
Intel - EP2AGX190FF35I5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	7612
Number of Logic Elements/Cells	181165
Total RAM Bits	10177536
Number of I/O	612
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx190ff35i5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1–1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry		3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin		40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator		3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking		1.21	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry		3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
+	RAMP Power Supply Ramp time	Normal POR	0.05		100	ms
LRAMP		Fast POR	0.05		4	ms

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V (2)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	—	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	—	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	—	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	—	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2		3.3	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage	_	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	_	0.05/0.075		0 1 5 /0 005	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.85/2.375	3.0/2.5 (4)	3.15/2.625	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	-	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	— —	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	—	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	_	1.05	1.1	1.15	V

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 <i>(5)</i>	1.575	V
V _{CCH_GXBRn} (3)	Transmitter output buffer power (right side)	_	- 1.33/1.423 1.4/1.3 (3)		1.575	v
т	Operating junction temperature	Commercial	0	_	85	°C
TJ		Industrial	-40	_	100	°C
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	—	100	ms
t _{RAMP}	RAMP Power supply ramp time		0.05	_	4	ms

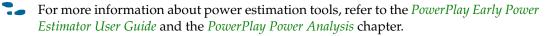
Notes to Table 1-6:

 Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(2) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(3) n = 0, 1, or 2.

(4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.


- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Symbol Description Conditions (V)	Openditions (II)	Resistance		
Symbol		C3,I3	C4,14	Unit	
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Use the following with Equation 1–1:

- R_{SCAL} is the OCT resistance value at power up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Nominal Voltage V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Note to Table 1-15:

(1) Valid for V_{CCI0} range of $\pm 5\%$ and temperature range of 0° to $85^\circ C.$

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1–16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),and$ dedicated clock input pins	7	pF

I/O Standard Specifications

Table 1–22 through Table 1–35 list input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by the Arria II device family. They also show the Arria II device family I/O standard specifications. V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of terms used in Table 1–22 through Table 1–35, refer to "Glossary" on page 1–74.

Table 1–22 lists the single-ended I/O standards for Arria II GX devices.

I/O Standard		V _{ccio} (V)		VII	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}
i/o Stailuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÅ)
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} -0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2	1	-1
1.8 V LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
3.0-V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15		0.35 × V _{CCIO}	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–22. Single-Ended I/O Standards for Arria II GX Devices

Table 1–23 lists the single-ended I/O standards for Arria II GZ devices.

Table 1-23	. Single-Ended I/O Standards for Arria II GZ Devices	(Part 1 of 2)
------------	--	---------------

I/O Standard		V _{ccio} (V)		VII	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}
i/U Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCI0}	2	-2

P

Table 1–30 lists the HSTL I/O standards for Arria II GX devices.

I/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V	V _{DIF(AC)} (V)		
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2		0.85	—	0.95	0.88	—	0.95	0.4	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.71	—	0.79	0.71	_	0.79	0.4	—
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	_	_	0.5 × V _{CCI0}	_	0.48 × V _{CCI0}	0.5 × V _{CCIO}	0.52× V _{CCIO}	0.3	_

Table 1–30. Differential HSTL I/O Standards for Arria II GX Devices

Table 1–31 lists the HSTL I/O standards for Arria II GZ devices.

Table 1–31. Differential HSTL I/O Standards for Arria II GZ Devices

I/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{CM(DC)} (V	V _{DIF(AC)} (V)		
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2	_	0.78	—	1.12	0.78	_	1.12	0.4	
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68		0.9	0.68	_	0.9	0.4	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3		0.5 × V _{CCIO}		0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.3	V _{CCI0} + 0.48

Table 1–32 lists the differential I/O standard specifications for Arria II GX devices.

Table 1–32. Differential I/O Standard Specifications for Arria II GX Devices (Note 1)

I/O	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V) <i>(2)</i>	V _{OD} (V) <i>(3)</i>			V _{OCM} (V)			
Standard	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.80	0.247	_	0.6	1.125	1.25	1.375	
RSDS (4)	2.375	2.5	2.625	_			_	_	0.1	0.2	0.6	0.5	1.2	1.4	
Mini-LVDS (4)	2.375	2.5	2.625		_	_		_	0.25		0.6	1	1.2	1.4	
LVPECL (5)	2.375	2.5	2.625	300	_	_	0.6	1.8	_			_	_	_	
BLVDS (6)	2.375	2.5	2.625	100		_	_	_	_	_	_			_	

Notes to Table 1-32:

(1) The 1.5 V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.

(2) V_{IN} range: 0 <= V_{IN} <= 1.85 V.

(3) R_L range: 90 <= RL <= 110 Ω .

