




Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Obsolete                                                   |
| Number of LABs/CLBs            | 4964                                                       |
| Number of Logic Elements/Cells | 118143                                                     |
| Total RAM Bits                 | 8315904                                                    |
| Number of I/O                  | 452                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 0.87V ~ 0.93V                                              |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                            |
| Package / Case                 | 1152-BBGA, FCBGA                                           |
| Supplier Device Package        | 1152-FBGA (35x35)                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep2agx125ef35c5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1-1. Absolute Maximum Ratings for Arria II GX Devices

| Symbol                | Description                                                                                                     | Minimum | Maximum | Unit |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------|---------|------|
| V <sub>CC</sub>       | Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS | -0.5    | 1.35    | V    |
| V <sub>CCCB</sub>     | Supplies power for the configuration RAM bits                                                                   | -0.5    | 1.8     | V    |
| V <sub>CCBAT</sub>    | Battery back-up power supply for design security volatile key register                                          | -0.5    | 3.75    | V    |
| V <sub>CCPD</sub>     | Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry                           | -0.5    | 3.75    | V    |
| V <sub>CCIO</sub>     | Supplies power to the I/O banks                                                                                 | -0.5    | 3.9     | V    |
| $V_{CCD\_PLL}$        | Supplies power to the digital portions of the PLL                                                               | -0.5    | 1.35    | V    |
| V <sub>CCA_PLL</sub>  | Supplies power to the analog portions of the PLL and device-wide power management circuitry                     | -0.5    | 3.75    | V    |
| V <sub>I</sub>        | DC input voltage                                                                                                | -0.5    | 4.0     | V    |
| I <sub>OUT</sub>      | DC output current, per pin                                                                                      | -25     | 40      | mA   |
| V <sub>CCA</sub>      | Supplies power to the transceiver PMA regulator                                                                 | _       | 3.75    | V    |
| $V_{CCL\_GXB}$        | Supplies power to the transceiver PMA TX, PMA RX, and clocking                                                  | _       | 1.21    | V    |
| $V_{\text{CCH\_GXB}}$ | Supplies power to the transceiver PMA output (TX) buffer                                                        | _       | 1.8     | V    |
| T <sub>J</sub>        | Operating junction temperature                                                                                  | -55     | 125     | °C   |
| T <sub>STG</sub>      | Storage temperature (no bias)                                                                                   | -65     | 150     | °C   |

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

| Symbol                | Description                                                                                 | Minimum | Maximum | Unit |
|-----------------------|---------------------------------------------------------------------------------------------|---------|---------|------|
| V <sub>CC</sub>       | Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS   | -0.5    | 1.35    | V    |
| V <sub>CCCB</sub>     | Power supply to the configuration RAM bits                                                  | -0.5    | 1.8     | V    |
| V <sub>CCPGM</sub>    | Supplies power to the configuration pins                                                    | -0.5    | 3.75    | V    |
| V <sub>CCAUX</sub>    | Auxiliary supply                                                                            | -0.5    | 3.75    | V    |
| V <sub>CCBAT</sub>    | Supplies battery back-up power for design security volatile key register                    | -0.5    | 3.75    | V    |
| V <sub>CCPD</sub>     | Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry       | -0.5    | 3.75    | V    |
| V <sub>CCIO</sub>     | Supplies power to the I/O banks                                                             | -0.5    | 3.9     | V    |
| V <sub>CC_CLKIN</sub> | Supplies power to the differential clock input                                              | -0.5    | 3.75    | V    |
| V <sub>CCD_PLL</sub>  | Supplies power to the digital portions of the PLL                                           | -0.5    | 1.35    | V    |
| V <sub>CCA_PLL</sub>  | Supplies power to the analog portions of the PLL and device-wide power management circuitry | -0.5    | 3.75    | V    |
| VI                    | DC input voltage                                                                            | -0.5    | 4.0     | V    |
| I <sub>OUT</sub>      | DC output current, per pin                                                                  | -25     | 40      | mA   |

# **Recommended Operating Conditions**

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within  $t_{RAMP}$ .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1-5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

| Symbol                 | Description                                                                                 | Condition   | Minimum | Typical | Maximum           | Unit |
|------------------------|---------------------------------------------------------------------------------------------|-------------|---------|---------|-------------------|------|
| V <sub>CC</sub>        | Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS   | _           | 0.87    | 0.90    | 0.93              | V    |
| V <sub>CCCB</sub>      | Supplies power to the configuration RAM bits                                                | _           | 1.425   | 1.50    | 1.575             | V    |
| V <sub>CCBAT</sub> (2) | Battery back-up power supply for design security volatile key registers                     | _           | 1.2     | _       | 3.3               | V    |
| M                      | Supplies power to the I/O pre-drivers,                                                      |             | 3.135   | 3.3     | 3.465             | V    |
| V <sub>CCPD</sub> (3)  | differential input buffers, and MSEL                                                        |             | 2.85    | 3.0     | 3.15              | V    |
| (0)                    | circuitry                                                                                   | I           | 2.375   | 2.5     | 2.625             | ٧    |
|                        |                                                                                             |             | 3.135   | 3.3     | 3.465             | V    |
|                        |                                                                                             | _           | 2.85    | 3.0     | 3.15              | V    |
| V                      | Supplies power to the I/O banks (4)                                                         | _           | 2.375   | 2.5     | 2.625             | V    |
| V <sub>CCIO</sub>      | Supplies power to the 1/O banks (4)                                                         | _           | 1.71    | 1.8     | 1.89              | V    |
|                        |                                                                                             | _           | 1.425   | 1.5     | 1.575             | V    |
|                        |                                                                                             | _           | 1.14    | 1.2     | 1.26              | V    |
| V <sub>CCD_PLL</sub>   | Supplies power to the digital portions of the PLL                                           | <del></del> | 0.87    | 0.90    | 0.93              | V    |
| V <sub>CCA_PLL</sub>   | Supplies power to the analog portions of the PLL and device-wide power management circuitry | _           | 2.375   | 2.5     | 2.625             | V    |
| V <sub>I</sub>         | DC Input voltage                                                                            | _           | -0.5    | _       | 3.6               | V    |
| V <sub>0</sub>         | Output voltage                                                                              | _           | 0       | _       | V <sub>CCIO</sub> | V    |
| V <sub>CCA</sub>       | Supplies power to the transceiver PMA regulator                                             | _           | 2.375   | 2.5     | 2.625             | V    |
| V <sub>CCL_GXB</sub>   | Supplies power to the transceiver PMA TX, PMA RX, and clocking                              | _           | 1.045   | 1.1     | 1.155             | V    |
| V <sub>CCH_GXB</sub>   | Supplies power to the transceiver PMA output (TX) buffer                                    | _           | 1.425   | 1.5     | 1.575             | V    |
| т                      | Operating junction temperature                                                              | Commercial  | 0       | _       | 85                | °C   |
| T <sub>J</sub>         | Operating junction temperature                                                              | Industrial  | -40     | _       | 100               | °C   |

Table 1–30 lists the HSTL I/O standards for Arria II GX devices.

