
Intel - EP2AGX190FF35C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	7612
Number of Logic Elements/Cells	181165
Total RAM Bits	10177536
Number of I/O	612
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx190ff35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/			13			C4			C5 and I	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								÷	•	•	•			
Supported I/O Standards			1	.2-V PCML,	1.5-V PC	CML, 2.5-V	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Ś	Ω
Switching Characteristics	hapter 1: Device Datasheet for Arria II Devices
hin	ter
дC	
hai	Be
act	٧ic
eri	6
stic	ata
S	she
	ĕt
	đ
	Ar
	ria
	Ξ
	Dev
	ic
	22

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I5	i		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to 0.5%	_	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100			100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	0		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	—	-50		—	-50		—	-50	_	—	-50	dBc/Hz
	100 Hz	_	—	-80		—	-80	—	—	-80	_	—	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	—	-110		—	-110		—	-110	_	—	-110	dBc/Hz
Noise	10 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	100 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	\geq 1 MHz	_	—	-130		—	-130		—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3	_		3	_		3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S				•									
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Symbol/	Oendition		13			C4			C5 and I	i		C6		11
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100		_	mV
V _{ICM}	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
VICM	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe							50	MHz to 1.2	5 GHz: –10	dB			
differential mode	XAUI							10	0 MHz to 2	.5 GHz: –10	dB			
Return loss	PCIe							50	MHz to 1.	25 GHz: –6d	IB			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	IB			
Programmable PPM detector (8)	_						62.5, 100, 1 50, 300, 500							ppm
Run length	—		80	—	—	80	—	—	80	—	—	80	—	UI
Programmable equalization	—	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time (9)	—	_	_	75	_	—	75	_	_	75	—	_	75	μs
CDR minimum T1b (10)	—	15	_	_	15	—		15	_	_	15	_	_	μs

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics

Symbol/	Conditions	-	C3 and –I3	i (1)		-C4 and -	-14	11
Description	Conditions	Min	Тур	Мах	Min	Тур	Max	- Unit
Transceiver Clocks			•				•	
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCN	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	—	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	V
Absolute $V_{\mbox{\scriptsize MIN}}$ for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting		_	2.7	-	_	2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	_	1.6	_	_	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins <i>(8)</i>	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_		165	_		mV
V	V _{ICM} = 0.82 V setting		820 ± 10	%		820 ± 109	%	mV
V _{ICM}	$V_{ICM} = 1.1 V$ setting (7)		1100 ± 10	%		mV		

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-				V _{od} S	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre-				V _{od} Se	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4			C5, I	5				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	<i>(2)</i>												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	_	_	0.01	_	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01	_	—	0.01	_		0.01	_	_	0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz		> 15			> 15		> 15			> 15			UI
Jitter tolerance at 622.08 Mbps	Pattern = PRBS15 Jitter frequency = 25 KHZ Pattern = PRBS15		> 1.5			> 1.5		> 1.5			> 1.5			UI
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15			> 0.15			> 0.15			> 0.15		

Symbol/	a		13			C4			C5, I	5						
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit		
SSC modulation deviation at 1.5 Gbps (G1)	Compliance pattern		5700			5700			5700			5700)	ppm		
RX differential skew at 1.5 Gbps (G1)	Compliance pattern		80			80			80			80				
RX AC common mode voltage at 1.5 Gbps (G1)	Compliance pattern		150			150			150			150				
Total jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.65			> 0.6	ō		> 0.6	5		UI				
Deterministic jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.35			> 0.3	ō		> 0.3	5		> 0.3	5	UI		
SSC modulation frequency at 3.0 Gbps (G2)	Compliance pattern		33			33			33			33				
SSC modulation deviation at 3.0 Gbps (G2)	Compliance pattern		5700			5700			5700		5700			ppm		
RX differential skew at 3.0 Gbps (G2)	Compliance pattern		75		75				75		75			ps		
RX AC common mode voltage at 3.0 Gbps (G2)	Compliance pattern		150			150			150			150				
Total jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.60			> 0.60)	> 0.60			> 0.60			UI		
Random jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.18			> 0.18	3		> 0.18	3		> 0.1	8	UI		
SSC modulation frequency at 6.0 Gbps (G3)	Compliance pattern		33			33			33			33		kHz		
SSC modulation deviation at 6.0 Gbps (G3)	Compliance pattern		5700			5700		5700				5700)	ppm		
RX differential skew at 6.0 Gbps (G3)	Compliance pattern		30			30			30			30				
RX AC common mode voltage at 6.0 Gbps (G3)	Compliance pattern		100			100			100			100				