- (4) The RSDS and mini-LVDS I/O standards are only supported for differential outputs.
- (5) The LVPECL input standard is supported at the dedicated clock input pins (GCLK) only.
- (6) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Ś	Ω
Switching Characteristics	hapter 1: Device Datasheet for Arria II Devices
hin	ter
дC	
hai	Be
act	٧ic
eri	ē
stic	ata
S	she
	ĕt
	đ
	Ar
	ria
	Ξ
	Dev
	ic
	22

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I5	i		Unit		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to 0.5%	_	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100			100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	0		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	—	-50		—	-50		—	-50	_	—	-50	dBc/Hz
	100 Hz	_	—	-80		—	-80	—	—	-80	_	—	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	—	-110		—	-110		—	-110	_	—	-110	dBc/Hz
Noise	10 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	100 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	\geq 1 MHz	_	—	-130		—	-130		—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3	_		3	_		3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S				•									
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Symbol/	Oendition		13			C4			C5 and I	i		C6		11
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100		_	mV
V _{ICM}	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
VICM	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe				50 MHz to 1.25 GHz: –10dB									
differential mode	XAUI							10	0 MHz to 2	.5 GHz: –10	dB			
Return loss	PCIe							50	MHz to 1.	25 GHz: –6d	IB			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	IB			
Programmable PPM detector (8)	_						62.5, 100, 1 50, 300, 500							ppm
Run length	—		80	—	—	80	—	—	80	—	—	80	—	UI
Programmable equalization	—	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time (9)	—	_	_	75	_	—	75	_	_	75	—	_	75	μs
CDR minimum T1b (10)	—	15	_	_	15	—		15	_	_	15	_	_	μs

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics

Symbol/	0		13			C4			C5, I	5		C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
	Jitter frequency = 0.06 KHz		> 15		> 15				> 15			> 15		UI	
	Pattern = PRBS15														
	Jitter frequency = 100 KHZ	> 1.5				> 1.5	5		> 1.5			> 1.5			
Jitter tolerance at	Pattern = PRBS15	2 110													
2488.32 Mbps	Jitter frequency = 1 MHz	> 0.15		> 0.15				> 0.1	5		> 0.1	5	UI		
	Pattern = PRBS15		2 0.10												
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.1	5		> 0.1	5	UI	
	Pattern = PRBS15		2 0.10												
XAUI Transmit Jitt	er Generation <i>(3)</i>														
Total jitter at 3.125 Gbps	Pattern = CJPAT		_	0.3	_		0.3	_	_	0.3	_	_	0.3	UI	
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT			0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI	
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>														
Total jitter			> 0.65			> 0.6	5		> 0.6	5		> 0.6	5	UI	
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI	
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	;		> 8.5			> 8.5	;	UI	
Peak-to-peak jitter	Jitter frequency = 1.875 MHz	> 0.1				> 0.1			> 0.1			> 0.1		UI	
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1		> 0.1			UI	
PCIe Transmit Jitt	er Generation <i>(4)</i>														
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		_	0.25	_		0.25	_		0.25			0.25	UI	

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

		r Specifications for Arria II GX Devices <i>(Note 1)</i> (Part 4 of 10) I3 C4 C5, I5 C6												
Symbol/ Description	Conditions		1	1		1			-					Unit
-		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Total jitter (peak-to-peak)	Pattern = CRPAT	_	—	0.27 9		_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitt	er Tolerance <i>(6)</i>													
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		> 0.4			> 0.4		UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66			> 0.66		> 0.66			> 0.66		UI	
HiGig Transmit Jit	ter Generation (7)													
Deterministic jitter	Data rate = 3.75 Gbps	_	_	0.17	_	_	0.17	_	_	_	_			UI
(peak-to-peak)	Pattern = CJPAT													
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps	_	_	0.35	_	_	0.35	_	_	_	_	_	_	UI
	Pattern = CJPAT													
HiGig Receiver Jit								1			1			1
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37			> 0.3	7	_	_	—	_	—	—	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65			> 0.6	5			_				UI
	Jitter frequency = 22.1 KHz													
	Data rate = 3.75 Gbps		> 8.5			> 8.5	5	_	_	—	_	_	—	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875MHz													
tolerance (peak-to-peak)	ance Data rate = > 0.1				> 0.1		_		_	_	_	_	UI	
	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 3.75 Gbps		> 0.1	> 0.1		> 0.1		-	-	—	-	_	—	UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