Table 1–30. Differential HSTL I/O Standards for Arria II GX Devices

| I/O Standard        | 1     | V <sub>CCIO</sub> (V | )     | V <sub>DIF(</sub> | <sub>DC)</sub> (V) |      | V <sub>X(AC)</sub> (V      | )    | 1                              | V <sub>CM(DC)</sub> (\     | <i>I</i> )                  | V <sub>DIF(AC)</sub> (V) |     |
|---------------------|-------|----------------------|-------|-------------------|--------------------|------|----------------------------|------|--------------------------------|----------------------------|-----------------------------|--------------------------|-----|
| i/O Stanuaru        | Min   | Тур                  | Max   | Min               | Max                | Min  | Тур                        | Max  | Min                            | Тур                        | Max                         | Min                      | Max |
| HSTL-18 Class I     | 1.71  | 1.8                  | 1.89  | 0.2               | _                  | 0.85 | _                          | 0.95 | 0.88                           | _                          | 0.95                        | 0.4                      | _   |
| HSTL-15 Class I, II | 1.425 | 1.5                  | 1.575 | 0.2               | _                  | 0.71 | _                          | 0.79 | 0.71                           | _                          | 0.79                        | 0.4                      |     |
| HSTL-12 Class I, II | 1.14  | 1.2                  | 1.26  | 0.16              |                    | _    | 0.5 ×<br>V <sub>CCIO</sub> |      | 0.48<br>×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub> | 0.52 ×<br>V <sub>CCIO</sub> | 0.3                      |     |

Table 1–31 lists the HSTL I/O standards for Arria II GZ devices.

Table 1–31. Differential HSTL I/O Standards for Arria II GZ Devices

| I/O Standard        | ,     | V <sub>CCIO</sub> (V | )     | V <sub>DIF(</sub> | <sub>DC)</sub> (V)         |      | V <sub>X(AC)</sub> (V)     |      | ,                          | V <sub>CM(DC)</sub> (V     | )                          | V <sub>DIF(AC)</sub> (V) |                          |
|---------------------|-------|----------------------|-------|-------------------|----------------------------|------|----------------------------|------|----------------------------|----------------------------|----------------------------|--------------------------|--------------------------|
| i/O Stanuaru        | Min   | Тур                  | Max   | Min               | Max                        | Min  | Тур                        | Max  | Min                        | Тур                        | Max                        | Min                      | Max                      |
| HSTL-18 Class I     | 1.71  | 1.8                  | 1.89  | 0.2               | _                          | 0.78 | _                          | 1.12 | 0.78                       | _                          | 1.12                       | 0.4                      | _                        |
| HSTL-15 Class I, II | 1.425 | 1.5                  | 1.575 | 0.2               | _                          | 0.68 | _                          | 0.9  | 0.68                       | _                          | 0.9                        | 0.4                      | _                        |
| HSTL-12 Class I, II | 1.14  | 1.2                  | 1.26  | 0.16              | V <sub>CCIO</sub><br>+ 0.3 | _    | 0.5 ×<br>V <sub>CCIO</sub> | _    | 0.4 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub> | 0.6 ×<br>V <sub>CCIO</sub> | 0.3                      | V <sub>CCIO</sub> + 0.48 |

Table 1–32 lists the differential I/O standard specifications for Arria II GX devices.

Table 1–32. Differential I/O Standard Specifications for Arria II GX Devices (Note 1)

| I/O           | V     | <sub>CCIO</sub> (V | )     | V <sub>ID</sub> (mV) |                          |     | V <sub>ICM</sub> ( | V) <i>(2)</i> | V     | <sub>DD</sub> (V) | (3) | V <sub>OCM</sub> (V) |      |       |  |
|---------------|-------|--------------------|-------|----------------------|--------------------------|-----|--------------------|---------------|-------|-------------------|-----|----------------------|------|-------|--|
| Standard      | Min   | Тур                | Max   | Min                  | Cond.                    | Max | Min                | Max           | Min   | Тур               | Max | Min                  | Тур  | Max   |  |
| 2.5 V<br>LVDS | 2.375 | 2.5                | 2.625 | 100                  | V <sub>CM</sub> = 1.25 V | _   | 0.05               | 1.80          | 0.247 | _                 | 0.6 | 1.125                | 1.25 | 1.375 |  |
| RSDS (4)      | 2.375 | 2.5                | 2.625 | _                    |                          | _   | _                  | _             | 0.1   | 0.2               | 0.6 | 0.5                  | 1.2  | 1.4   |  |
| Mini-LVDS (4) | 2.375 | 2.5                | 2.625 | _                    | _                        | _   | _                  | _             | 0.25  | _                 | 0.6 | 1                    | 1.2  | 1.4   |  |
| LVPECL (5)    | 2.375 | 2.5                | 2.625 | 300                  | _                        | _   | 0.6                | 1.8           | _     | —                 | _   | _                    | _    | _     |  |
| BLVDS (6)     | 2.375 | 2.5                | 2.625 | 100                  | _                        |     | _                  | _             | _     | _                 | _   |                      | _    | _     |  |

#### Notes to Table 1-32:

- (1) The 1.5 V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2)  $V_{IN}$  range: 0 <=  $V_{IN}$  <= 1.85 V.
- (3)  $R_L$  range:  $90 \le RL \le 110 \Omega$ .
- (4) The RSDS and mini-LVDS I/O standards are only supported for differential outputs.
- (5) The LVPECL input standard is supported at the dedicated clock input pins (GCLK) only.
- (6) There are no fixed  $V_{\text{ICM}}$ ,  $V_{\text{OD}}$ , and  $V_{\text{OCM}}$  specifications for BLVDS. These specifications depend on the system topology.

