         | 170-270               | 170-260 | 170-220    | 45                              | Low                       | 8  |
| 4         | 220-340               | 220-310 | 220-270    | 30                              | High                      | 12 |

# I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.



The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.