	ceiver Block Jitter S	pecifica		ur Arria	II UA D	evices	s (NULE I) (rai)		U)	C6							
Symbol/	Conditions		13			C4			C5, I	5			Unit					
Description	CONULIONS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit				
CPRI Transmit Jitt	er Generation (11)													•				
	E.6.HV, E.12.HV			0.27			0.279			0.279			0.279	UI				
	Pattern = CJPAT			9			0.275			0.275			0.279	01				
Total jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.35		_	0.35	_	_	0.35	_	_	0.35	UI				
	Pattern = CJTPAT																	
	E.6.HV, E.12.HV			0.14			0.14	_		0.14			0.14	UI				
Deterministic	Pattern = CJPAT			0.14			0.14			0.14			0.14	01				
jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.17		_	0.17	_	_	0.17	_	_	0.17	UI				
	Pattern = CJTPAT																	
CPRI Receiver Jitt	ter Tolerance (11)	•	•	•				•	•		•	•	•	•				
Total jitter tolerance	E.6.HV, E.12.HV Pattern = CJPAT	> 0.66		> 0.66				> 0.60	6		6	UI						
Deterministic	E.6.HV, E.12.HV	> 0.4																
jitter tolerance	Pattern = CJPAT		> 0.4				> 0.4		> 0.4			UI						
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.65			> 0.65 > 0.65 > 0.65				> 0.4								
Total jitter	Pattern = CJTPAT		> 0.05															
tolerance	E.60.LV																	
	Pattern = PRBS31		> 0.6			_			_			_		UI				
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI				
Deterministic	Pattern = CJTPAT																	
jitter tolerance	E.60.LV Pattern = PRBS31		> 0.45											UI				
Combined deterministic and	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI				
random jitter tolerance	Pattern = CJTPAT																	
OBSAI Transmit Ji	tter Generation (12))																
Total jitter at 768 Mbps,	REFCLK = 153.6 MHz	_	_	0.35	_		0.35	_	_	0.35	_	_	0.35	UI				
1536 Mbps, and 3072 Mbps	Pattern = CJPAT																	
Deterministic jitter at 768 Mbps, 1536 Mbps, and 3072 Mbps	REFCLK = 153.6 MHz Pattern = CJPAT		_	0.17			0.17			0.17			0.17	UI				

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 8 of 10)

Symbol/			13			C4			C5, I	5		C6		Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance (12)													
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55		> 0.55			> 0.55			> 0.55			
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1		> 0.1			> 0.1			UI
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5	i	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/ Description	Conditions	13		C4		C5, I5			C6			Unit		
	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 21.8 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 3072 Mbps Jitter frequence 1843.2 KHz to MHz			> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refclk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1-41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/	0		–C3 and	-13	-	-C4 and	-14	- Unit
Description	Conditions	Min	Min Typ Max		Min	Тур	Max	Unit
SONET/SDH Transmit Jitter Gener	ation <i>(3)</i>							
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	-	_	0.1	_	_	0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	—	0.01	—	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—	—	0.01	—	—	0.01	UI
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>							
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5			UI		
	Pattern = PRBS15							
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15	5		UI		

Symbol/	O and l'it's and		-C3 and	-13	-	-C4 and	-14	Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	;		UI		
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps		_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter toleranceData rate = 3.75 Gbps(peak-to-peak)Pattern = CJPAT		> 0.37		_	_	_	UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65	i	_	_		UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1			_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.675		5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	-	_		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Oendikiene		-C3 and	-13	-	-C4 and ·	-14	- Unit	
Description	Conditions	Min	Тур	Max	Min	in Typ Max		Unit	
OBSAI Receiver Jitter Tolerance	(15)								
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37			
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.55			
Sinusoidal jitter tolerance at 768	Jitter frequency = 5.4 KHz Pattern = CJPAT	> 8.5			> 8.5			UI	
Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI	
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5			> 8.5			
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1		> 0.1			UI	
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT	> 8.5		> 8.5			UI		
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1			> 0.1			UI	

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Symbol	Description	Min	Тур	Max	Unit
	Output frequency for internal global or regional clock (-4 Speed Grade)	_	_	500	MHz
f _{out}	Output frequency for internal global or regional clock (–5 Speed Grade)	_	_	500	MHz
	Output frequency for internal global or regional clock (–6 Speed Grade)	_	_	400	MHz
	Output frequency for external clock output (–4 Speed Grade)	—		670 <i>(5)</i>	MHz
f _{OUT_EXT}	Output frequency for external clock output (–5 Speed Grade)	_		622 (5)	MHz
	Output frequency for external clock output (–6 Speed Grade)	—		500 (5)	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
1	Dedicated clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		300	ps (p–p)
t _{outpj_dc}	Dedicated clock output period jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
1	Dedicated clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	—		300	ps (p–p)
t _{outccj_dc}	Dedicated clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
	Regular I/O clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outpj_io}	Regular I/O clock output period jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
£	Regular I/O clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outccj_i0}	Regular I/O clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
t _{CONFIGPLL}	Time required to reconfigure PLL scan chains	_	3.5	_	SCANCLK cycles
t _{configphase}	Time required to reconfigure phase shift	_	1	_	SCANCLK cycles
f _{scanclk}	SCANCLK frequency	—		100	MHz
t _{LOCK}	Time required to lock from end of device configuration	—		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	—	0.3		MHz
f _{CL B W}	PLL closed-loop medium bandwidth	_	1.5	—	MHz
	PLL closed-loop high bandwidth	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal	10	—	—	ns