Chapter 1: Device Datasheet for Arria II Devices
Switching Characteristics

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

| Symbol/                                                                                | Condition                              | C4   C5 and I5   C6   Ui |      |     | II-ai-t |      |                               |     |            |              |     |      |     |      |
|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------|------|-----|---------|------|-------------------------------|-----|------------|--------------|-----|------|-----|------|
| Description                                                                            | Condition                              | Min                      | Тур  | Max | Min     | Тур  | Max                           | Min | Тур        | Max          | Min | Тур  | Max | Unit |
| Minimum<br>peak-to-peak<br>differential input<br>voltage V <sub>ID</sub> (diff<br>p-p) | _                                      | 100                      | _    | _   | 100     | _    | _                             | 100 | _          | _            | 100 | _    | _   | mV   |
| V                                                                                      | V <sub>ICM</sub> = 0.82 V<br>setting   | _                        | 820  | _   | _       | 820  | _                             | _   | 820        | _            | _   | 820  | _   | mV   |
| V <sub>ICM</sub>                                                                       | V <sub>ICM</sub> =1.1 V<br>setting (7) | _                        | 1100 | _   | _       | 1100 | _                             | _   | 1100       | _            | _   | 1100 | _   | mV   |
| Differential<br>on-chip<br>termination<br>resistors                                    | $100-\Omega$ setting                   | _                        | 100  | _   | _       | 100  | _                             | _   | 100        | _            | _   | 100  | _   | Ω    |
| Return loss                                                                            | PCle                                   |                          |      |     |         | ·    |                               | 50  | MHz to 1.2 | 25 GHz: –10d | dB  |      |     | •    |
| differential mode                                                                      | XAUI                                   |                          |      |     |         |      |                               | 100 | MHz to 2   | .5 GHz: –10d | dB  |      |     |      |
| Return loss                                                                            | PCle                                   |                          |      |     |         |      |                               | 50  | MHz to 1.  | 25 GHz: –6d  | В   |      |     |      |
| common mode                                                                            | XAUI                                   |                          |      |     |         |      |                               | 10  | 0 MHz to 2 | 2.5 GHz: –6d | В   |      |     |      |
| Programmable PPM detector (8)                                                          | _                                      |                          |      |     |         |      | 62.5, 100, 1<br>250, 300, 500 |     |            |              |     |      |     | ppm  |
| Run length                                                                             | _                                      | _                        | 80   | _   | _       | 80   | _                             | _   | 80         | _            | _   | 80   | _   | UI   |
| Programmable equalization                                                              | _                                      | _                        | _    | 7   | _       | _    | 7                             | _   | _          | 7            | _   | _    | 7   | dB   |
| Signal<br>detect/loss<br>threshold                                                     | PCIe Mode                              | 65                       | _    | 175 | 65      | _    | 175                           | 65  | _          | 175          | 65  | _    | 175 | mV   |
| CDR LTR time                                                                           | _                                      | _                        | _    | 75  | _       | _    | 75                            | _   | _          | 75           | _   | _    | 75  | μs   |
| CDR minimum<br>T1b (10)                                                                | _                                      | 15                       |      |     | 15      |      |                               | 15  |            |              | 15  |      |     | μѕ   |

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 6 of 7)

| Symbol/                                                      | Condition  |     | 13  |     |     | C4  |     |     | C5 and I | 5   |     | C6  |     | Unit  |
|--------------------------------------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-------|
| Description                                                  | Contaction | Min | Тур | Max | Min | Тур | Max | Min | Тур      | Max | Min | Тур | Max | UIIIL |
| Intra-<br>differential pair<br>skew                          | _          | _   | _   | 15  | _   | _   | 15  | _   | _        | 15  | _   | _   | 15  | ps    |
| Intra-transceiver block skew                                 | PCIe ×4    | _   | _   | 120 | _   | _   | 120 | _   | _        | 120 | _   | _   | 120 | ps    |
| Inter-transceiver<br>block skew                              | PCIe ×8    | _   | _   | 300 | _   | _   | 300 | _   | _        | 300 | _   | _   | 300 | ps    |
| CMU PLLO and CM                                              | IU PLL1    |     |     |     |     |     |     |     |          |     |     |     |     |       |
| CMU PLL lock<br>time from<br>CMUPLL_<br>reset<br>deassertion | _          | _   | _   | 100 | _   | _   | 100 | _   | _        | 100 | _   | _   | 100 | μ\$   |
| PLD-Transceiver I                                            | nterface   |     | •   |     | •   | •   |     | •   | •        |     | •   | •   | •   |       |
| Interface speed                                              | _          | 25  | _   | 320 | 25  | _   | 240 | 25  | _        | 240 | 25  | _   | 200 | MHz   |

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

| Symbol/                    | Oon diking                     | -(  | C3 and –I3 | (1)          |              | -C4 and - | 14  | 11-14 |
|----------------------------|--------------------------------|-----|------------|--------------|--------------|-----------|-----|-------|
| Description                | Conditions                     | Min | Тур        | Max          | Min          | Тур       | Max | Unit  |
|                            | PCIe Gen1                      |     |            | 2.5 -        | 3.5          |           |     | MHz   |
|                            | PCIe Gen2                      |     |            | 6 -          | 8            |           |     | MHz   |
|                            | (OIF) CEI PHY at<br>4.976 Gbps |     |            | 7 -          | 11           |           |     | MHz   |
|                            | (OIF) CEI PHY at<br>6.375 Gbps |     |            | 5 -          | 10           |           |     | MHz   |
| -3 dB Bandwidth            | XAUI                           |     |            | 2 -          | 4            |           |     | MHz   |
|                            | SRIO 1.25 Gbps                 |     |            | 3 -          | 5.5          |           |     | MHz   |
|                            | SRIO 2.5 Gbps                  |     |            | 3 -          | 5.5          |           |     | MHz   |
|                            | SRIO 3.125 Gbps                |     |            | 2 -          | 4            |           |     | MHz   |
|                            | GIGE                           |     |            | 2.5 -        | 4.5          |           |     | MHz   |
|                            | SONET OC12                     |     |            | 1.5 -        | 2.5          |           |     | MHz   |
|                            | SONET OC48                     |     |            | 3.5          | - 6          |           |     | MHz   |
| Transceiver-FPGA Fabric In | terface                        |     |            |              |              |           |     |       |
| Interface speed            | _                              |     | _          | 325          | 25           | _         | 250 | MHz   |
| Digital reset pulse width  | _                              |     | Minimu     | ım is two pa | arallel cloc | k cycles  |     | _     |

#### Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz \* 100/f.
- (4) The minimum reconfig\_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig\_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx\_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig\_clk sources for these altgx\_reconfig instances, the delta time between any two of these reconfig\_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX  $V_{ICM}$  setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to  $\pm$  300 ppm.
- (10) Time taken to rx\_pll\_locked goes high from rx\_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx\_pll\_locked goes high and before rx\_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

