
E·XFL

Intel - EP2AGX260EF29C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	10260
Number of Logic Elements/Cells	244188
Total RAM Bits	12038144
Number of I/O	372
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx260ef29c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1–1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator		3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.21	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry		3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

I/O Pin Leakage Current

Table 1–7 lists the Arria II GX I/O pin leakage current specifications.

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	-10	—	10	μA
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-10	—	10	μA

Table 1–7. I/O Pin Leakage Current for Arria II GX Devices

Table 1–8 lists the Arria II GZ I/O pin leakage current specifications.

Table 1–8. I/O Pin Leakage Current for Arria II GZ Devices

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	-20	—	20	μA
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-20	_	20	μA

Bus Hold

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–9 lists bus hold specifications for Arria II GX devices.

Table 1–9. Bus Hold Parameters for Arria II GX Devices (Note 1)

				V _{CC10} (V)											
Parameter	Symbol	Cond.	1	.2	1	.5	1	.8	2.	.5	3	.0	3	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	8	_	12	_	30	_	50	_	70	_	70	_	μA
Bus-hold high, sustaining current	I _{SUSH}	V _{IN} < V _{IL} (min.)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μA
Bus-hold low, overdrive current	I _{odl}	0 V < V _{IN} < V _{CCI0}	_	125	_	175	_	200	_	300	—	500	_	500	μA
Bus-hold high, overdrive current	I _{odh}	0 V < V _{IN} < V _{CCI0}	_	-125	_	-175	_	-200	_	-300	_	-500		-500	μA
Bus-hold trip point	V _{trip}		0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-9:

(1) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Use the following with Equation 1–1:

- R_{SCAL} is the OCT resistance value at power up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Nominal Voltage V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Note to Table 1-15:

(1) Valid for V_{CCI0} range of $\pm 5\%$ and temperature range of 0° to $85^\circ C.$

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1–16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),and$ dedicated clock input pins	7	pF

Symbol/	Conditions	-	C3 and –I3	; (1)	C4 andI4			– Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
-3 dB Bandwidth	PCIe Gen1	PCle Gen1 2.5 - 3.5						MHz
	PCIe Gen2			6 -	8			MHz
	(OIF) CEI PHY at 4.976 Gbps	7 - 11						MHz
	(OIF) CEI PHY at 6.375 Gbps	5 - 10						MHz
	XAUI	2 - 4					MHz	
	SRIO 1.25 Gbps	3 - 5.5					MHz	
	SRIO 2.5 Gbps	3 - 5.5					MHz	
	SRIO 3.125 Gbps	2 - 4					MHz	
	GIGE			2.5 -	4.5			MHz
	SONET 0C12			1.5 -	2.5			MHz
	SONET OC48			3.5	- 6			MHz
Transceiver-FPGA Fabric I	nterface	-						
Interface speed	—	25		325	25		250	MHz
Digital reset pulse width	—		Minim	um is two pa	arallel cloc	k cycles	-	

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Notes to Table 1-35:

(1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ225, EP2AGZ300, and EP2AGZ350.

- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-	V _{OD} Setting										
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7			
0	0	0	0	0	0	0	0	0			
1	N/A	0.7	0	0	0	0	0	0			
2	N/A	1	0.3	0	0	0	0	0			
3	N/A	1.5	0.6	0	0	0	0	0			
4	N/A	2	0.7	0.3	0	0	0	0			
5	N/A	2.7	1.2	0.5	0.3	0	0	0			
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0			
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0			
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0			
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2			
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3			
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4			
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6			
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6			
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7			
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8			
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9			
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1			
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2			
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4			
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5			
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7			
22	N/A	N/A	8	6.1	4.8	3.8	3	2			
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3			
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6			
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3			
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3			
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6			
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4			