Table 1–44. PLL Specifications for Arria II GX Devices (Part 2 of 3)

Configuration

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Drogromming Modo	D	CLK Frequen	CY	Unit
Programming Mode	Min	Тур	Max	UIIIL
Passive serial	—	—	125	MHz
Fast passive parallel	—	—	125	MHz
Fast active serial (fast clock)	17	26	40	MHz
Fast active serial (slow clock)	8.5	13	20	MHz
Remote update only in fast AS mode			10	MHz

Table 1–50. Configuration Mode Specifications for Arria II Devices

JTAG Specifications

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPC0}	JTAG port clock to output	—	11	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14	ns

 Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

Chip-Wide Reset (Dev_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset (Dev_CLRn) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev_CLRn) Specifications for Arria II Devices

Description	Min	Тур	Max	Unit
Dev_CLRn	500			μS

Symbol	Conditions	I	3	C	4	C5	,15	C	6	Unit
Symbol	Gomarcions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

0h-al	Oradikiran		C3, I3			C4, I4		11
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	Unit
Clock		<u>.</u>	-			<u>.</u>		
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

		C3, I3 C4,				C4, 14	C4, I4	
Symbol	Conditions	Min	Typ Max		Min	Тур	Max	Unit
	True differential I/O standards		_	200	_	_	200	ps
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks		_	250	_	_	300	ps
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps
	True LVDS			100			100	ps
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps
Receiver								
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps
DPA run length	DPA mode		—	10000	—	—	10000	UI
Soft-CDR PPM tolerance	Soft-CDR mode — — 300 — — 300 ±		± PPM					
Sampling Window (SW)	Non-DPA mode	_	_	300	_		300	ps

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Deveneter	Clock	Gumbal	-	3	-	4	11-1-1
Parameter	Network	Symbol	Min	Max	Min	Max	Unit
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1)
	Duty O	JOID DIOLOILION			/ BO11000	11010 1	

Symbol	C4		13, C5, 15		C6		Unit
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Sumbol	C	3, 13	C	Unit	
Symbol	Min	Max	Min	Max	UIII
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions
Letter A, B, C, D	Subject Differential I/O Standards	Definitions Receiver Input Waveforms Single-Ended Waveform V_{ID} Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform VID Transmitter Output Waveforms Single-Ended Waveforms Single-Ended Waveform Von Von Von Other Channel (p) = V _{OH} Note Channel (p) = V _{OH} Other Channel (p) = V _{OH} Other Channel (n) = V _{OL}
	f _{HSCLK}	Left/Right PLL input clock frequency.
_		High-speed I/O block: Maximum/minimum LVDS data transfer rate
E, F	f _{HSDR}	(f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.

Letter	Subject	Definitions					
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	Definitions The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time Districe Districe OS TOCS RISKM Sampling Window OS TOCS The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the A					
	t _C	High-speed receiver and transmitter input and output clock period.					
	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).					
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.					
_	t _{DUTY}	Timing Unit Interval (TUI)					
Т	borr	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)					
	t _{FALL}	Signal high-to-low transition time (80-20%)					
	t _{inccj}	Cycle-to-cycle jitter tolerance on the PLL clock input.					
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.					
	t outpj_dc	Period jitter on the dedicated clock output driven by a PLL.					
		Signal low-to-high transition time (20-80%).					

 Table 1–68. Glossary (Part 3 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.
U,	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V,	V _{IH(AC)}	High-level AC input voltage.
V	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage.
	V _{IL(DC)}	Low-level DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
W,		
Х,	w	High-speed I/O block: The clock boost factor.
Y,	vv	
Z		

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
		 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6.
July 2012	4.3	 Finalized Arria II GZ information in Table 1–20.
July 2012		 Added BLVDS specification in Table 1–32 and Table 1–33.
		 Updated input and output waveforms in Table 1–68.
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		 Minor text edits.
	4.1	Added Table 1–60.
lune 0011		Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
June 2011		 Updated the "Switching Characteristics" section introduction.
		 Minor text edits.