| Symbol/                                  | O-ndiki-n-                      |          | 13     |        |        | C4            |        |       | C5, I5 | 5     |        | C6          |      | 11!4  |  |    |
|------------------------------------------|---------------------------------|----------|--------|--------|--------|---------------|--------|-------|--------|-------|--------|-------------|------|-------|--|----|
| Description                              | Conditions                      | Min      | Тур    | Max    | Min    | Тур           | Max    | Min   | Тур    | Max   | Min    | Тур         | Max  | Unit  |  |    |
|                                          | Jitter frequency =<br>0.06 KHz  |          | > 15   |        |        | > 15          |        |       | > 15   |       |        | > 15        |      | UI    |  |    |
|                                          | Pattern = PRBS15                |          |        |        |        |               |        |       |        |       |        |             |      |       |  |    |
|                                          | Jitter frequency = 100 KHZ      |          | > 1.5  |        |        | > 1.5         | i      | > 1.5 |        |       | > 1.5  |             |      | UI    |  |    |
| Jitter tolerance at                      | Pattern = PRBS15                |          |        |        | 7 1.0  |               |        |       |        |       |        |             |      |       |  |    |
| 2488.32 Mbps                             | Jitter frequency = 1 MHz        | > 0.15   |        | > 0.15 |        |               | > 0.15 |       |        |       | > 0.15 |             |      |       |  |    |
|                                          | Pattern = PRBS15                |          |        |        | 7 0.10 |               |        |       |        |       |        |             |      |       |  |    |
|                                          | Jitter frequency = 10 MHz       | > 0.15   |        |        |        | > 0.1         | 5      |       | > 0.15 | 5     |        | > 0.1       | 5    | UI    |  |    |
|                                          | Pattern = PRBS15                | 2 0.10   |        |        |        |               |        |       |        |       |        |             |      |       |  |    |
| XAUI Transmit Jitt                       | er Generation <i>(3)</i>        |          |        |        |        |               |        |       |        |       |        |             |      |       |  |    |
| Total jitter at<br>3.125 Gbps            | Pattern = CJPAT                 | _        | _      | 0.3    | _      | _             | 0.3    | _     |        | 0.3   | _      | _           | 0.3  | UI    |  |    |
| Deterministic<br>jitter at<br>3.125 Gbps | Pattern = CJPAT                 | _        | _      | 0.17   |        | _             | 0.17   | _     |        | 0.17  | _      | _           | 0.17 | UI    |  |    |
| XAUI Receiver Jitt                       | ter Tolerance <i>(3)</i>        |          |        |        |        |               |        |       |        |       |        |             |      |       |  |    |
| Total jitter                             | _                               |          | > 0.65 |        |        | > 0.6         | 5      |       | > 0.65 | 5     |        | > 0.6       | 5    | UI    |  |    |
| Deterministic<br>jitter                  | _                               |          | > 0.37 |        |        | > 0.3         | 7      |       | > 0.37 | 7     |        | > 0.3       | 7    | UI    |  |    |
| Peak-to-peak<br>jitter                   | Jitter frequency = 22.1 KHz     |          | > 8.5  |        |        | > 8.5         | i      |       | > 8.5  | l     |        | > 8.5       |      | UI    |  |    |
| Peak-to-peak<br>jitter                   | Jitter frequency =<br>1.875 MHz | > 0.1    |        | > 0.1  |        | = > 0.1 > 0.1 |        | > 0.1 |        | > 0.1 |        | > 0.1 > 0.1 |      | > 0.1 |  | UI |
| Peak-to-peak<br>jitter                   | Jitter frequency = 20 MHz       |          | > 0.1  |        |        | > 0.1         |        |       | > 0.1  |       |        | > 0.1       |      | UI    |  |    |
| <b>PCIe Transmit Jitt</b>                | er Generation <i>(4)</i>        |          |        |        | •      |               |        | •     |        |       | •      |             |      |       |  |    |
| Total jitter at<br>2.5 Gbps (Gen1)       | Compliance<br>pattern           | — — 0.25 |        |        | _      | _             | 0.25   | _     | _      | 0.25  | _      | _           | 0.25 | UI    |  |    |

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

| Symbol/                                                                       |                                             |     | 13     |      |     | C4    |       |     | C5, I  | 5     |     | C6     |       |      |
|-------------------------------------------------------------------------------|---------------------------------------------|-----|--------|------|-----|-------|-------|-----|--------|-------|-----|--------|-------|------|
| Description                                                                   | Conditions                                  | Min | Тур    | Max  | Min | Тур   | Max   | Min | Тур    | Max   | Min | Тур    | Max   | Unit |
| Total jitter                                                                  | Pattern = CRPAT                             | _   |        | 0.27 | _   | _     | 0.279 | _   |        | 0.279 |     |        | 0.279 | UI   |
| (peak-to-peak)                                                                | Tattom = OTITAL                             |     |        | 9    |     |       | 0.270 |     |        | 0.270 |     |        | 0.270 | 0.   |
| GIGE Receiver Jitt                                                            | er Tolerance <i>(6)</i>                     |     |        |      |     |       |       |     |        |       |     |        |       | 1    |
| Deterministic<br>jitter tolerance<br>(peak-to-peak)                           | Pattern = CJPAT                             |     | > 0.4  |      |     | > 0.4 | ļ     |     | > 0.4  | ļ     |     | > 0.4  |       | UI   |
| Combined<br>deterministic and<br>random jitter<br>tolerance<br>(peak-to-peak) | Pattern = CJPAT                             |     | > 0.66 |      |     | > 0.6 | 6     |     | > 0.60 | ô     |     | > 0.60 | ô     | UI   |
| HiGig Transmit Jit                                                            | ter Generation <i>(7)</i>                   |     |        |      |     |       |       |     |        |       |     |        |       |      |
| Deterministic jitter                                                          | Data rate =<br>3.75 Gbps                    | _   | _      | 0.17 | _   | _     | 0.17  | _   | _      | _     | _   | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |     |        |      |     |       |       |     |        |       |     |        |       |      |
| Total jitter                                                                  | Data rate =<br>3.75 Gbps                    |     |        | 0.35 |     | _     | 0.35  | _   |        |       |     | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |     |        | 0.00 |     |       | 0.00  |     |        |       |     |        |       | 01   |
| HiGig Receiver Jit                                                            | ter Tolerance <i>(7)</i>                    | I   |        | I    | ı   |       |       |     | I      | I     | I   |        |       |      |
| Deterministic jitter tolerance                                                | Data rate =<br>3.75 Gbps                    |     | > 0.37 |      |     | > 0.3 | 7     | _   | _      | _     | _   | _      | _     | UI   |
| (peak-to-peak)                                                                | Pattern = CJPAT                             |     |        |      |     |       |       |     |        |       |     |        |       |      |
| Combined<br>deterministic and<br>random jitter<br>tolerance<br>(peak-to-peak) | Data rate =<br>3.75 Gbps<br>Pattern = CJPAT |     | > 0.65 |      |     | > 0.6 | 5     | _   | _      | _     | _   | _      | _     | UI   |
|                                                                               | Jitter frequency = 22.1 KHz                 |     |        |      |     |       |       |     |        |       |     |        |       |      |
|                                                                               | Data rate =<br>3.75 Gbps                    |     | > 8.5  |      |     | > 8.5 | j     | _   | _      | _     | _   | _      | _     | UI   |
|                                                                               | Pattern = CJPAT                             |     |        |      |     |       |       |     |        |       |     |        |       |      |
| Sinusoidal jitter                                                             | Jitter frequency =<br>1.875MHz              |     |        |      |     |       |       |     |        |       |     |        |       |      |
| tolerance<br>(peak-to-peak)                                                   | Data rate =<br>3.75 Gbps                    |     | > 0.1  |      |     | > 0.1 |       | _   |        | _     |     | _      | _     | UI   |
|                                                                               | Pattern = CJPAT                             |     |        |      |     |       |       |     |        |       |     |        |       |      |
|                                                                               | Jitter frequency = 20 MHz                   |     |        |      |     |       |       |     |        |       |     |        |       |      |
|                                                                               | Data rate =<br>3.75 Gbps                    |     | > 0.1  |      |     | > 0.1 |       | _   | _      | _     | _   | _      | _     | UI   |
|                                                                               | Pattern = CJPAT                             |     |        |      |     |       |       |     |        |       |     |        |       |      |