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Symbol/	Oraditions		13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	- Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>				-									
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	6		> 0.6	6		> 0.6	;	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
SRIO Receiver Jitt														
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
<u> </u>	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5	5		> 8.5	j		> 8.5	i	UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	1	1		1	1		1	1		1	r		
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	-	-	0.14	_	-	0.14	_	_	0.14	-		0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	Oanditians		13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 20 KHz		1	L					1					
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		>1			> 1			>1			> 1		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 100 KHz Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2	2		> 0.2			> 0.2		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 1.485 Gbps (HD) Pattern =75% color bar		> 0.2			> 0.2)		> 0.2			> 0.2		UI
SATA Transmit Jit	ter Generation <i>(10)</i>													
Total jitter at 1.5 Gbps (G1)	Compliance pattern		_	0.55	_	_	0.55	_	_	0.55	_	_	0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Compliance pattern	_		0.35	_	_	0.35	_	_	0.35	_	_	0.35	UI
Total jitter at 3.0 Gbps (G2)	Compliance pattern	_	_	0.55		_	0.55	_	_	0.55	_	_	0.55	UI
Deterministic jitter at 3.0 Gbps (G2)	Compliance pattern	_	_	0.35		_	0.35	_	_	0.35	_	_	0.35	UI
Total jitter at 6.0 Gbps (G3)	Compliance pattern	_	_	0.52	_	_	_	_	_	_	_	_		UI
Random jitter at 6.0 Gbps (G3)	Compliance pattern			0.18	_	_	_	_	_	_	_			UI
SATA Receiver Jit	ter Tolerance (10)													
Total jitter tolerance at 1.5 Gbps (G1)	Compliance pattern		> 0.65			> 0.6	5		> 0.6	ō		> 0.6	ō	UI
Deterministic jitter tolerance at 1.5 Gbps (G1)	Compliance pattern		> 0.35			> 0.3	5		> 0.3	5		> 0.3	5	UI
SSC modulation frequency at 1.5 Gbps (G1)	Compliance pattern		33			33			33			33		kHz

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 6 of 10)

Symbol/	Conditions	13		C4		C5, I5			C6			Unit		
Description	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
	Jitter frequency = 21.8 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 3072 Mbps	Jitter frequency = 1843.2 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refclk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1-41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/	0		–C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	- Unit
SONET/SDH Transmit Jitter Gener	ation <i>(3)</i>							
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	-	_	0.1	_	_	0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	—	0.01	—	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—	—	0.01	—		0.01	UI
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>							
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5		> 1.5			UI
	Pattern = PRBS15							
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15	5		> 0.15		UI

Peak-to-peak jitter Jitter frequency = 1.875 MHz	Osadikisas		-C3 and	-13	-	-C4 and	-14	
	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5		UI
Peak-to-peak jitter			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI
PCIe Transmit Jitter Generation	(8)							
Total jitter at 2.5 Gbps (Gen1)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	0.25	UI
Total jitter at 5 Gbps (Gen2)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_		UI
PCIe Receiver Jitter Tolerance (8)							
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	lot suppo	orted	N	ot suppo	rted	UI
Cle (Gen 1) Electrical Idle Detect Threshold								
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65	—	175	65	—	175	UI
SRIO Transmit Jitter Generation (10)				1				
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps							
(peak-to-peak)	Pattern = CJPAT	-	-	0.17	_	-	0.17	UI
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	-	_	0.35	UI
SRIO Receiver Jitter Tolerance (10)					1		
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37	,		> 0.37	,	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55	5		> 0.55		UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
GIGE Transmit Jitter Generation	(11)							
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI
Total jitter (peak-to-peak)	Pattern = CRPAT			0.279			0.279	UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree Performan	ce for Arria II GX Devices
-------------	-----------------------------	----------------------------

Clock Network		Unit		
GIUCK NELWUIK	I 3, C4	C5,I5	C6	UIII
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	Unit	
GIUCK NELWUIK	–C3 and –I3	-C4 and -14	UIII
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VC0}	PLL VCO operating Range (2)	600		1,400	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} <i>(3)</i> ,	Input clock cycle-to-cycle jitter (Frequency \geq 100 MHz)	—	—	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	—	—	±750	ps (p–p)