Symbol/	Oanditions		13			C4			C5, I	5		C6		11
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter Ji	itter Generation <i>(8)</i>			•										
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2	_	_	0.2	_	_	0.2		_	0.2		_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3	_	_	0.3	_	_	0.3	_	_	0.3		_	UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>													
	Jitter frequency = 15 KHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 2			> 2		> 2			> 2			UI
	Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		> 0.3			> 0.3			UI
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		> 0.3			> 0.3			UI

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	Conditions	13		C4		C5, I5			C6			Unit		
Description		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
	Jitter frequency = 21.8 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI
Sinusoidal jitter tolerance at 3072 Mbps	Pattern = CJPAT													
	Jitter frequency = 1843.2 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refelk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1–41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/	0		–C3 and	-13	-	-C4 and	-14	Unit	
Description	Conditions	Min	Min Typ Max		Min	Тур	Max	Unit	
SONET/SDH Transmit Jitter Gener	ation <i>(3)</i>								
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI	
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	—	0.01	—	_	0.01	UI	
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI	
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—	—	0.01	—		0.01	UI	
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>								
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15			
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5			> 1.5			
	Pattern = PRBS15								
	Jitter frequency = 250 KHz Pattern = PRBS15	> 0.15				UI			

1-46

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree Performan	ce for Arria II GX Devices
-------------	-----------------------------	----------------------------

Clock Network		Unit		
	I 3, C4	C5,I5	C6	UIII
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Clock Notwork	Perfo	rmance	Unit
Clock Network	–C3 and –I3	-C4 and -14	UIII
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VC0}	PLL VCO operating Range (2)	600		1,400	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} <i>(3)</i> ,	Input clock cycle-to-cycle jitter (Frequency \geq 100 MHz)	—	—	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	—	—	±750	ps (p–p)

Mode	Resources Used	Performance					
	Number of Multipliers	-3	-4	Unit			
Double mode	1	440	380	MHz			

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_		730	690	770	920	ps

Ormital	Oanditiana	I	3	C	4	C5	,15	C	6	Unit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Transmitter										
f _{HSDR_TX} (true LVDS output data rate)	SERDES factor, J = 3 to 10 (using dedicated SERDES)	150	1250 <i>(2)</i>	150	1250 <i>(2)</i>	150	1050 <i>(2)</i>	150	840	Mbps
	SERDES factor, J = 4 to 10 (using logic elements as SERDES)	(3)	945	(3)	945	(3)	840	(3)	740	Mbps
	SERDES factor, J = 2 (using DDR registers) and J = 1 (using SDR register)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	Mbps
f _{HSDR_TX_E3R} (emulated LVDS_E_3R output data rate) (7)	SERDES factor, J = 4 to 10	(3)	945	(3)	945	(3)	840	(3)	740	Mbps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 2 of 4)

Symbol	Conditions	I	3	C	4	C5	,15	C	6	- Unit
Symbol	Gomarcions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

	Conditions	C3, I3			C4, I4			
Symbol		Min	Тур	Мах	Min	Тур	Мах	Unit
Clock		<u>.</u>	-			<u>.</u>		
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions					
Letter A, B, C, D	Subject Differential I/O Standards	Definitions Receiver Input Waveforms Single-Ended Waveform V_{D} Positive Channel (p) = V _H Negative Channel (n) = V _{LL} Ground Differential Waveform V_{D} V_{D} Positive Channel (p) = V _H Negative Channel $p - n = 0 V$ Transmitter Output Waveforms Single-Ended Waveform V_{CM} Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground Differential Waveform Ground V_{OD} $p - n = 0 V$					
	f _{hsclk}	Left/Right PLL input clock frequency.					
_							
E, F	f _{HSDR}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.					
	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.					

Table 1-68. Glossary (Part 2 of 4)

Letter	Subject	Definitions					
	J	High-speed I/O block: Deserialization factor (width of parallel data bus).					
G, H, I, J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI t_{JCP} t_{JCP} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPX} t_{JPCO} t_{JPX} t_{JPX} t_{JPX} t_{JPX}					
K, L, M, O, P	PLL Specifications	PLL Specification parameters: Diagram of PLL Specifications (1)					
Q, R	RL	Receiver differential input discrete resistor (external to the Arria II device).					

Letter	Subject	Definitions			
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	Definitions The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time Districe Districe OS TOCS RISKM Sampling Window OS TOCS The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the A			
	t _C	High-speed receiver and transmitter input and output clock period.			
	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t _{co} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).			
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.			
т	t _{DUTY}	Timing Unit Interval (TUI)			
	5011	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)			
	t _{FALL}	Signal high-to-low transition time (80-20%)			
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.			
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.			
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.			
	-	Signal low-to-high transition time (20-80%).			

 Table 1–68. Glossary (Part 3 of 4)