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

| Symbol/                                                           | Conditions                                                                           | -C3 and -I3 |          |      | -           | Unit     |      |       |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|----------|------|-------------|----------|------|-------|
| Description                                                       | Conditions Min Typ Max                                                               |             |          |      | Min Typ Max |          |      | UIIIL |
| Peak-to-peak jitter                                               | Jitter frequency = 22.1 KHz                                                          |             | > 8.5    | I    |             |          | UI   |       |
| Peak-to-peak jitter                                               | Jitter frequency =<br>1.875 MHz                                                      |             | > 0.1    |      |             |          | UI   |       |
| Peak-to-peak jitter                                               | Jitter frequency = 20 MHz                                                            |             | > 0.1    |      |             | > 0.1    |      | UI    |
| PCIe Transmit Jitter Generation                                   | (8)                                                                                  |             |          |      |             |          |      |       |
| Total jitter at 2.5 Gbps (Gen1)—x1, x4, and x8                    | Compliance pattern                                                                   | _           |          | 0.25 | _           | _        | 0.25 | UI    |
| Total jitter at 5 Gbps (Gen2)—<br>x1, x4, and x8                  | Compliance pattern                                                                   | _           | _        | 0.25 | _           | _        | _    | UI    |
| PCle Receiver Jitter Tolerance (                                  | 8)                                                                                   |             |          |      |             |          |      |       |
| Total jitter at 2.5 Gbps (Gen1)                                   | tter at 2.5 Gbps (Gen1) Compliance pattern                                           |             |          |      |             | > 0.6    |      | UI    |
| Total jitter at 5 Gbps (Gen2)                                     | Compliance pattern                                                                   | N           | ot suppo | rted | N           | ot suppo | rted | UI    |
| PCIe (Gen 1) Electrical Idle Dete                                 | ct Threshold                                                                         |             |          |      |             |          |      |       |
| V <sub>RX-IDLE-DETDIFFp-p</sub> (9)                               | Compliance pattern                                                                   | 65          |          | 175  | 65          |          | 175  | UI    |
| SRIO Transmit Jitter Generation                                   | (10)                                                                                 |             |          |      |             |          |      |       |
| Deterministic jitter                                              | Data rate = 1.25, 2.5, 3.125 Gbps                                                    |             |          | 0.17 |             |          | 0.17 | UI    |
| (peak-to-peak)                                                    | Pattern = CJPAT                                                                      |             |          | 0.17 |             |          | 0.17 | UI    |
| Total jitter (peak-to-peak)                                       | Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT                                 | _           | _        | 0.35 | _           | _        | 0.35 | UI    |
| SRIO Receiver Jitter Tolerance (                                  | (10)                                                                                 | I.          |          |      |             |          |      |       |
| Deterministic jitter tolerance (peak-to-peak)                     | Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT                                 |             | > 0.37   | ,    |             | > 0.37   |      | UI    |
| Combined deterministic and random jitter tolerance (peak-to-peak) | Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT                                 |             | > 0.55   | i    |             | > 0.55   |      | UI    |
|                                                                   | Jitter frequency = 22.1 KHz<br>Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT  |             | > 8.5    |      |             | > 8.5    |      | UI    |
| Sinusoidal jitter tolerance (peak-to-peak)                        | Jitter frequency = 1.875 MHz<br>Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT | > 0.1       |          |      | > 0.1       |          | UI   |       |
|                                                                   | Jitter frequency = 20 MHz<br>Data rate = 1.25, 2.5, 3.125 Gbps<br>Pattern = CJPAT    | > 0.1       |          |      | > 0.1 > 0.1 |          |      | UI    |
| GIGE Transmit Jitter Generation                                   | (11)                                                                                 |             |          |      |             |          |      |       |
| Deterministic jitter<br>(peak-to-peak)                            | Pattern = CRPAT                                                                      | _           | _        | 0.14 | _           | _        | 0.14 | UI    |
|                                                                   |                                                                                      |             |          |      |             |          |      |       |

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

| Symbol/                                                           | Ooud!!!                                                                 |             | –C3 and | <b>–13</b> | -   | -C4 and | <b>–14</b> | U-22 |
|-------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|---------|------------|-----|---------|------------|------|
| Description                                                       | Conditions                                                              | Min Typ Max |         | Max        | Min | Тур     | Max        | Unit |
| GIGE Receiver Jitter Tolerance (                                  | 11)                                                                     | •           |         |            |     | •       |            | •    |
| Deterministic jitter tolerance<br>(peak-to-peak)                  | Pattern = CJPAT                                                         |             | > 0.4   |            |     | > 0.4   |            | UI   |
| Combined deterministic and random jitter tolerance (peak-to-peak) | Pattern = CJPAT                                                         | > 0.66      |         |            |     | > 0.66  | i          | UI   |
| <b>HiGig Transmit Jitter Generation</b>                           |                                                                         | •           |         |            |     |         |            | •    |
| Deterministic jitter<br>(peak-to-peak)                            | Data rate = 3.75 Gbps<br>Pattern = CJPAT                                | _           | _       | 0.17       | _   | _       | _          | UI   |
| Total jitter (peak-to-peak)                                       | Data rate = 3.75 Gbps<br>Pattern = CJPAT                                | _           | _       | 0.35       | _   | _       | _          | UI   |
| HiGig Receiver Jitter Tolerance                                   |                                                                         | •           |         |            |     |         |            | •    |
| Deterministic jitter tolerance (peak-to-peak)                     | Data rate = 3.75 Gbps<br>Pattern = CJPAT                                | > 0.37      |         | _          | _   | _       | UI         |      |
| Combined deterministic and random jitter tolerance (peak-to-peak) | Data rate = 3.75 Gbps<br>Pattern = CJPAT                                |             | > 0.65  |            | _   | _       | _          | UI   |
|                                                                   | Jitter frequency = 22.1 KHz<br>Data rate = 3.75 Gbps<br>Pattern = CJPAT | > 8.5       |         |            | _   | _       | _          | UI   |
| Sinusoidal jitter tolerance (peak-<br>to-peak)                    | Jitter frequency = 22.1 KHz<br>Data rate = 3.75 Gbps<br>Pattern = CJPAT |             | > 0.1   |            | _   | _       | _          | UI   |
|                                                                   | Jitter frequency = 22.1 KHz<br>Data rate = 3.75 Gbps<br>Pattern = CJPAT |             | > 0.1   |            | _   | _       | _          | UI   |
| (OIF) CEI Transmitter Jitter Gene                                 | ration                                                                  |             |         |            |     |         |            |      |
| Total jitter (peak-to-peak)                                       | Data rate = 6.375 Gbps<br>Pattern = PRBS15 BER = 10 <sup>-12</sup>      | 0.3         |         | 0.3        | _   | _       | 0.3        | UI   |
| (OIF) CEI Receiver Jitter Tolerand                                | Ce                                                                      | •           |         | •          | •   | •       |            | •    |
| Deterministic jitter tolerance<br>(peak-to-peak)                  | Data rate = 6.375 Gbps<br>Pattern = PRBS31 BER = 10 <sup>-12</sup>      |             | > 0.675 |            | _   | _       | _          | UI   |
| Combined deterministic and random jitter tolerance (peak-to-peak) | Data rate = 6.375 Gbps<br>Pattern = PRBS31 BER = 10 <sup>-12</sup>      |             | > 0.98  | 8          | _   | _       | _          | UI   |

# **Core Performance Specifications for the Arria II Device Family**

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

## **Clock Tree Specifications**

Table 1-42 lists the clock tree specifications for Arria II GX devices.