Symbol	Description	Min	Тур	Max	Unit
	Output frequency for internal global or regional clock (-4 Speed Grade)	_	_	500	MHz
f _{out}	Output frequency for internal global or regional clock (–5 Speed Grade)	_	_	500	MHz
	Output frequency for internal global or regional clock (–6 Speed Grade)	_	_	400	MHz
	Output frequency for external clock output (–4 Speed Grade)	—		670 <i>(5)</i>	MHz
f _{OUT_EXT}	Output frequency for external clock output (–5 Speed Grade)	_		622 (5)	MHz
	Output frequency for external clock output (–6 Speed Grade)	—		500 (5)	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
1	Dedicated clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		300	ps (p–p)
t _{outpj_dc}	Dedicated clock output period jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
1	Dedicated clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	—		300	ps (p–p)
t _{outccj_dc}	Dedicated clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
	Regular I/O clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outpj_io}	Regular I/O clock output period jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
£	Regular I/O clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outccj_i0}	Regular I/O clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
t _{CONFIGPLL}	Time required to reconfigure PLL scan chains	_	3.5	_	SCANCLK cycles
t _{configphase}	Time required to reconfigure phase shift	_	1	_	SCANCLK cycles
f _{scanclk}	SCANCLK frequency	—		100	MHz
t _{LOCK}	Time required to lock from end of device configuration	—		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	—	0.3	_	MHz
f _{CL B W}	PLL closed-loop medium bandwidth	_	1.5	—	MHz
	PLL closed-loop high bandwidth	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal	10	—	—	ns

Table 1–44. PLL Specifications for Arria II GX Devices (Part 2 of 3)

Table 1–49 lists the embedded memory block specifications for Arria II GZ devices.

Memory		Resou	rces Used		Perfor	mance		
Memory	Mode	ALUTs	TriMatrix Memory	C3	13	C4	14	Unit
	Single port 64 × 10	0	1	500	500	450	450	MHz
	Simple dual-port 32 × 20	0	1	500	500	450	450	MHz
	Simple dual-port 64 × 10	0	1	500	500	450	450	MHz
(2)	ROM 64 × 10	0	1	500	500	450	450	MHz
	ROM 32 × 20	0	1	500	500	450	450	MHz
	Single-port 256 × 36	0	1	540	540	475	475	MHz
	Simple dual-port 256 × 36	0	1	490	490	420	420	MHz
	Simple dual-port 256 × 36, with the read-during-write option set to Old Data	0	1	340	340	300	300	MHz
	True dual port 512 × 18	0	1	430	430	370	370	MHz
MIAB (2) M9K Block (2)	True dual-port 512 × 18, with the read-during-write option set to Old Data	0	1	335	335	290	290	MHz
	ROM 1 Port	0	1	540	540	475	475	MHz
	ROM 2 Port	0	1	540	540	475	475	MHz
	Min Pulse Width (clock high time)		—	800	800	850	850	ps
	Min Pulse Width (clock low time)	_		625	625	690	690	ps
	Single-port 2K × 72	0	1	440	400	380	350	MHz
	Simple dual-port 2K × 72	0	1	435	375	385	325	MHz
	Simple dual-port 2K × 72, with the read-during-write option set to Old Data	0	1	240	225	205	200	MHz
	Simple dual-port 2K × 64 (with ECC)	0	1	300	295	255	250	MHz
M144K	True dual-port 4K × 36	0	1	375	350	330	310	MHz
Block (2)	True dual-port 4K × 36, with the read-during-write option set to Old Data	0	1	230	225	205	200	MHz
	ROM 1 Port	0	1	500	450	435	420	MHz
	ROM 2 Port	0	1	465	425	400	400	MHz
	Min Pulse Width (clock high time)	—	—	755	860	860	950	ps
	Min Pulse Width (clock low time)	_	—	625	690	690	690	ps

Table 1–49.	Embedded Memory Bl	ck Performance Spe	cifications for Arria	II GZ Devices	(Note 1)
-------------	--------------------	--------------------	-----------------------	---------------	----------

Notes to Table 1-48:

(2) When you use the error detection CRC feature, there is no degradation in F_{MAX}

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to 50% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Ormshall	Oanditiana	13 C4		C5,I5		C6		Unit		
Symbol	ol Conditions		Max	Min	Max	Min	Max	Min	Max	UNIT
Clock				·		<u>.</u>	-	<u>.</u>	-	
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