Table 1-42. Clock Tree Performance for Arria II GX Devices

| Clook Notwork |        | Performance |     | Unit  |
|---------------|--------|-------------|-----|-------|
| Clock Network | 13, C4 | C5,I5       | C6  | Oiiit |
| GCLK and RCLK | 500    | 500         | 400 | MHz   |
| PCLK          | 420    | 350         | 280 | MHz   |

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1-43. Clock Tree Performance for Arria II GZ Devices

| Clock Network | Performance |             |      |  |  |
|---------------|-------------|-------------|------|--|--|
| GIUCK NELWURK | –C3 and –I3 | -C4 and -I4 | Unit |  |  |
| GCLK and RCLK | 700         | 500         | MHz  |  |  |
| PCLK          | 500         | 450         | MHz  |  |  |

# **PLL Specifications**

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

| Symbol                  | Description                                                                                       | Min | Тур | Max     | Unit     |
|-------------------------|---------------------------------------------------------------------------------------------------|-----|-----|---------|----------|
|                         | Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade) | 5   | _   | 670 (1) | MHz      |
| f <sub>IN</sub>         | Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade) | 5   | _   | 622 (1) | MHz      |
|                         | Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade) | 5   | _   | 500 (1) | MHz      |
| f <sub>INPFD</sub>      | Input frequency to the PFD                                                                        | 5   | _   | 325     | MHz      |
| f <sub>VCO</sub>        | PLL VCO operating Range (2)                                                                       | 600 | _   | 1,400   | MHz      |
| f <sub>INDUTY</sub>     | Input clock duty cycle                                                                            | 40  | _   | 60      | %        |
| f <sub>EINDUTY</sub>    | External feedback clock input duty cycle                                                          | 40  | _   | 60      | %        |
| t <sub>INCCJ</sub> (3), | Input clock cycle-to-cycle jitter (Frequency ≥ 100 MHz)                                           | _   | _   | 0.15    | UI (p-p) |
| (4)                     | Input clock cycle-to-cycle jitter (Frequency ≤ 100 MHz)                                           | _   | _   | ±750    | ps (p-p) |

Table 1-44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

| Symbol                            | Description                                                                     | Min | Тур | Max  | Unit      |
|-----------------------------------|---------------------------------------------------------------------------------|-----|-----|------|-----------|
| t <sub>CASC</sub> _<br>OUTJITTER_ | Period Jitter for dedicated clock output in cascaded PLLs (FOUT $\geq$ 100 MHz) | _   | _   | 425  | ps (p-p)  |
| PERIOD_<br>DEDCLK<br>(6), (7)     | Period Jitter for dedicated clock output in cascaded PLLs (FOUT $\leq$ 100 MHz) | _   | _   | 42.5 | mUI (p-p) |

#### Notes to Table 1-44:

- (1)  $f_{IN}$  is limited by the I/O  $f_{MAX}$ .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f<sub>VCO</sub> specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4)  $F_{REF}$  is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O  $f_{MAX}$  or  $f_{OUT}$  of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition:
  - a. Upstream PLL: 0.59 Mhz ≤ Upstream PLL BW < 1 MHz
  - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range ( $0^{\circ}$  to  $85^{\circ}$ C) and the industrial junction temperature range ( $40^{\circ}$  to  $100^{\circ}$ C).

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

| Symbol                   | Parameter                                                                        | Min | Тур | Max     | Unit              |
|--------------------------|----------------------------------------------------------------------------------|-----|-----|---------|-------------------|
| f                        | Input clock frequency (–3 speed grade)                                           | 5   | _   | 717 (1) | MHz               |
| f <sub>IN</sub>          | Input clock frequency (-4 speed grade)                                           | 5   |     | 717 (1) | MHz               |
| f <sub>INPFD</sub>       | Input frequency to the PFD                                                       | 5   | _   | 325     | MHz               |
| f                        | PLL VCO operating range (-3 speed grade)                                         | 600 |     | 1,300   | MHz               |
| f <sub>VCO</sub>         | PLL VCO operating range (-4 speed grade)                                         | 600 | _   | 1,300   | MHz               |
| t <sub>EINDUTY</sub>     | Input clock or external feedback clock input duty cycle                          | 40  | _   | 60      | %                 |
|                          | Output frequency for internal global or regional clock (–3 speed grade)          | _   | _   | 700 (2) | MHz               |
| f <sub>OUT</sub>         | Output frequency for internal global or regional clock (–4 speed grade)          | _   | _   | 500 (2) | MHz               |
| f                        | Output frequency for external clock output (-3 speed grade)                      | _   |     | 717 (2) | MHz               |
| f <sub>OUT_EXT</sub>     | Output frequency for external clock output (-4 speed grade)                      | _   |     | 717 (2) | MHz               |
| toutduty                 | Duty cycle for external clock output (when set to 50%)                           | 45  | 50  | 55      | %                 |
| t <sub>FCOMP</sub>       | External feedback clock compensation time                                        | _   | _   | 10      | ns                |
| t <sub>CONFIGPLL</sub>   | Time required to reconfigure scan chain                                          | _   | 3.5 | _       | scanclk<br>cycles |
| t <sub>CONFIGPHASE</sub> | Time required to reconfigure phase shift                                         | _   | 1   | _       | scanclk<br>cycles |
| f <sub>SCANCLK</sub>     | scanclk frequency                                                                | _   | _   | 100     | MHz               |
| t <sub>LOCK</sub>        | Time required to lock from end-of-device configuration or de-assertion of areset | _   | _   | 1       | ms                |

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

| Symbol                      | Parameter                                                                                                | Min | Тур | Max  | Unit      |
|-----------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|------|-----------|
| t <sub>DLOCK</sub>          | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _   | _   | 1    | ms        |
|                             | PLL closed-loop low bandwidth                                                                            | _   | 0.3 | _    | MHz       |
| f <sub>CLBW</sub>           | PLL closed-loop medium bandwidth                                                                         | _   | 1.5 | _    | MHz       |
|                             | PLL closed-loop high bandwidth (7)                                                                       | _   | 4   | _    | MHz       |
| t <sub>PLL_PSERR</sub>      | Accuracy of PLL phase shift                                                                              | _   |     | ±50  | ps        |
| t <sub>ARESET</sub>         | Minimum pulse width on the areset signal                                                                 | 10  |     | _    | ns        |
| + (2) (4)                   | Input clock cycle to cycle jitter (F <sub>REF</sub> ≥ 100 MHz)                                           | _   |     | 0.15 | UI (p-p)  |
| t <sub>INCCJ</sub> (3), (4) | Input clock cycle to cycle jitter (F <sub>REF</sub> < 100 MHz)                                           | _   |     | ±750 | ps (p-p)  |
| + (5)                       | Period Jitter for dedicated clock output ( $F_{OUT} \ge 100 \text{ MHz}$ )                               | _   | _   | 175  | ps (p-p)  |
| t <sub>OUTPJ_DC</sub> (5)   | Period Jitter for dedicated clock output (F <sub>OUT</sub> < 100 MHz)                                    | _   | _   | 17.5 | mUI (p-p) |
| ± (E)                       | Cycle to Cycle Jitter for dedicated clock output $(F_{OUT} \ge 100 \text{ MHz})$                         | _   | _   | 175  | ps (p-p)  |
| t <sub>OUTCCJ_DC</sub> (5)  | Cycle to Cycle Jitter for dedicated clock output (F <sub>OUT</sub> < 100 MHz)                            | _   | _   | 17.5 | mUI (p-p) |
| t <sub>OUTPJ_IO</sub> (5),  | Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$                            | _   | _   | 600  | ps (p-p)  |
| (8)                         | Period Jitter for clock output on regular I/O (F <sub>OUT</sub> < 100 MHz)                               | _   | _   | 60   | mUI (p-p) |
| t <sub>OUTCCJ_IO</sub> (5), | Cycle to Cycle Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$                    | _   | _   | 600  | ps (p-p)  |
| (8)                         | Cycle to Cycle Jitter for clock output on regular I/O (F <sub>OUT</sub> < 100 MHz)                       | _   | _   | 60   | mUI (p-p) |
| t <sub>CASC_OUTPJ_DC</sub>  | Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} \ge 100 MHz)$                        | _   | _   | 250  | ps (p-p)  |
| (5), (6)                    | Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} < 100MHz)$                           | _   | _   | 25   | mUI (p-p) |
| f <sub>DRIFT</sub>          | Frequency drift after PFDENA is disabled for duration of 100 us                                          | _   | _   | ±10  | %         |

#### Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O  $F_{MAX}$  or  $F_{OUT}$  of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4)  $F_{REF}$  is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10<sup>-12</sup> (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- $(6) \quad \hbox{The cascaded PLL specification is only applicable with the following condition:}$ 
  - a. Upstream PLL:  $0.59 \text{ Mhz} \leq \text{Upstream PLL BW} < 1 \text{ MHz}$
  - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

# **Configuration**

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Table 1–50. Configuration Mode Specifications for Arria II Devices

| Dragramming Made                   | D   | llmit |     |      |
|------------------------------------|-----|-------|-----|------|
| Programming Mode                   | Min | Тур   | Max | Unit |
| Passive serial                     | _   | _     | 125 | MHz  |
| Fast passive parallel              | _   | _     | 125 | MHz  |
| Fast active serial (fast clock)    | 17  | 26    | 40  | MHz  |
| Fast active serial (slow clock)    | 8.5 | 13    | 20  | MHz  |
| Remote update only in fast AS mode | _   | _     | 10  | MHz  |

# **JTAG Specifications**

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

| Symbol                  | Description                              | Min | Max | Unit |
|-------------------------|------------------------------------------|-----|-----|------|
| $t_{JCP}$               | TCK clock period                         | 30  | _   | ns   |
| t <sub>JCH</sub>        | TCK clock high time                      | 14  | _   | ns   |
| t <sub>JCL</sub>        | TCK clock low time                       | 14  | _   | ns   |
| t <sub>JPSU (TDI)</sub> | TDI JTAG port setup time                 | 1   | _   | ns   |
| t <sub>JPSU (TMS)</sub> | TMS JTAG port setup time                 | 3   | _   | ns   |
| $t_{JPH}$               | JTAG port hold time                      | 5   | _   | ns   |
| t <sub>JPCO</sub>       | JTAG port clock to output                | _   | 11  | ns   |
| t <sub>JPZX</sub>       | JTAG port high impedance to valid output | _   | 14  | ns   |
| t <sub>JPXZ</sub>       | JTAG port valid output to high impedance | _   | 14  | ns   |

### Chip-Wide Reset (Dev\_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset ( $\texttt{Dev\_CLRn}$ ) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev\_CLRn) Specifications for Arria II Devices

| Description | Min | Тур | Max | Unit |
|-------------|-----|-----|-----|------|
| Dev_CLRn    | 500 | _   | _   | μS   |

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 3 of 4)

| Ohal                                                                        | Ocaditions                                                                                | I   | 3       | C   | 34    | C5  | ,I5   | C   | 6    | 11   |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|---------|-----|-------|-----|-------|-----|------|------|
| Symbol                                                                      | Conditions                                                                                | Min | Max     | Min | Max   | Min | Max   | Min | Max  | Unit |
|                                                                             | True LVDS with<br>dedicated<br>SERDES<br>(data rate<br>600–1,250<br>Mbps)                 | _   | 175     | _   | 175   | _   | 225   | _   | 300  | ps   |
|                                                                             | True LVDS with dedicated SERDES (data rate < 600 Mbps)                                    | _   | - 0.105 | _   | 0.105 | _   | 0.135 | -   | 0.18 | UI   |
| t <sub>tx_jitter</sub> (4)                                                  | True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate 600 – 945 Mbps) |     | 260     | ı   | 260   | _   | 300   | ı   | 350  | ps   |
|                                                                             | True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate < 600 Mbps)     | _   | 0.16    | _   | 0.16  | _   | 0.18  | _   | 0.21 | UI   |
| t <sub>TX_DCD</sub>                                                         | True LVDS and emulated LVDS_E_3R                                                          | 45  | 55      | 45  | 55    | 45  | 55    | 45  | 55   | %    |
| t <sub>RISE</sub> and t <sub>FALL</sub>                                     | True LVDS and emulated LVDS_E_3R                                                          | _   | 200     | _   | 200   | _   | 225   | _   | 250  | ps   |
| TCCS                                                                        | True LVDS (5)                                                                             | _   | 150     | _   | 150   | _   | 175   | _   | 200  | ps   |
| 1003                                                                        | Emulated<br>LVDS_E_3R                                                                     | _   | 200     | _   | 200   | _   | 250   | _   | 300  | ps   |
| Receiver (6)                                                                |                                                                                           |     | •       |     | •     |     | •     |     | ·    | •    |
| True differential<br>I/O standards -<br>f <sub>HSDRDPA</sub> (data<br>rate) | SERDES factor<br>J = 3 to 10                                                              | 150 | 1250    | 150 | 1250  | 150 | 1050  | 150 | 840  | Mbps |