0l.al	0 and 11 and	C3, I3			C4, I4			11 14
Symbol	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5		717 (7)	5		717 <i>(7)</i>	MHz
Transmitter								
	SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)		1250	(4)		1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)		(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) <i>(5)</i>	SERDES factor J = 4	(4)	_	1152	(4)		800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)		200	(4)	_	200	Mbps
t _{x Jitter}	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_		0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps		_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

Frequency	Fr	equency Range (Mł	łz)	Resolution	DQS Delay	Number of	
Mode	C4	13, C5, 15	C6	(°)	Buffer Mode <i>(1)</i>	Delay Chains	
5	270-410	270-380	270-320	36	High	10	
6	320-450	320-410	320-370	45	High	8	

Table 1-57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Francisco Manda	Frequency I	Range (MHz)	Augilable Dhage Ohiff	DQS Delay	Number of Delay Chains	
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode <i>(1)</i>		
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16	
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12	
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10	
3	180-260	180-240	45°, 90°,135°, 180°	Low	8	
4	240-320	240-290	30°, 60°, 90°, 120°	High	12	
5	290-380	290-360	36°, 72°, 108°, 144°	High	10	
6	360-450	360-450	45°, 90°, 135°, 180°	High	8	
7	470-630	470-590	60°, 120°, 180°, 240°	High	6	

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Parameter	Clock	Gumbal	-3		-	Unit	
	Network	Symbol	Min	Max	Min	Max	Unit
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1))
	Duty O	JOID DIOLOILION			/ BO11000	11010 1/	,

Symbol	(C4	13, 1	C5, I5		C6	Unit
Symbol	Min	Max	Min	Max	Min	Max	UIII
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Sumbol	C	3, 13	C	1, 14	Unit
Symbol	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Prog	rammable Dela	y for Arria II	GX Devices
-------------	----------	---------------	----------------	------------

	Available Minimum Maximum Offset										
Parameter	Settings (1)	Offset (2)	Fast Model		Slow Model					Unit	
			13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE	orogrammable delay	y settings for Arria	II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

	Available								
Parameter	Settings	Minimum Offset <i>(2)</i>	Fast	Fast Model		Slow Model			
	(1)		Industrial	Commercial	C3	13	C4	14	
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

Table 1-68. Glossary (Part 2 of 4)

Letter	Subject	Definitions		
	J	High-speed I/O block: Deserialization factor (width of parallel data bus).		
G, H, I, J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI t_{JCP} t_{JCH} t_{JPZX} TDO t_{JPZX} t_{JPZX} t_{JPZX} t_{JPCO} t_{JPCO} t_{JPCO} t_{JPZX} t_{JPCO} t_{JPZX} t_{JPCO} t_{JPZX} t_{JPZX} t_{JPCO} t_{JPZX} t		
K, L, M, 0, P	PLL Specifications	PLL Specification parameters: Diagram of PLL Specifications (1)		
Q, R	RL	Receiver differential input discrete resistor (external to the Arria II device).		

Letter	Subject	Definitions				
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	Definitions The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time Districe Districe OS TOCS RISKM Sampling Window OS TOCS The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the A				
	t _C	High-speed receiver and transmitter input and output clock period.				
	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).				
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.				
_	t _{DUTY}	Timing Unit Interval (TUI)				
Т	borr	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)				
	t _{FALL}	Signal high-to-low transition time (80-20%)				
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.				
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.				
	t outpj_dc	Period jitter on the dedicated clock output driven by a PLL.				
		Signal low-to-high transition time (20-80%).				

 Table 1–68. Glossary (Part 3 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.
U,	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V,	V _{IH(AC)}	High-level AC input voltage.
V	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage.
	V _{IL(DC)}	Low-level DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
W,		
Х,	w	High-speed I/O block: The clock boost factor.
Y,	vv	
Z		

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes			
December 2013	4.4	Updated Table 1–34 and Table 1–35.			
		 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6. 			
July 2012	4.0	 Finalized Arria II GZ information in Table 1–20. 			
July 2012	4.3	 Added BLVDS specification in Table 1–32 and Table 1–33. 			
		 Updated input and output waveforms in Table 1–68. 			
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67. 			
		 Minor text edits. 			
		Added Table 1–60.			
lune 0011	4 4	Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.			
June 2011	4.1	 Updated the "Switching Characteristics" section introduction. 			
		 Minor text edits. 			