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

| O                                                                                                                 | O and Hillians                                                             | C3, I3 |     |         | C4, I4 |     |         |      |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|-----|---------|--------|-----|---------|------|
| Symbol                                                                                                            | Conditions                                                                 | Min    | Тур | Мах     | Min    | Тур | Max     | Unit |
| f <sub>HSCLK_OUT</sub> (output<br>clock frequency)                                                                | _                                                                          | 5      | _   | 717 (7) | 5      | _   | 717 (7) | MHz  |
| Transmitter                                                                                                       |                                                                            |        |     |         |        |     |         |      |
| (                                                                                                                 | SERDES factor, $J = 3$<br>to 10<br>(using dedicated<br>SERDES) ( $\beta$ ) | (4)    | _   | 1250    | (4)    | _   | 1250    | Mbps |
| f <sub>HSDR</sub> (true LVDS<br>output data rate)                                                                 | SERDES factor J = 2,<br>(using DDR registers)                              | (4)    | _   | (5)     | (4)    | _   | (5)     | Mbps |
|                                                                                                                   | SERDES factor J = 1,<br>(uses an SDR<br>register)                          | (4)    | _   | (5)     | (4)    | _   | (5)     | Mbps |
| f <sub>HSDR</sub> (emulated<br>LVDS_E_3R output<br>data rate) (5)                                                 | SERDES factor J = 4                                                        | (4)    | _   | 1152    | (4)    | _   | 800     | Mbps |
| f <sub>HSDR</sub> (emulated<br>LVDS_E_1R output<br>data rate)                                                     | to 10                                                                      | (4)    | _   | 200     | (4)    | _   | 200     | Mbps |
| t <sub>x Jitter</sub>                                                                                             | Total jitter for data<br>rate, 600 Mbps to<br>1.6 Gbps                     | _      | _   | 160     | _      | _   | 160     | ps   |
|                                                                                                                   | Total jitter for data rate, < 600 Mbps                                     | _      | _   | 0.1     | _      | _   | 0.1     | UI   |
| t <sub>x Jitter</sub> - emulated<br>differential I/O<br>standards with three                                      | Total jitter for data<br>rate, 600 Mbps to<br>1.25 Gbps                    | _      | _   | 300     | _      | _   | 325     | ps   |
| external output resistor<br>network                                                                               | Total jitter for data<br>rate < 600 Mbps                                   | _      | _   | 0.2     | _      | _   | 0.25    | UI   |
| t <sub>x Jitter</sub> - emulated<br>differential I/O<br>standards with one<br>external output resistor<br>network | _                                                                          | _      | _   | 0.15    | _      | _   | 0.15    | UI   |
| TX output clock duty cycle for both True and emulated differential I/O standards                                  |                                                                            | 45     | 50  | 55      | 45     | 50  | 55      | %    |

| Table 1–55. DPA Lock Time Specifications for Arria II Devices (Note 1), (2), (3) |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

| Standard           | Training Pattern    | Number of Data<br>Transitions in One<br>Repetition of the<br>Training Pattern | Number of<br>Repetitions per<br>256 Data<br>Transitions <i>(4)</i> | Maximum              |
|--------------------|---------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|
| SPI-4              | 0000000001111111111 | 2                                                                             | 128                                                                | 640 data transitions |
| Parallel Rapid I/O | 00001111            | 2                                                                             | 128                                                                | 640 data transitions |
| rafallel hapiu 1/0 | 10010000            | 4                                                                             | 64                                                                 | 640 data transitions |
| Miscellaneous      | 10101010            | 8                                                                             | 32                                                                 | 640 data transitions |
| Miscellaneous      | 01010101            | 8                                                                             | 32                                                                 | 640 data transitions |

#### Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

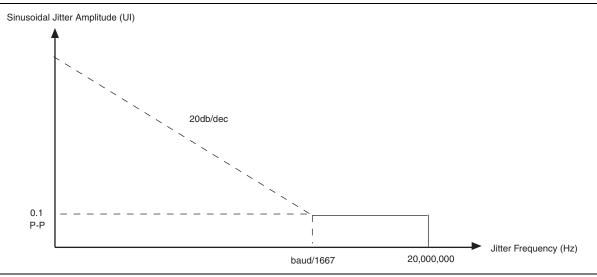



Table 1–60 lists the DQS phase shift error for Arria II GX devices.

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t<sub>DQS\_PSERR</sub>) for Arria II GX Devices *(Note 1)* 

| Number of DQS Delay Buffer | C4  | 13, C5, I5 | C6  | Unit |
|----------------------------|-----|------------|-----|------|
| 1                          | 26  | 30         | 36  | ps   |
| 2                          | 52  | 60         | 72  | ps   |
| 3                          | 78  | 90         | 108 | ps   |
| 4                          | 104 | 120        | 144 | ps   |

#### Note to Table 1-60:

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61. DQS Phase Shift Error Specification for DLL-Delayed Clock ( $t_{DQS\_PSERR}$ ) for Arria II GZ Devices (Note 1)

| Number of DQS Delay Buffer | -3  | -4  | Unit |
|----------------------------|-----|-----|------|
| 1                          | 28  | 30  | ps   |
| 2                          | 56  | 60  | ps   |
| 3                          | 84  | 90  | ps   |
| 4                          | 112 | 120 | ps   |

#### Note to Table 1-61:

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

| Parameter                    | Clock   | Cumbal                 | -4 -5 |     | -6   |     | Ilmit |     |      |
|------------------------------|---------|------------------------|-------|-----|------|-----|-------|-----|------|
| Parameter                    | Network | Symbol                 | Min   | Max | Min  | Max | Min   | Max | Unit |
| Clock period jitter          | Global  | t <sub>JIT(per)</sub>  | -100  | 100 | -125 | 125 | -125  | 125 | ps   |
| Cycle-to-cycle period jitter | Global  | t <sub>JIT(cc)</sub>   | -200  | 200 | -250 | 250 | -250  | 250 | ps   |
| Duty cycle jitter            | Global  | t <sub>JIT(duty)</sub> | -100  | 100 | -125 | 125 | -125  | 125 | ps   |

#### Notes to Table 1-62:

- (1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.
- (2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.
- (3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

<sup>(1)</sup> This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

<sup>(1)</sup> This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

# I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.



The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Table 1-68. Glossary (Part 3 of 4)

| Letter | Subject                                                                     | Definitions                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|--------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| S      | Subject  SW (sampling window)  Single-ended Voltage Referenced I/O Standard | The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window:  Timing Diagram  Bit Time    Diagram                                                               |  |  |  |  |  |
|        | _                                                                           | V <sub>SS</sub>                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|        | t <sub>C</sub>                                                              | High-speed receiver and transmitter input and output clock period.                                                                                                                                                                                                                   |  |  |  |  |  |
|        | TCCS<br>(channel-to-<br>channel-<br>skew)                                   | The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under <b>S</b> in this table). |  |  |  |  |  |
|        |                                                                             | High-speed I/O block: Duty cycle on the high-speed transmitter output clock.                                                                                                                                                                                                         |  |  |  |  |  |
|        | tour                                                                        | Timing Unit Interval (TUI)                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Т      | <b>t</b> <sub>DUTY</sub>                                                    | The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_{\text{C}}/w$ )                                                                                                        |  |  |  |  |  |
|        | t <sub>FALL</sub>                                                           | Signal high-to-low transition time (80-20%)                                                                                                                                                                                                                                          |  |  |  |  |  |
|        | t <sub>INCCJ</sub> Cycle-to-cycle jitter tolerance on the PLL clock input.  |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|        | t <sub>OUTPJ_IO</sub>                                                       | Period jitter on the general purpose I/O driven by a PLL.                                                                                                                                                                                                                            |  |  |  |  |  |
|        |                                                                             |                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|        | t <sub>OUTPJ_DC</sub>                                                       | Period jitter on the dedicated clock output driven by a PLL.                                                                                                                                                                                                                         |  |  |  |  |  |